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Abstract: The paper discusses the results of research into a vibration-powered milli- or micro generator
(MG). The generator harvests mechanical energy at an optimum level, utilizing the vibration of its
mechanical system. The central purpose of our report is to outline the parameters that are significant
for implementing the actual design to harvest the maximum (optimum) energy possible within
periodic symmetrical systems, while respecting the typical behavior of the output voltage. The
relevant theoretical outcomes influence the measurability and evaluation of the physical quantities
that characterize the designed structures. The given parameters, which are currently defined in
millimeters, are also applicable within the micrometer range, or MEMS. The article compares some of
the published microgenerator concepts and design versions by using effective power density, among
other parameters, and it also brings complementary comments on the applied harvesting techniques.
The authors demonstrate minor variations in the magnetic rotationally symmetric circuit geometry
that affect the pattern of the device’s instantaneous output voltage; in this context, the suitability of
the individual design approaches that are to be used with MEMS as a vibration harvesting system is
analyzed in terms of properties that are applicable in Industry 4.0.

Keywords: Harvesting; low-power applications; vibration; micro-generator; optimal solution;
magnetic circuit; periodical structure; effective power density; symmetry

1. Introduction

In recent years, alternative sources of energy have become the main subject of numerous research
projects [1–22], with the optimum energy conversion being one of the central points of focus. Such a
transformation is often ensured through a vibration microgenerator [23–26]. Effective energy harvesters
exploiting the mechanical vibrations and related non-stationary magnetic fields have already been
investigated and reported [2].

The comparative approach applied to harvesters for milli- or micro generators (MGs) within
study [18] allows for an effective evaluation of different conversion concepts, namely, interpretations
of Faraday’s law of induction. An optimal harvester design to yield the maximum power is obtainable
via minor structural modifications that may substantially change the resulting performance while
the parameters (including the weight, volume, and vibrations) remain virtually identical to those of
standard harvesters. Different papers, including [2], detail functional magnetic circuits for vibration
harvesters, where the model experiments and a comparison of various versions illustrate the effect of
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magnetic circuit modifications on the output voltage and power of a harvester. Advantageously, the
devices can be grouped into periodic structures and also used in closed systems, such as automobiles,
aircraft, and other units that are suitable for the inclusion of harvesters as additional and reliable energy
sources. The possibilities of residual energy harvesting are examined in article [3]; the discussion
comprises, among other aspects, specific harvester installation conditions, and requirements.

As regards the microgenerator design (Figure 1), Figure 2a introduces the most widely preferred
principle (I, [2,3]); in the given context, it is necessary to respect the general conclusions of Faraday’s
law of induction as formulated in, for example, Equation (1) and Figure 2b below. Figure 2 shows
multiple processes and elements, including the magnetization of the permanent magnet M; magnetic
flux Φ; magnetic lines of force; oriented area S enclosed by the coil thread; electric coil; and, character
of the generator’s core motion with respect to the coil. The related Figure 2c then introduces a design
version that minimizes the impact of external electromagnetic fields (non-stationary) on the principal
function of the generator.
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Figure 1. The principal configuration of the core of the milli- or micro generator (MG): (a) a beam 
version, principle I; (b) a beam version, principle II [2]. 

The generator was modeled to facilitate optimal design of the dimensions (minimum size and 
weight m) [2]. The vibrations measured with critical positioning of the device reached the maximum 
of G = 0.2 g (g = 9.81 ms−2). In the discussed concept, the resonance might vary, according to the origin 
of the vibrations, from the tuned resonance frequency fr by up to tens of percent. 

Figure 1. The principal configuration of the core of the milli- or micro generator (MG): (a) a beam
version, principle I; (b) a beam version, principle II [2].
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Figure 2. The basic arrangement of the investigated rotationally symmetric geometry device exploiting 
Faraday´s induction law: (a) the classic solution; (b) the novel arrangement; and, (c) the option with a 
closed magnetic circuit to minimize (optimize) the impact of external magnetic fields [2]. 

As regards the optimum design variant, the critical parameter consisted in the boundary 
sensitivity of the generator to the minimum vibration amplitude; the relevant value corresponded to 
0.01 g–0.05 g. In the following portions of the presentation, the proposed structural problems and 
methods for their solution will be discussed. 
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Figure 2. The basic arrangement of the investigated rotationally symmetric geometry device exploiting
Faraday´s induction law: (a) the classic solution; (b) the novel arrangement; and, (c) the option with a
closed magnetic circuit to minimize (optimize) the impact of external magnetic fields [2].

