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Abstract: The properties of pulsed laser deposited of Ni60Ti40 shape memory thin films generated in 
various deposition conditions were investigated. In-situ plasma monitoring was implemented by 
means of space- and time-resolved optical emission spectroscopy, and ICCD fast camera imaging. 
Structural and chemical analyses were performed on the thin films using SEM, AFM, EDS, and XRD 
equipment. The deposition parameters influence on the chemical composition of the thin films was 
investigated. The peeled layer presented on DSC a solid-state transformation in a different 
transformation domain compared to the target properties. A fractal model was used to describe the 
dynamics of laser produced plasma through various non-differentiable functionalities. Through 
hydrodynamic type regimes, space-time homographic transformations were correlated with the 
global dynamics of the ablation plasmas. Spatial simultaneity of homographic transformation 
through a special SL(2R) invariance implies the description of plasma dynamics through Riccati 
type equations, establishing correlations with the optical emission spectroscopy measurements. 

Keywords: nitinol; pulsed laser deposition; in situ plasma monitoring; thin films; fractal modelling; 
SL(2R) invariance; homographic transformations; Riccati equation 

 

1. Introduction 

Due to the demand of applications in the field of engineering, the new materials are kept in a 
developing state in order to improve their performance, but also for creating new functions. Among 
these, there is a group of materials that are able to respond to a special stimulus through the alteration 
of the encircling physical and chemical features. These stimuli include the temperature (thermo-
receptive materials), tension or pressure (mechanical-receptive materials), current or electrical 
tension (electro-receptive materials), magnetic field (magneto-receptive materials), change of the pH, 
of the solvent, or humidity (chemical-receptive materials) and light (photo-sensitive materials) [1–3]. 

Such a special class of materials are the shape memory alloys (SMA) that possess a range of 
desired properties, especially a high mechanical capacity in comparison with their weight, through 
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which is developed the ability of recovery, a deformation produced by a massive transformation and 
a deformation due to heating and cooling, pseudo-elasticity (super elasticity), high capacity of 
damping, high chemical corrosion resistance, and bio-compatibility (in the case of alloys based on Ti 
and Fe) [4–6]. 

In the past few years shape memory alloy thin films were proven promising with high 
performance in the field of applications of micro-electric mechanical systems (M.E.M.S) because they 
can be implemented through standard techniques of lithography or depositing, fabricated at an 
industrial scale [7]. The thin layers of shape memory alloys need only a small amount of thermic 
capacity to heat or cool, which is why the answer time is substantially reduced and the working speed 
increases considerably. The effective power capacity on a volume corresponding to a layer obtained 
from an alloy with shape memory exceeds the one of the classic mechanisms proposed for micro-
activation [8–10]. The transformation process of a bulk alloy with shape memory in thin film is 
accompanied by numerous important changes at the level of the mechanical, physical, chemical, 
electric, and optical properties such as the load resistance, elastic module, hardness, and attenuation 
capacity, regaining the initial form, electric resistivity, thermic conductivity, thermic expansion 
coefficient, surface rugosity, vapors permeability, and the dielectric constant, etc. 

This transformation can be used in designing and fabricating micro-sensors and micro-actuators. 
However, due to the lack of a complete understanding of the AMF layers, combined with the 
difficulty of controlling the depositing parameters, these films have not benefitted of too much 
attention in the MEMS technology of production, in comparison to other technologies of obtaining 
the micro-actuators. Thin films based on Ni-Ti are the most SMA used materials under thin film form, 
and they are obtained through the atomization method. There are also depositing methods: laser 
ablation, depositing with ions fascicle, plating with jet of ion plasma, the plasma atomization and the 
blitz evaporation, but with certain inherent problems such as the lack of uniformity of the layer 
thickness and the composition’s lack of uniformity, low coating speed, or low handling and 
incompatibility with the process performed by MEMS, etc. The depositing processes through laser 
ablation surpass the majority of these problems [11–14]. The transformation temperatures, behavior 
of shape memory, and the super-elasticity of the pulverized layers of Ni-Ti are sensitive at the most 
metallurgical factors (the alloy composition, contamination, thermic-mechanical treatments of re-
annealing and ageing), at the atomization conditions (co-atomization with multi-aims, the target, the 
gas pressure, the distance from the target to the sub-layer, the depositing temperature, obliquity sub-
layer, etc.), as well as to the application conditions (loading conditions, temperature of the 
environment, heat dissipation, heating/cooling speed, mechanical loading speed) [15,16]. The shape 
memory effect involves the crystallographic transformation thermo-elastic with reversible stage or 
the martensitic transformation from the initial stage of high temperature to that final stage of low 
temperature [17–22]. Generally speaking, there are 2 types of martensitic transformation, one with a 
single stage A→M and the other with 2 stages A→R→M, where A is the austenitic phase of high 
temperature, R is the rhombohedral intermediary phase, and M is the martensitic phase of low 
temperature. The experimental results presented an in-depth presentation of the efficiency of the 
pulsed laser deposition process towards obtaining shame memory alloy thin films and the effect of 
the deposition conditions on the properties of the thin film. 