The generator was modeled to facilitate optimal design of the dimensions (minimum size and
weight m) [2]. The vibrations measured with critical positioning of the device reached the maximum of
G = 0.2 g (g = 9.81 ms−2). In the discussed concept, the resonance might vary, according to the origin of
the vibrations, from the tuned resonance frequency f r by up to tens of percent.

As regards the optimum design variant, the critical parameter consisted in the boundary sensitivity
of the generator to the minimum vibration amplitude; the relevant value corresponded to 0.01 g–0.05 g.
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In the following portions of the presentation, the proposed structural problems and methods for their
solution will be discussed.

Microgenerator systems and relevant manufacturing methods were discussed on a comprehensive
basis previously [2–5]; the structural details and consequences are indicated herein, as in Figures 2–4.
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Figure 4. The electric voltage induction in the applied coil, (a–g), according to Faraday´s law of 
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induction [2].
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2. Designing the MG

The microgenerator utilizes an external environment that is characterized by the occurrence of
mechanical vibrations, exploiting a suitable mechanical coupling to dampen these vibrations and
generate an electric power Pout. The required output power Pout of the optimal design depends on the
type of the output load Z. The optimal arrangement of the MG is based on the concepts in Figure 1,
Figure 2c, and Figure 3, with the magnetization orientation indicated. In terms of the mechanical
properties, the device was discussed in dedicated papers and patents, such as [10,25]. Figure 4 presents
details of the transformation process and electricity generation; the actual engineering approach
adopted in solving these procedures then embodies the necessary precondition for the subsequent
identification of the optimal design. The mathematical model outlined in [2] is, in a basic form,
incorporated in the corresponding Formula (5), below.

Figure 3, as above, presents one of the progressive options available for seating the moving
part of the generator, a solution that eliminates the classic spring or girded beam (Figure 1). The
designed system (Figure 3), is tuned to the mechanical oscillation resonance frequency f res and
it constitutes the basis of the optimal approach. Such an arrangement allows for us to reach the
maximum possible harvest rate and transform the field into an electric voltage; Figure 4 shows the
corresponding preconditions.

3. Modeling the MG

To support our approaches, the paper includes fundamental parts of the relevant mathematical
model, which is defined, for example, within referenced publications [1–3]. In the given context, the
model can be formulated, as∮

`

E(t) · d` = −
∫
S

∂B(t)
∂t

dS +

∮
`

(v(t) ×B(t)) · d` (1)

where E(t) denotes the electric field intensity vector, B(t) is the magnetic flux density vector, v(t)
represents the generator core position drift in time (the instantaneous velocity) vector, S stands for
the cross section of the area with magnetic flux Φ, and l denotes the curve along the boundary of the
S. Figure 4 illustrates the change of the magnetic flux of the field (ti1, . . . , ti4) and also the resulting
induction of the voltage u. The behavior of the voltage u(t) can be evaluated by following the steps
that are indicated in Figure 4; this behavior assumes the validity of Equation (1), magnetic flux Φ
configuration, and electric coil shape with an active surface Sc.

We need to know the values of energy and transformation rate to be able to evaluate the efficiency
of the proposed design (Figure 2c). The state equation can be defined with respect to the energy
conservation law regarding the considered problem [1–3]. Subsequently, the kinetic and potential
energies, Wk and Wp, respectively, which are related to the movement of the generator’s core, can be
defined as

Wk =
1
2

m v2, Wp = m g z. (2)

where m is the mass of the MG system, v denotes the mean velocity, and g represents the gravity
constant.

The equation of state used by the authors of [1] and [2] captures the electromechanical coupling in
the device, being expressed as

m g z−
∫
`

∫
VJ

(J×B)dV · nd` −
∫

VJc

1
2

J2

γ dV = 1
2 m

(
d z
dt

)2

η
∫

VM

1
2 BMHMdV = 1

2 m
(

d z
dt

)2 (3)
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where dz/dt is the moving part drift in time, further measurable as the velocity v; η represents the
magnetic field transformation efficiency; n denotes the normal vector; γ is the specific conductivity of
the wire; ` is the length of the shift caused by the specific strength; B denotes the magnetic flux density
vector; J represents the current density vector; VJc stands for the coil wire volume; and, VJ is the volume
of the electrically conductive components. The MG system then also includes the braking forces

m
d2z
dt2 + lc

dz
dt

+ k z = Fz, (4)

where d2z/d t2 is the acceleration of the moving part, dz/d t denotes the velocity v of the moving parts,
m represents the mass, k stands for the stiffness coefficient, lc is the damping coefficient, and Fz is the
forces affecting the moving parts. The simplified model is described as

m
d2z
dt2 + lc

dz
dt

sign(
dz
dt

)
dz
dt

+ k z =
(
mm + mp

)
g(t) −

∫
VJ

((
dz
dt
×Bbr

)
×B

)
· n dV −

∫
`Jc

(in×B) · n d`, (5)

where Bbr is the braking magnetic flux density, Jv denotes the current density of the electrically conductive
components, Jcirc represents the current density in the coil winding, and i stands for the instantaneous
value of the current through the coil. The geometrical model that is applied in ANSYS (Version 12,
ANSYS inc., Houston, USA) is presented in sources [23], ref. [2] as well as Figures 3a and 5a. Figure 6, as
below, shows the typical analysis of the ANSYS numerical model. The novel (optimal) generator design
was tested on both a pneumatic and an electrodynamic shaker to verify the magnetic independence of
the proposed solution. The magnetic circuit is designed such that its structure is enclosed within the
body of the generator, ensuring reduced sensitivity to the external magnetic field and its changes. This
parameter is of interest for application in the periodic structure of the outlined design usable in MEMS.
The assumptions embodied in the variant from Figure 2c were experimentally verified.
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the ANSYS geometrical model; (b) the core; and, (c) the optimal design, detailed distribution of the
magnetic flux density module B [T].

4. Selecting the MG Core Design

Within the design of the generator, the ANSYS system [4] was used for the numerical analysis
and to optimize the key parts. A mathematical model exploiting partial differential equations further
described the electromagnetic field distribution [1,2]. This model becomes evident from Formulas (3),
(5); the non-linear equations, which define the behavior of the external electric circuit [1–3]; and, the
mechanical model of the main parts of the generator. There is mutual action between the mechanical
and the electromagnetic effects. The partial differential equations of a coupled electro-mechanical
circuit [4,5] were used to build the physical model.

A simplified model was employed to design the generator components. The model utilized
lumped parameters, as shown in Figure 7, and it also assumed various versions of the magnetic field
changes described with respect to the phase perspective, as indicated in Figure 4a–g. The individual
parts, comprising the permanent magnet, air gap, electrical winding, magnetic circuit, electric coil, one
turn of the winding, pole extension, beam, body, and core of the magnetic part of the generator, are
denoted by using the reference symbols in Figure 7a.
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simple variant, acceleration g within the interval of 0.01 g–0.3 g; (b) a scheme of the configuration. 
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simple variant, acceleration g within the interval of 0.01 g–0.3 g; (b) a scheme of the configuration.

A lumped parameters model can describe these components in order to perform quick assessment
of the properties of the proposed concept. The above structures are classifiable into two groups: One
of these exploits the approach where a magnetic field moves with respect to a fixed coil, as shown in
Figure 7b; the other then utilizes an electric coil moving with respect to a stationary magnetic field
and fixed to the body of a generator. Regarding the above analysis, we also examine the concept
of a magnetic field moving with respect to an electric coil fixed to the body of a generator based on
principle II (Figure 3a), in which the ferromagnetic circuit is fully closed and its components do not
move against each other.

The generator design versions were used to build a series of models in ANSYS and then employed
to examine the vibration energy harvesting rate. As a result, we can demonstrate the distribution of
the magnetic flux density module B and the magnetic field intensity module H in Figure 6c of the
functional sample according to the configurations that are presented in Figure 6a,b.

5. Critical Parameters of the MG Design

The critical parameters are outlined in sources [1,2,26] and can be categorized into the following
areas:

• mechanical dynamics;
• electromagnetic field; and,
• electronic systems (power management blocks).