In this paper we report the experimental results on the deposition of thin films with special 
properties using Nitinol targets (shape memory alloy). Also, there are followed aspects about with 
the target behavior, and the transmitted plasma during the depositing and created thin layers. A 
fractal model used to describe the dynamics of laser produced plasma through various functionalities 
of non-differentiable type was established. Hydrodynamic type regimes by means of space time 
homographic transformations were corelated with the global dynamics of the ablation plasmas. In 
such a context, spatial simultaneity of homographic transformation through a special SL(2R) 
invariance implies the description of plasma dynamics through Riccati type equations can be used to 
describe the dynamics of ablation plasma seen through the optical emission spectroscopy 
measurements. 

2. Experimental Set-Up 
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The properties of the thin films and the plasma investigation were performed using an Nd: YAG 
laser (λ = 266, 355 or 532 nm, pulse width 5 ns) working at a 10 Hz repetition rate. The laser beam 
was focused with lens with a focal distance f = 35 cm, on a target NiTi placed in a vacuum chamber 
(p = 10−2 Torr). The NiTi alloy (nitinol60) was acquired from the firm Saes Getters [17], in softened 
state. The estimated diameter in the impact point was almost 400 µm. The energy laser fascicle was 
monitored continuously using a joule meter Ophir. The energy used usually was of 30 mJ/impulse, 
that leads to a typical intensity of the laser of 6 GW/cm2. 

The target of shape memory alloy is moved in the XY plan with a micrometer manipulator in 
order to expose a new area towards the laser fascicle (to obtain a uniform ablation, the target was 
rotated and translated simultaneously). The formation and dynamics of plume were studied with an 
intensified camera ICCD (PI MAX, 576_384, with minimum gate of 2 ns) placed perpendicularly on 
the direction of expansion of plasma, Figure 1a. 

The spectral composition of plasma formed in the ablation process depends on the chemical 
composition of the sample, which was analyzed with a high resolution spectrometer. This technique 
reaches a high potential of using as analysis method in real time of the chemical elements. 

In the case of analysis of the metallic ablated materials it was used an identification of the base 
spectral lines through the analogy with those identified in the NIST library [18]. The spatial–temporal 
dynamics of the transitory plasmas generated through laser ablation of high fluency with pulses at 
nanoseconds was analyzed using optical methods (optical emission spectroscopy and ICCD fast 
camera imaging), the analysis figure being presented in Figure 1b. 

  

(a) (b) 

Figure 1. (a) Experimental deposition and analyze system and (b) time-distance analyze of the 
metallic plume. 

Throughout the experiment, the substrate was maintained in a fixed position at room 
temperature. The target was fitted on a support of 45° that would direct the plasma of metallic ablated 
material towards the substrate. There were deposited a series of thin films from targets of Nitinol at 
two different distances between target and substrate (2 and 4 cm) using energies of laser of 40, 80, 
100 mJ and two different deposition times (45 and 90 min). Given the substantial set of different 
deposition conditions attempted, a total of 30 samples were generated. In-situ plasma investigation 
was also implemented by means of both global and space- and time-resolved optical emission 
spectroscopy analyses. The global investigations focused on recording the overall emission of the 
plasma to analyze the overall dynamics of the ablated particle cloud while local investigations were 
performed by means of optical emission spectroscopy where the kinetics and thermal energy of 
individual species was investigated. 

Usually there are two routes to achieve a shape memory crystallin thin films: one using a heated 
substrate and a second with post annealing heat treatment. Because the films deposited at high 
substrate temperatures (400–600 °C) are crystalline, they do not require any post-annealing 
treatments. However, initial tests have revealed that the heated substrate route was not resulting in 
high quality films, as the thin films became unstable at high temperatures and the growth of the thin 
film was accompanied by the formation of precipitates due to interfacial chemical reactions; also, 
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these layers were more susceptible to cracking. Due to these reasons, in this case we chose to do a 
post deposition heat treatment of annealing by heating the layers to 800 °C in Ar atmosphere and 
cool them in air in order to crystalize the thin film structure.  

The behavior of the shape memory materials that present transformations in a solid state was 
investigated in initial form and also of thin layer form through differential calorimetry on equipment 
DSC Maya 200 with a heating speed of 10 K/min in the atmosphere of Argon. The chemical analysis 
of the thin layers was performed through EDS analysis (detector Bruker: energy resolution up to 100 
kcps count rate, use a self-calibrating P/B-ZAF analysis, minimum 90 nm diameter spot for analyze) 
and XRD (X’Pert Pro MRD, Scan-Continous, Start Angle: 20, End Angle: 120, Step size: 0.0131303, 
Time per step: 61.20, Scan speed: 0.05471, Number of steps: 7616, 45 KV, 40 mA, Anode X-ray Tube: 
Cu, 20:20–90) and the surface was analyzed through electron microscopy (SEM VegaTescan LMH II, 
work in a high vacuum of approximately 1 × 10−2 Pa, electron gun work 1–30 kV, 100,000×, 15.5 mm 
WD, SE detector and program VegaTC) and through atomic force microscopy (Nanosurf EasyScan 2 
equipment, maximum Scan range: 110 µm, maximum Z-range: 22 µm, drive resolution Z: 0.34 nm, 
drive resolution XY 1.7 nm, XY-Linearity Mean Error: <0.6%, Z measurement noise level (RMS, Static 
Mode) 0.4 nm (max. 0.55 nm)). 

3. Experimental Results 

3.1. The Analysis of the Nitinol Target After the Ablation Process 

The state of the surface of shape memory material that is used as a target in the process of 
depositing through laser ablation is presented in Figure 2 with the highlight of the traces left by the 
laser fascicle in Figure 2a and the thermic affected area in Figure 2b. 

  
(a) (b) 

Figure 2. The state of the alloy surface NiTi after the laser exposure (a) perspective, (b) detail of area 
of ablated material. 

We can observe an area of approximately 200 µm around the traces left by the laser, thermally 
affected by the laser action constituted from welded compounds of circa 1–3 µm. The action of laser 
in the contact area is characterized by a release of material on a surface of 314 µm2 for a diameter of 
20 µm as we can observe in Figure 2a. The surface affected by the laser beam was chemically analyzed 
on an area of 0.4 mm2 by 10 t and the average of the values of identified chemical elements was of Ni: 
47% wt., Ti: 41.5% wt. și O:11.5. The apparition of a high percentage of oxygen can be observed, a fact 
that signals a pronounced oxidation of the surface after the laser exposure with a decrease of the 
content of Ni that transformed at the surface in oxides. Another important aspect worth noting here 
is the fact that the heat affected area is large and there is a lot of redeposited material on the edges of 
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the ablation crater. The presence of huge droplets on the targets is also a signature of the dominant 
effect induced by thermal ablation mechanisms, as opposed to the electrostatic ones. This is especially 
the case of explosive boiling, during which the ejection of large parts of materials can occur. This 
could translate into a high density of clusters or nanoparticles on the deposited films.  

3.2. In-Situ Plasma Monitoring During Pulsed Laser Deposition of NiTi By Means of OES and ICCD Fast 
Camera Imaging 

The central idea behind in-situ plasma monitoring during pulsed laser deposition of thin films 
is to potentially asses the quality and properties of the desired films by understanding the 
fundamentals of the deposition process. In order to obtain this, we performed in-depth 
characterization of irradiated target, resulted transient plasma and the thin films. One of the general 
accepted technique for in-situ plasma monitoring is optical emissions spectroscopy due to its non-
perturbative nature. This approach is usually completed by ICCD fast camera imaging. Therefore, in 
order to understand the structure and the dynamics of the laser produced plasma, we employed a 
global to local approach. Global investigations involved ICCD fast camera imaging and the local ones 
the space and time resolved optical spectroscopy with the focus being on individual excited states 
seen in the ablation plasma. 

The general dynamics of plasma (plume) resulted after the interaction between the laser fascicle 
and the target from Nitinol was analyzed through ICCD imaging of the laser produced plasma, with 
a gate width of 30 ns, for different moments of time. In Figure 3 there are presented some snapshots 
from the expansion of plasma in the precinct at different periods of time (from 25 to 1000 ns) after the 
impact between the laser fascicle and the target. 

 

Figure 3. ICCD images of laser produced plasmas on NiTi shape memory target. 

Starting with the first image where the plume was recorded at 200 ns after the interaction 
moment between the laser beam and the NiTi target (seen as ∆t = 0), that the laser produced plasma 
has a quasi-spherical shape that increases in volume as it expands. At later moments, we noticed a 
split of the ablated cloud into three distinct structures (Figure 4). This separation is justified by the 
constituents of plume. The process was observed also in other studies [23,24] and can be attributed 
to a heterogeneity in the velocity of the ejected particles based on their nature and the ejection 
mechanisms involved. 

The first structure, also known as the fast structure, is generated by electrostatic mechanisms 
(Coulomb explosion) and describes high energetic particles (mainly ions in various ionization states); 
the second structure is generated by thermal mechanism and usually describes a strongly atomized 
structure moving with a lower velocity, and the third structure, which is also of thermal nature and 
contains a heavier, more complex structure with a considerably lower expansion velocity [25]. In 
order to characterize the behavior of plume we estimated the velocities per each species by plotting 
the displacement of the maximum emission area in space and time. The values found were 1.6 km/s 
for the third structure, 2.8 km/s for the second one, and for the first one 5 km/s. The obtained value 
for the third structure is relatively high, meaning the ejected clusters have relatively high energy and 
there is a strong possibility of a high density of clusters on the deposited films. On the other hand the 
fast structure have a lower velocity in comparison to other reports from the literature, a sign that the 
forces driving the Coulomb explosion ejection mechanism are secondary to the thermal ones. 
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Figure 4. ICCD image of a laser produced plasma on NiTi recorded after 700 ns (a) and the cross 
section on the main expansion axis of the plume (b). 

For the analysis of the contributions of the metallic species, which can be found in the plasma 
obtained from the NiTi target, a spectroscopic study was performed focusing on their evolution in 
space and time. The first global spectra of plasma for an area of 0.2 mm2 from the plasma at a distance 
of 5 mm to the target surface was recorded in the 300–510 nm spectral range. In Figure 5 an example 
of spectra emitted for the NiTi sample is presented. Using appropriate databases [18] we identified 
all the emission lines observed empirically. We noticed both atomic and ionic Ti lines, and only 
atomic species of Ni. The abundance of Ti with respect to the Ni lines seen in the spectra can be 
explained by the lower evaporation heat and lower melting point of Ti coupled with an atomic radius 
almost three times higher than the Ni one. A higher atomic radius will translate into a higher collision 
cross-section of Ti, which in term could lead to the showcase of more excited states. 

 
Figure 5. Global spectra for the TiNi laser produced plasma recorded with a gate width of 2 µs. 