In terms of the mechanical dynamics, the optimal state depends on finding an interval of the
mechanical approach to a vibration system for the known resonant frequency f res. Regarding this task,
an aspect of major importance consists in the nonlinear stiffness coefficient k in the entire generator
system (Figure 8). If the factor is adequately considered, then the device is capable of providing an
operational efficiency of approximately 90%; in such conditions, the MG will operate at its maximum
efficiency with minimal vibrations. The nonlinearity of the stiffness coefficient k depends on the choice
of principal approach (Figure 1a,b and also Figures 6–8).
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Such an approach to the mechanical configuration of the MG is suitable for multiple purposes in
microtechnology, including the formation of fields of resonant MGs (Figures 9–12). Two approaches
were tested as regards the electromagnetic field: one utilizing air to substitute for the ferromagnetic
material in the magnetic field (principle II, Figure 1b), and the other applying a ferromagnetic material
according to Figure 3a. Figure 9 demonstrates a solution to facilitate the further development of the
progressive concept (principle II) through changes of the dimensional parameters of the design, t1, t2,
φD1 − φD3.
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Figures 10–12 demonstrate the difference in the shapes of the electric voltage induced in the coil
of the generator at some characteristic settings of the design parameters t1, t2, φD1 − φD3.
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6. Microstructures

In order to apply the above-defined principles and conclusions, we have to consider the relevant
figures (MG principle II, Figures 1b, 3a and 9, Figures 10–12, where Sc is the effective area of the coil,
Figure 2c; Sp denotes the area of the pole extension; t1 represents the thickness of the pole extension of
the MG core; Nseg is the number of the electrical winding segments; Npol is the number of the pole
extensions of the core and shell; and, f (dg/dt), g (dg/dt) denote the time variation of the gravitational
acceleration of the moving part of the microgenerator. The correct setting of the MG0 structure,
Figures 9–11, can be verified through measuring or evaluating the behavior of the output voltage on
the terminals of the MG segment. The obtained instantaneous values of the patterns of the voltage u(t)
are then applicable in expressing, via the indirect method and based on the above formula (5), the
observed physical quantities of the model.

As regards vibration energy harvesting within the microdimension, it is necessary to utilize
in the MG fields the discussed principle II (Figure 7), together with certain variants of the relevant
configurations of the magnetic circuit and winding (Figures 9–12). Thus, the preset requirements for
the generator sensitivity and effective use of the space will enable us to harvest a high amount of
residual energy. Figure 13, below, illustrates an exemplary periodic MG structure. The actual design
(Figures 10–12) or other parameters can be altered to ensure the desired shape of the output voltage
(Figures 10b, 11b and 12b) and also the conversion effectivity rate in transforming the mechanical
vibrations to electrical energy.
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The optimal design of a symmetrically structured sensitive vibration harvester (principle II,
Figure 1b to operate in the resonant band can be applied in segmentation into microgenerator
structures, as in Figure 13). Segmented microgenerators clustered as units (a MEMS harvester) can be
arranged into fields. In this type of configuration, the designer has to consider the condition in which
the length of the excitation vibration wave is

λv � L, L = N(ls + lh) (6)

where L denotes the length of a side of the periodic structure, ls represents the length of the MG element,
and lh is the space between the elements of the periodically structured field of microgenerators. During
the propagation of vibrations, the structure behaves such that the electric voltage is almost in phase at
the output of the windings.

The actual engineering of the procedure to facilitate, especially in terms of the size, the transition
from a minigenerator to a microdevice (MEMS) is accompanied by not only technological questions and
problems, but also the fundamental requirement of respecting the principles that are characterized in
this paper. Generally, it is possible to suggest that the set of usable magnetic materials comprises items
such as nano Ni and convenient permalloys deposited via sputter coating or lamination. The weight of
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the flat structure, ms, then determines the achievable resonant frequency, harvesting efficiency, and
adjustment of the harvester’s lower sensitivity limit. Importantly, each concrete application of the
principle requires designing a suitable MEMS structure by using the above-shown models.