By performing space and time resolved optical emission spectroscopy and following the 
emission lines for the Ti and Ni atoms, we can determine according to the algorithm presented in [14] 
the expansion velocity of each species. We obtained for the Ni atom a velocity of 2.7 km/s, while for 
the Ti atoms a velocity of 5.7 km/s. We noticed that these velocities are close to the ones obtained by 
ICCD fast camera imaging. Thus, we can conclude that the splitting of the plume, in this case, is based 
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on the nature of its components, as opposed to the mechanisms involved in the ablation process [14]. 
This is in good agreement with the high thermal effected area on the sample and with the mostly 
atomic emission lines observed, meaning that thermal mechanisms are dominant. With a dominant 
thermal ejection scenario, the composing particles of the ablated cloud will be separated on the basis 
of the individual thermal properties. This will result in a fast structure containing mainly Ti species, 
and a second structure mainly containing Ni species. 

We further used the well-known Boltzmann plot method [14] to determine the individual 
excitation temperature of the two atomic species (Ni I and Ti I). For Ti I species we found an excitation 
temperature of 6500 K, while for Ni we found a relatively lower value of 7200 K, values determined 
at a distance of 0.5 mm from the target. This difference is in line with the differences in the thermal 
properties of the two components. 

3.3. The Analysis of the Thin Layers Obtained Through Laser Ablation from Targets with Shape Memory 
(NiTi) 

The accurate control of the ratio Ni/Ti in the Ni-Ti films has an essential importance. The 
problems that may occur as seen through the plasma monitoring techniques is the differential 
evaporation of the two components from the target, coupled with the large scale non-uniformity of 
the PLD generated films, as well as structural changes to the target during the deposition process. In 
order to prevent these drawbacks, we implemented a combinatorial approach with the use of the 
NiTi target and simultaneously of a Ti sample to compensate the depleted Ti concentration from the 
films. 

The resulted thin films were investigated by means of EDX technique. Selective spectra from the 
target and the thin films are presented in Figure 6. We observed a few peaks corresponding to the Ti 
and Ni species in the target and we have seen their corresponding peaks in the films with a reduced 
intensity. Due to this correspondence of the peaks, we can conclude that from a qualitative point of 
view, the stoichiometry of the ablated material is transferred to the substrate. 

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0

50

100

150

0 5 10 15

0
500

1000
1500
2000
2500
3000
3500

Ni

Ni

Ti

 Target

cp
s/

eV

KeV

Ti

Ni

b)

0 4 8 12

0

2000

4000

6000

8000

10000

12000

0.2 0.4 0.6 0.8 1.0 1.2 1.4

20

40

60

80

100

120

140

cp
s/

eV

KeV

Ni
 Thin Layer

cp
s/

eV

KeV

Si
a) Ti

Ti Ti

 
Figure 6. The spectra of energies realized on the EDS detector. (a) thin layer from NiTi and (b) target 
of Ni-Ti. 

In order to determine the optimal conditions of depositing, but also to study the influence of the 
distance between the target and substrate on the properties of the films, we performed the study 
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depicted in Figure 6. With this aim, areas of 0.4 mm2 were analyzed from two samples obtained in 
different experimental conditions. The results obtained (in m/weight and atomic percentages) are 
presented in Table 1. The analyses were realized on a surface of approximately 1 mm2 (Figure 7), 
which can contain various concentrations of clusters on their surfaces. 

 
Figure 7. SEM image of the investigated thin surface and the zonal spread on which there were 
realized chemical analyses. 

In Figure 7 it is specified the propagation direction of the material plasma from the target placed 
parallel with the sub layer of Si. The chemical analysis 1, 4, and 7 were selected on larger surfaces to 
determine the influence of the particle distribution within the plasma plume on the formation and 
development of the thin film. In the table is placed the chemical composition of target (Ni40Ti) used 
in the pulsed laser deposition process as reference value. We observed an area where we could 
achieve quasi-complete stoichiometric transfer in areas 4–6, situated in the center of the thin film, 
meaning that in the center of the plume keep the stoichiometry of the target while in the wider regions 
of the plasma some depletion of the Ti can occur. This result is in good agreement with those 
presented in [14] where it was shown that lighter elements are distribution mainly on the outer range 
of the plasma, as opposed to the heavier ones which are centered around the main expansion axis. 
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Table 1. The chemical composition of the thin film according to the distribution in Figure 7. 

 Chemical Element Target Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8 Zone 9 

Sa
m

pl
e 

B Ni 
(accuracy 0.2%) 

wt.% 60.0 63.3 62.6 63.9 63.4 63.1 61.5 62.9 65.01 64.9 
at% 55.01 58.4 57.7 59.2 58.6 58.2 56.6 57.9 60,25 60.2 

Ti 
(accuracy 0.15%) 

wt.% 40.0 36.7 37.4 36.01 36.6 36.9 38.5 37.1 34.9 35.1 
at% 44.99 41.6 42.3 40.8 41.4 41.8 43.3 42.1 39.7 39.8 

Sa
m

pl
e 

A
 Ni 

(accuracy 0.2%) 
wt.% 60.0 61.3 60.9 58.7 60.1 58.74 58.1 58.2 59.6 57.3 
at% 55.01 56.4 55.9 53.6 55.1 53.7 53.1 53.2 54.6 52.3 

Ti 
(accuracy 0.15%) 

wt.% 40.0 38.7 39.1 41.4 39.9 41.3 41.9 41.8 40.4 42.7 
at% 44.99 43.6 44.1 46.4 44.9 46.3 46.9 46.8 45.4 47.7 
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The standard variation of the Ni and Ti elements, from the base material (target), were 
determined: Ni: ±0.2 and Ti: ±0.1. In the case of TiNi thin film (sample a) positioned at a distance of 
40 mm to the NiTi target, it was observed good stoichiometric transfer is achieved for almost all areas, 
most of them in the same experimental conditions in which sample B (20 mm) was also produced. 
The average atomic variation was in this case much lower than in the majority of the performed 
experiments, indicating a stoichiometric transfer according to the requirements of obtaining thin 
films with shape memory and with a percentage value higher than the data reported in the field of 
growing thin films through other methods such as thermic atomization. 

In order to investigate the NiTi films formed on the Si base we used the XRD technique. Using 
this method, we could preserve equivalence between the base material (target with shape memory) 
and the material obtained on a substrate of Si. In Figure 8 a part of the XRD analyses performed on 
the obtained thin films is presented. Figure 8a highlights the characteristic peaks of a shape memory 
alloy NiTi in martensitic state at the room temperature. According to the database of the analysis 
equipment (ICC Database) [26], we established the main characteristic peaks of this material and the 
compound phases with their properties. In Figure 8b the spectrum obtained on a thin film is 
presented, for the NiTi alloy transported through laser ablation in amorphous state where we can 
find the majority of the thin layers obtained through laser ablation. Furthermore, we analyzed thin 
film through X ray diffraction, but after we applied a treatment of re-annealing of re crystallization, 
the result being presented in detail in Figure 8c. 
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Figure 8. XRD analysis of (a) NiTi target, (b) TiNi thin film and (c) detail of specimen on heat treated 
TiNi thin film. 
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We observed numerous peaks specific to crystallized NiTi alloy. The size of the peaks was very 
low because the tests were performed in difficult conditions given by the reduced thickness of the 
layer (around 200 nm). The apparition of the peaks B2 and B19 characteristic to the austenitic and 
martensitic phase (in a very high percentage) were observed. After the annealing treatment, the 
material had a structure transformed to martensite. The formation of precipitates was not reported 
after the annealing treatment [27]. The appearance of untransformed phase: B2, Figure 8c, was 
connected to the very fast formation of an Ni-rich layer near the oxide surface during the heat 
treatment. 

In the case of shape memory films deposited under vacuum, the chemical composition of the 
new layers was influenced by the substrate temperature. Our results suggest that the chemical 
composition of a Nitinol layer can be precisely controlled without involving the substrate 
temperature using pulsed laser deposition but considering the distance between the target and 
substrate, and the orientation of the substrate contact surface with the plume. 

3.3.1. Calorimetric Study 

The removal of the samples from the Si layer was performed through debarking, and after the 
mass analyses the samples with the mass between 4 and 32 mg were investigated. Among these, only 
on the TiNi thin film crystallized through thermic treatment and with a net mass of 4 mg, an intern 
endotherm mass appeared around the temperature of 333 K (60 °C). The variation of the temperature 
flow in the case of this sample is presented in Figure 9. 

 

Figure 9. The variation of the heat flow depending on temperature of the exfoliated layer of NiTi. 

All the other DSC analyses did not present transformations in the analysis area TC- 473 °C, but 
there is the possibility that will be taken into consideration in the future, for this domain to be too 
small and the transformation temperatures to be shifted even to negative temperatures in the case of 
NiTi alloys. 

3.3.2. Surface Analyses 

The condition of the surface of shape memory alloys is very important given that the relief state 
of the martensitic phase plays a major role in manifesting the shape memory effect [28]. We observed 
a pleated relief, characteristic for the martensitic variants, with an accurate arrangement of these and 
similar spatial dimensions with those resulted through SEM electronic microscopy. Also, a 
characteristic height of the profile with an average of 262 nm and a width of 2 µm of the martensitic 
plates is highlighted. The state of the thin film surface deposited through laser ablation from the 
target of Nitinol on the TiNi thin films (sample A) is presented in Figure 10 where we observe a 
typical relief to the variants of martensitic plates. The analyzed area does not contain large formations 
of material. The relief of the deposited thin layer is very low with an average value of 92.9 nm, Figure 
10c a thermic treatment of partial recrystallization and annealing at 1073 K. 
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Using the specialized soft Vega TC of the scanning microscope, we followed morphologically 
the state of the surface of the material layer. In Figure 11 it is presented the state of the thin layer 
obtained through PLD from NiTi targets where we can notice the apparition of the characteristic 
drops of the depositing process through laser ablation. Depending on the depositing parameters and 
the ablated material, different morphologies of the thin layer surface presented. Only formations 
larger than 1 µm were analyzed, the rest being considered a part of the layer or too small to influence 
the characteristics of shape memory thin layer realized. All samples were investigated on the same 
material surface and in the same experimental conditions. 

 
      (a)       (b) (c) 

 
    (d)     (e) (f) 

Figure 10. The AFM analysis of the thin layer surface on the sample A 14 after depositing (a) 
topography, (b) topography 3 and (c) linear topography. The AFM analysis of the thin layer surface 
on the sample B after depositing (d) topography, (e) topography 3 D and (f) linear topography. 