7. Comparing MG Concepts, Designs, and Structures

Current experiments with vibration microgenerators converting energy via magnetic induction
(vibration/electric energy) employ various harvesting approaches (principle I, principle II) and magnetic
circuit structures [2]; thus, the devices exhibit diverse output power and conversion efficiency rates
with respect to the given size and vibration frequency spectrum [12–22]. When engineering a periodic
microstructure, a designer has to consider the degree of efficiency at which the transformed energy
(mechanical vibrations) is to be harvested, and they then select the microstructure element accordingly,
while utilizing available technologies. Several specific methods and the obtained results by different
research groups are compared below, Figures 14–18; in this context, the relevant concepts and structures
of vibration generator transformation elements applied internationally are also discussed in view of
the samples MG I–MG IV presented herein (Figures 19–21).Symmetry 2019, 11, x FOR PEER REVIEW 12 of 17 
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Figure 20. The tested microgenerator [2] based on Principle I: (a) MG I—the dimensions of 90 × 40 ×
30 mm, Uout max = 300 V; (b) MG II—the dimensions of 50 × 27 × 25 mm, Uout max = 20 V; and (c) the
instantaneous behavior of the output electrical voltage in MG I and MG II (the effect of the stiffness
coefficient k—Figure 8).
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The microgenerators that are characterized in Figures 14–18 correspond to the concepts and design
versions of the vibration generator magnetic circuit and housing outlined by the authors of this paper.
The solution from Figure 2a corresponds to the embodiments that are discussed within articles [14,15],
comprising a clearly open magnetic circuit and an induction coil unfavorably positioned with respect
to the movement of the permanent magnet. The concepts and tests that are presented in [11,13]
relate to the configuration from Figure 2b, where the induction coil is positioned and oriented such
that the harvester provides a higher efficiency; however, the magnetic circuit is not markedly closed.
The technique adopted by Yang et al. [16] approaches the effective configuration from Figure 2c; the
researchers employed the non-linear, non-monotonous function of the stiffness coefficient k, namely,
the function specified as the solution respecting Principle I, Figure 1a). By contrast, Beeby et al. [12]
proposed an interpretation that, when compared to our investigation, resembles the system stiffness
coefficient within Principle II–Figure 1b.

At the DTEEE FEEC, BUT, comparative tests were performed of a vibration generator (Figure 19)
with magnetic damping [2] of the mobile arm’s movement; these testing cycles comprised design
variants MG I–MG II according to Principle I and also versions MG III–MG IV exploiting Principle
II. The parameters obtained in selected generators are summarized in Table 1; a wider comparison is
available in study [18] (as in table 4).
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Table 1. The parameters of selected vibration generators.

Reference
Permanent
Magnet

Type

Generator
Body

Size x, y,
z [m]

Resonant
Frequency

f r [Hz]

Amplitude
Mech.
Part A

[m]

Output
Power

Pout [W]

Output
Voltage
Uout [V]

Load
Resistance

R [Ω]

Acceleration
G, g = 9.81

[m/s]

Effective
Power

Density
[W/m3]