From the microstructural dimensional analysis (Figure 11) of the thin layers we observed that 
on the sample B were noticed 17 large particles (with an average of 2.62 µm) and the rest small 
particles under 1 µm (it is mentioned that the tests took place in all the cases on the surface of 115 × 
115 µm). On the sample A there were observed 8 large particles with an average of 1.43 µm and the 
rest smaller than a micron. After the crystallization process normally, the grains grow isotopically 
until they press on each other or until they reach the layer surface or the substrate.  
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(a) (b) 

(c) (d) 

Figure 11. SEM microscopies for the sample A (a) 2D and (b) 3D for sample B (c) 2D and (d) 3D. 

In the case of the layers obtained for a distance of 2 cm between target and substrate, the 
following values were obtained: at 40 mJ → 30 large particles with an average of 1.56 µm, at 80 mJ → 
approximately 50 large particles with an average of 2.39 µm and at the 100 mJ → appeared only 7 
particles with an average of 2.02 µm. 

The influence of material drops on the properties of the submicronic layer deposited is given 
generally by differences of chemical composition that appear among these. In the case of shape 
memory alloys transformed in thin layers, it is essential to establish the behavior of the two materials 
that assemble the final layer (the layer and the material drops), the influence of the drops on the 
general properties of the thin layer, the increase or decrease of the number of micrometric droplets. 
For this reason, in the future we will pursue the investigation of these characteristics in order to 
increase the quality of thin layers with special properties. 

4. The Dynamics of Transient Plasmas Generated by Laser Ablation of Memory Shape Alloy in a 
Fractal Paradigm 

The laser-produced plasmas are non-differentiable (fractal) media induced by the collisions 
between the composing structural units (atoms, clusters, nanoparticles, etc.). The behavior of such a 
medium can be explicitly described in the Fractal Theory of Movement through dynamics on 
continuous and nondifferentiable curves (fractal curves [29,30]). In the following we will specify 
several types of nondifferentiable dynamics (either through hydrodynamic type regime at various 
scale resolutions, or through Schrodinger type regime at various scale resolutions) which will later 
be calibrated to the experimental results presented in the previous section. 

If we further assimilate the ablation plasma with a complex system, the dynamics of its structural 
units can be described through the scale covariant derivative [30]: 
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𝑑መ𝑑𝑡 = 𝜕௧ + 𝑉෠ ௟𝜕௟ − 𝑖𝜆ሺ𝑑𝑡ሻቀ ଶ஽ಷቁିଵ𝜕௟𝜕௟  (1) 

where 𝑉෠ ௟ = 𝑉௟ − 𝑖𝑈௟ , 𝑖 = √−1 (2) 𝜕௧ = 𝜕𝜕𝑡 ,𝜕௟ = 𝜕𝜕𝑋௟ , 𝜕௟𝜕௟ = 𝜕ଶ𝜕𝑋௟ ൬ 𝜕𝜕𝑋௟൰ (3) 

In (1)–(3) Xl is the fractal spatial coordinate, t is the nonfractal temporal coordinate having the 
role of an affine parameter of the movement curves, 𝑉෠ ௟  is the complex velocity, 𝑉௟  is the real, 
differentiable, component of the velocity, independent of the scale resolution dt, Ul is the imaginary 
(nondifferentiable) component of velocity, dependent on the scale resolution, λ is the “diffusion 
coefficient” associated to the fractal-nonfractal transitions and DF is the movement curve fractal 
dimension. For the previously defined fractal dimension we can choose any accepted definition: in a 
Kolmogorov sense, in a Haussdorff-Besikovici etc. [31]. However, once one definition is accepted it 
has to be constant throughout the study: DF < 2 for correlative type processes, DF < 2 for uncorrelated 
type processes etc. 

The movement equation (geodesics equation) can be derived by implementing the scale 
covariance principle [29]. Then, through (1) and (2) it results: 𝑑መ𝑉෠ ௜𝑑𝑡 = 𝜕௧𝑉෠ ௜ + 𝑉෠ ௟𝜕௟𝑉෠ ௜ − 𝑖𝜆ሺ𝑑𝑡ሻቀ ଶ஽ಷቁିଵ𝜕௟𝜕௟𝑉෠ ௜ = 0  (4) 

This means that in any point of the movement trajectory the fractal acceleration, 𝜕௧𝑉෠ ௜ , the fractal 
convection, 𝑉෠ ௟𝜕௟𝑉෠ ௜ , and the fractal dissipation, 𝜕௟𝜕௟𝑉෠ ௜ are reaching an equilibrium. 

For the particular case of the irrotational movement: 𝑉෠ ௜ = −2𝑖𝜆(𝑑𝑡)(ଶ/஽ಷ)ିଵ𝜕௜ 𝑙𝑛 𝛹 (5) 

where 𝛹 is the fractal state function and ln𝛹 is the complex scalar potential of the complex velocity 
field, the movement Equation (4) takes the from of Schrödinger equation of fractal type [30]: 𝜆ଶ(𝑑𝑡)(ସ/஽ಷ)ିଶ𝜕௟𝜕௟𝛹 + 𝑖𝜆(𝑑𝑡)(ଶ/஽ಷ)ିଵ𝜕௧𝛹 = 0  (6) 

Moreover, by writing 𝛹 in an explicit manner: 𝛹 =ඥ𝜌 𝑒𝑥𝑝(𝑖𝑠) (7) 

where ඥ𝜌  is an amplitude and s is a phase, the movement Equation (6) with the following 
substitutions: 𝑉௟ = 2𝜆(𝑑𝑡)ቀ ଶ஽ಷቁିଵ𝜕௟𝑠 𝑈௟ = 𝜆(𝑑𝑡)ቀ ଶ஽ಷቁିଵ𝜕௟𝑙𝑛𝜌  (8) 

can be simplified by separating the dynamics of the ablation system on scale resolution. We obtain 
the equation system of fractal hydrodynamics: 𝜕௧𝑉௟ + 𝑉௟𝜕௟𝑉௟ = −𝜕௟𝑄 (9) 𝜕௧𝜌 + 𝜕௟(𝜌𝑉௟) = 0 (10) 

with Q the specific fractal potential: 𝑄 = 𝑈௟𝑈௟2 + 𝜆(𝑑𝑡)(ଶ/஽ಷ)ିଵ2 𝜕௟𝑈௟ = −2𝜆ଶ(𝑑𝑡)(ସ/஽ಷ)ିଶ 𝜕௟𝜕௟ඥ𝜌ඥ𝜌  (11) 
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Equation (9) defined the specific momentum conservation law, while Equation (10) defines the 
state density conservation law. The specific fractal potential is a measure of the fractalization of the 
movement trajectory. 

In the unidimensional case, the equation system of the fractal hydrodynamics: 𝜕௧𝑉 + 𝑉𝜕௫𝑉 = 2𝜆ଶ(𝑑𝑡)(ସ/஽ಷ)ିଶ𝜕௫ ቆ𝜕௫𝜕௫ඥ𝜌ඥ𝜌 ቇ (12) 

𝜕௧𝜌 + 𝜕௫(𝜌𝑉) = 0 (13) 

with 𝑉௫ ≡ 𝑉 and adequate initial and boundary conditions admits the analytical solution: 𝑉 = ௏బఈమାµమ௫௧ఈమାµమ௧మ + 𝑖𝜆 (௫ି௏బ௧)ఈమାµమ௧మ  (14) 

𝜌 = (𝜋)ିଵ/ଶሾ𝛼ଶ + µଶ𝑡ଶሿଵ/ଶ 𝑒𝑥𝑝 ቈ− (𝑥 − 𝑉଴𝑡)𝛼ଶ + µଶ𝑡ଶ቉ (15) 

µ = 𝜆(𝑑𝑡)ቀ ଶ஽ಷିଵቁ𝛼  (16)

in (14)–(16) V0 is the initial velocity of a Gaussian packet described by 𝜌(𝑥, 0) = 𝜌଴expሾ−(𝑥/𝛼)ଶሿ . 
In such a context, using the second relation (8), the nondifferentiable velocity 𝑈௫ ≡ 𝑈, has the 

expression: 𝑈 = 𝛼µ 𝑥 − 𝑉଴𝑡𝛼ଶ + µଶ𝑡ଶ (17) 

From (17) and (14) it results the space-time homographic transformation: 𝑥 = ௎௏బఈమାఈµ௏௏బ௧µఈ௏ାµమ௎௧   (18) 

Since at a differentiable resolution scale the following constriction is satisfied ௏௎ ≫  𝜇𝛼ିଵ𝑡 , (18) 
takes the following form: 𝑥 ≅ 𝛼ଶ𝜆(𝑑𝑡)ቀ ଶ஽ಷିଵቁ 𝑈𝑉଴𝑉 + 𝑉଴𝑡 (19) 

which specifies a linear relationship of 𝑥 = 𝑥(𝑡)  type, having an unrestricted term of invers 

proportionality with the fractalization degree 𝜆(𝑑𝑡)൬ మವಷିଵ൰ . In the following we will calibrate the 
theoretical model on the real dynamics of the laser produced plasma. Therefore, if we associate the 
fractalization degree with the nature of the atoms composing the target, through (19) the theoretical 
model can be corelated with the technique used to determine the expansion velocity from the ICCD 
fast camera imaging results. 

Let us rewrite the homographic transformation under the following form: 𝑥(𝑡) = 𝛼𝑡 + 𝛽𝛾𝑡 + 𝛿  (20) 

Since the optical emission spectroscopy measurement implies a “spatial simultaneity”, dx = 0, 
then this restriction can be expressed through differential form: 𝑑𝑡 = 𝛺ଵ𝑡ଶ + 𝛺ଶ𝑡 + 𝛺ଷ (21) 

where 𝛺ଵ,𝛺ଶ,𝛺ଷ are the differential 1-forms of the SL(2R) algebra: 
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𝛺ଵ = 𝛼𝑑𝛾 − 𝛾𝑑𝛼𝛼𝛿 − 𝛽𝛾 ,𝛺ଶ = 𝛼𝑑𝛿 − 𝛿𝑑𝛼 + 𝛽𝑑𝛾 − 𝛾𝑑𝛽𝛼𝛿 − 𝛽𝛾  ,𝛺ଷ = 𝛽𝑑𝛾 − 𝛽𝑑𝛼𝛼𝛿 − 𝛽𝛾   (22) 