Beeby
et al. [12],

2007
− 375 mm3 52 − 2 × 10−6 0.428

RMS 4000 0.06 g ≈6

Zhu et al.
[13], 2010 FeNdB 2000 mm3 67.6–98 0.6 × 10−3 61.6–156.6

× 10−6 − − 0.06 g ≈30–80

Kulkarni
et al. [11],

2008
FeNdB 3375 mm3 60–9840 1.5 × 10−3 0.6 × 10−6 0.025 52,700 0.398–4 g ≈0.2

Wang
et al. [15],

2007
FeNdB 256 mm3 121.25 0.738 ×

10−3 - 0.06 - 1.5 g -

Lee et al.
[17], 2012 FeNdB 1.4 × 10−4

m3 16 −
1.52 ×
10−3 4.8 5460 0.2 g ≈10

Yang
et al., [16],

2014.
−

50,000
mm3 22–25 13.4 ×

10−3 0.7–2.0 110 0.6 g ≈270

Elvin
et al., [14],

2011
−

15,000
mm3 112 − 4 × 10−6 0.007 986 - ≈0.26

MG I [2],
2006 FeNdB 90, 40, 30

mm 20–35
50 ×

10−6–400
× 10−6

70 × 10−3 4–60 (300)
p-p 7500 0.15–0.4 g ≈650

MG II [2],
2006 FeNdB 50, 27, 25

mm 17–25
50 ×

10−6–400
× 10−6

19.5 ×
10−3 6−15 5000 0.1–0.7 g ≈60

MG III FeNdB 50, 25, 25
mm 21–31.5

50 ×
10−6–400
× 10-6

5.0 × 10−3 1.0–2.5 600 0.05–0.4 g ≈15

MG IV FeNdB 50, 35, 25
mm 21–31.5

50 ×
10−6–400
× 10−6

8.0 × 10−3 1.0–2.5 1200 0.05–0.4 g ≈18

*Lith.
battery

[19], 2018
≈40 × 106

*supercap
[20], 2010 ≈3–5

*fuel ≈4 × 109

*U235 ≈9 × 1016

If application in microelectronics and periodic systems is assumed, then the solution displayed in
Figure 2c appears to be advantageous; however, at major vibrations, namely, ones between 0.3 g and
1.0 g, it is beneficial to configure the magnetic circuit and coil as set out within Principle I, Figure 1a).
Where the external vibrations drop below 0.3 g (0.01 g–0.2 g), Principle II, Figure 1b, has to be applied.
A generator configuration design requires an analysis of the magnetic field expected for the active
section of the device and overall presetting of the maximum values of the specific magnetic flux density
B into the air gap that is to contain the generator winding, Figure 6; such an analysis and presetting
have to facilitate the maximum magnetic flux change in time and space, as formulated within Faraday’s
law of induction (1) and to enable geometrical configuration of the winding shown in Figure 4. In
the given context, it is advantageous to employ the double action system to facilitate a magnetic flux
change, as indicated in Figures 5a and 7.

Figure 20 presents the tested generators MG I–MG II that exploit Principle I and the energy
harvesting efficiency rates yielded from Figure 2c, exhibiting various size versions together with
different parameters and measured patterns of the output electrical voltage Uout.
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Figure 21 presents the embodiments of MG III and MG IV respecting the magnetic circuit
configuration according to Principle II and the energy harvesting effectivity scheme that characterizes
the variant from Figure 2c.

The last column of Table 1 comprises data that are related to effective power density [W/m3];
this quantity enables us to express the effectivity of individual generator concepts and structures as
regards harvesting quality. The last four lines indicate a comparable quantity for fossil and nuclear
fuels, batteries, and supercaps.

For comparison purposes, Table 1 contains a quantity denoted as “effective power density“; in
this context, it would probably be interesting to also indicate the harvesting rate of the microgenerator,
but such a task appears to be rather problematic. Although the efficiency of a resonant harvester can
be preset to a desired level, as demonstrated via Formulas (1)–(5), the associated model (5), and the test
cycles visualized in Figures 19–21 the achievable efficiency rate markedly depends on the quality of the
mechanical coupling between the vibration source, the power management unit, and other relevant
parameters; our tests yielded final rates between 50 and 95%. The problem was analyzed by different
authors already previously [2–5,24].

8. Conclusions

The paper discussed the outcomes of a theoretical investigation into the design and principles
of mini/micro generators to facilitate mechanical vibration energy harvesting [2]. The main product
of the continuous research consists in simulation-based determination of the optimum rotationally
symmetric geometry design versions and parameters of a relevant magnetic circuit.

The advantageous solutions and options are embodied in the generator design versions according
to the proposed principles I and II, which ensure the necessary resistive loads and associated
impedances. Exploiting the measured output voltages of the selected variants, the derived theoretical
models can evaluate the harvester quality and fabrication procedure. Using the hybrid measurement
approach combined with a numerical model, it is possible to classify other physical quantities of the
electromagnetic field inside the generator.

The harvesters fabricated according to principle II, utilized in the range of f r = 10–50 Hz (frequent
in the automotive and aeronautics sectors), are integrable into miniaturized microgenerator structures
working within the range of G = 0.05 g–0.08 g. This concept could advantageously employ in practice
the higher level of vibrations available compared to the design based on principle I [3]. The generators
that employ principle I operate at vibration levels higher than G ≥ 0.15 g. Generally, the winding
configuration variants convenient for the frequency ranges of f v = 1–10 Hz, f v = 50–150 Hz are
demonstrated in Figure 2b,c.

We discussed selected samples of microgenerators to evaluate multiple quantities, including
the effective power density (Table 1). This quantity is utilized as the parameter enabling us to
choose the source of energy applicable in the given task or unit and determine whether the actual
selection of the correct approach is a parameter for facilitating effective designing of MEMS structures.
The knowledge that was obtained through the experiments is beneficial for the use of autonomous
electro-mechanico-electronic systems in Industry 4.0 projects.
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