If there is a continuum parameter θ towards which the 1-forms are total differentials: 𝛺ଵ = 𝑎ଵ𝑑𝜃,𝛺ଶ = 2𝑎ଶ𝑑𝜃 ,𝛺ଷ = 𝑎ଷ𝑑𝜃 (23) 

with 𝑎ଵ,𝑎ଶ, 𝑎ଷ constants (21) can pe reduced to a Riccati type equation: 𝑑𝑡𝑑𝜃 = 𝑎ଵ𝑡ଶ + 2𝑎ଶ𝑡 + 𝑎ଷ (24) 

Let us know find the solution of (24) for a specific case: 𝐴 𝑑𝑡𝑑𝜃 = 𝑡ଶ − 2𝐵𝑡 − 𝐴𝐶 (25) 

where we sued the following notations: 𝐴 = 1𝑎ଵ ,𝐵 = −𝑎ଶ𝑎ଵ ,𝐴𝐶 = −𝑎ଷ𝑎ଵ (26) 

with 𝑎ଵ > 0 . Admitting now that the roots of the following polynom: 𝑃(𝑡) = 𝑡ଶ − 2𝐵𝑡 − 𝐴𝐶 (27) 

are given by the relation: 𝑡ଵ = 𝐵 + 𝑖𝐴𝑘, 𝑡ଶ = 𝐵 − 𝑖𝐴𝑘, 𝑘 = 𝐶𝐴 − ൬𝐵𝐴൰ଶ (28) 

The homographic substitution: 𝑧 = 𝑡 − 𝑡ଵ𝑡 − 𝑡ଶ (29) 

transforms (25) in: 𝑑𝑧𝑑𝜃 = 2𝑖𝑘𝑧 (30) 

The solution of this equation takes the following form: 𝑧(𝑡) = 𝑧(0)𝑒𝑥𝑝(2𝑖𝑘𝜃) (4) 

or even more: 𝑡 = 𝑡ଵ + 𝑟 𝑒𝑥𝑝(2𝑖𝑘𝜃)𝑡ଶ1 + 𝑟 𝑒𝑥𝑝(2𝑖𝑘𝜃)  (5) 

where r is a real constant specific to this particular solution. Using the relation (28), solution (32) in 
real terms becomes: 𝑧 = 𝐵 + 𝐴𝑘 ቈ 2𝑟 𝑠𝑖𝑛(2𝑘𝜃)1 + 𝑟ଶ + 2𝑟𝑐𝑜𝑠(2𝑘𝜃) + 𝑖 1 − 𝑟ଶ1 + 𝑟ଶ + 2𝑟𝑐𝑜𝑠(2𝑘𝜃)቉ (6) 

which will specify a self-modulation of the k characteristic through a Stoller type transformation [32]. 
In Figure 12a,b we represent the 3D and contour plot representation of 𝑅𝑒((𝑧 − 𝐵)/𝐴 as a function 
of r and 2kθ for a scale resolution given by the maximum value of k. If we manage to calibrate this 
fractal representation onto the dynamics of laser produced plasmas, we have to identify the 𝑅𝑒((𝑧 − 𝐵)/𝐴 with the overall spectral emission of the plasma (in non-dimensional coordinates), 
with 2kθ being the non-dimensional time and r being a non-dimensional specific length of the plasma 
(considered to the distance across the main expansion axis). We can see in Figure 12 that the for the 
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overall emission of the plasma, a self-structuring phenomenon occurred. Each of the self-generated 
patterns characterizes a plasma structure which is generated by means of different ablation 
mechanism. Therefore, each structure will be characterized by a different fractalization degree. The 
connection between generation of self-structuring patterns and each observed plasma structure 
underlined the connection between the ablation mechanism and the fractalization degree was 
previously reported by our group [33]. 

  

Figure 12. 3D (a) and contour plot (b) representation of 𝑅𝑒((𝑧 − 𝐵)/𝐴 assimilated with the 
global spectral emission of laser produced plasmas. 

5. Conclusions 

In order to obtain thin layers that can keep the properties of the bulk material, depositing 
technique through laser ablation was proposed. The NiTi targets oxidized in the impact area during 
the depositing process, impacting the particle removal mechanism during the ablation process. The 
plasma produced by laser ablation split during expansion in three structures. Each structure expands 
with different velocities correlated with the abundance of specific species presented in each structure. 
The kinetic properties of the structures were corelated with the individual kinetic and thermal 
properties of the Ti and Ni species. The chemical composition of the deposited layer depended of the 
distance of placing of the sub layer from the target and of the incidence angle between the material 
plasma and sub layer. The experimental results suggest that the chemical composition of a Nitinol 
layer can be precisely controlled without involving the substrate temperature using pulsed laser 
deposition considering the distance between the target and substrate, and the orientation of the 
substrate contact surface with the plume. The number of droplets on the deposited thin film 
decreased with the distance between the target and sub layer, and value of the laser fluence. 
Stoichiometric transfer was achieved for a series of samples. 

A fractal model for describing the laser produced plasma dynamic, through various non-
differential functionalities, was developed. Non-differentiable functionalities used for describing the 
laser produced plasmas dynamics through hydrodynamic type regime could be reduced to space-
time homographic transformation. Transformations were correlated with the technique used to 
determine the global dynamics through ICCD fast camera imaging. Spatial simultaneity of the 
homographic type transformation implies through a special SL(2R) invariance dynamics defined 
through Riccati type equations. Such dynamics were correlated with optical emission spectroscopy 
measurements. 
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