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Abstract: In this article, we discuss the entropy generation on the asymmetric peristaltic propulsion
of non-Newtonian fluid with convective boundary conditions. The Williamson fluid model is
considered for the analysis of flow properties. The current fluid model has the ability to reveal
Newtonian and non-Newtonian behavior. The present model is formulated via momentum, entropy,
and energy equations, under the approximation of small Reynolds number and long wavelength of
the peristaltic wave. A regular perturbation scheme is employed to obtain the series solutions up
to third-order approximation. All the leading parameters are discussed with the help of graphs for
entropy and temperature profiles. The irreversibility process is also discussed with the help of Bejan
number. Streamlines are plotted to examine the trapping phenomena. Results obtained provide an
excellent benchmark for further study on the entropy production with mass transfer and peristaltic
pumping mechanism.

Keywords: convection; entropy production; heat transfer engineering; blood flow

1. Introduction

In our daily life, living organisms require energy to do physical work and keep the body
temperature under the influence of heat exchange to the environment, as well as to generate,
replace, and propagate molecules to the relevant constituents. Such type of energy comes from the
oxidation process of organic substances i.e., amino acids, fats, and carbohydrates fed to the organisms.
As compared to the other heat engines (i.e., in which the chemical energy gets transformed to the
thermal energy, and then is transformed to mechanical work), living organisms can transform the
nutrient’s chemical energy into work. It happens due to the oxidation of nutrients located internally in
the organisms i.e., metabolism, pass through different steps, which helps to hold some energy from
ATP (adenosine triphosphate). The ATP utilized entirely by all beings for the direct transformation of
mechanical energy and also actively supports other biological reactions [1]. In recent years, various
authors [2–6] have examined the heat production of mammals via calorimetry, and presented that for
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the given nutrients, both combustion and animal metabolism expends the same amount of oxygen.
According to previous research [7], it is found that living things can produce thermal energy via fat,
and combustion of carbohydrates in the living body, and is identical to the oxidation of heat of these
elements. As a result, the amount of nutrients digested by a living being, and hence its input energy,
can be determined by the chemical composition of food intake and the measurements of breathing
i.e., CO2 and O2.

Hershey [8] and Hershey and Wang [9] examined the entropy production during the lifespan of a
human being. They found that when the human body is in a state of rest, mostly the output energy
due to the nutrient’s metabolism occurs as a heat. They also reinforced the calorimeter to examine
the heat transfer rate to the environment and verified that with the help of BMR (basal metabolic).
According to their results, it was found that entropy generated over a lifespan was 10,678 KJ/kg·K
for females, and 10,025 KJ/kg·K for males. Rahman [10] discussed the entropy generation for forced
and free convection using a new mathematical model. He discussed forced and free convection at
distinct mass influx, outflux (i.e., waste, air, food, and water, etc.), level of physical activity, clothing
effects, and airspeeds. His results are similar to those from Hershey [8] and Aoki [11] but one order of
magnitude higher in general. Annamalai and Puri [12] utilized the first law of thermodynamics to
achieve the metabolic scaling for a biological system. They also used the second law of thermodynamics
to determine the entropy generation in humans and prognosticate the lifespan of 77 years by assuming
the maximal entropy generation as 10,000 KJ/kg·K. Bejan [13,14] introduced a constructal design
principle and presented optimal geometric types scales to the power of their associated size and
showed that different natural structures (i.e., lightening, river deltas, tree branches, and vascularized
tissue) are periodic in nature. Rashidi et al. [15] discussed the entropy generation with magnetic effects
and slip boundary conditions propagating among an infinite porous disk having variable features.
According to their results, they observed that the disk is an essential root of entropy generation.
Komurgoz et al. [16] examined the entropy generation through an inclined porous channel with
magnetic effects. According to their results, they found that maximal entropy production can be gained
in the absence of porosity and magnetic field.

Blood is an essential part of the human body, which comprises 7% of the total body weight.
The leading role of blood is molecular oxygen for cellular metabolism and carry the nutrients as
well as a significant role in thermoregulatory. Blood performs as a non-Newtonian fluid. The blood
viscosity changes due to the shear rate. The viscosity of the blood can be analyzed by the hematocrit,
plasma (constitute 54.3% of the whole blood) viscosity, and the mechanical features of red blood cells
(constitute 45% of the whole blood). The human blood is a heterogeneous solution that contain
multiple kinds of cells (known as corpuscles or formed elements), which consist of leukocytes,
thrombocytes, and erythrocytes. In view of such importance, different authors discussed the entropy
generation in blood. For instance, Rashidi et al. [17] discussed the magnetic effects on the blood
flow propagating through a porous medium with a filtration and control process. Akbar et al. [18]
examined the thermal conductivity on the peristaltic propulsion of H2+Cu nanofluids with entropy
production. Rashidi et al. [19] obtained the series solution for the entropy generation of the blood
flow of a nanofluid in the presence of a magnetic field. Endoscopic effect and entropy production on
peristaltic nanofluid flow, having a thermal conductivity of 2 HO were investigated by Akbar et al. [20].
Abbas et al. [21] presented a detailed analysis of the peristaltic flow with nanofluids and entropy
production through a finite channel with compliant walls. Bhatti et al. [22] considered the Casson
blood flow to examine the entropy process with peristaltic movement under the uniform magnetic
field. Ranjit and Shit [23] examined the entropy production on the electroosmotic flow under uniform
magnetic field with peristaltic pumping. More studies on the blood flow and entropy generation can
be found from the references [24–28].

According to the above survey, it is found that less attention has been given to the entropy
production asymmetric peristaltic propulsion of blood flow with heat transfer. Therefore, in the
present analysis, we discuss the entropy generation with convection on the asymmetric propulsion
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of the peristaltic blood of nonlinear Williamson fluid. An assumption of long peristaltic wavelength
is taken into account and Reynolds number is considered to be very small (Re ≈ 0). A regular
perturbation method is used to obtain series solutions. The novelty of all the leading parameters
is discussed and illustrated. The trapping mechanism is also examined to determine the nonlinear
asymmetric peristaltic motion.

2. Governing Equations

In this section we analyze the incompressible peristaltic propulsion of Williamson fluid in a
two-dimensional channel with a width d1 + d2. The flow is initialized by a sinusoidal wave propagating
with a constant speed c along the layout of channel (see Figure 1). The addition here is the extra
equations of energy and entropy generation. It is assumed that the temperature at the upper wall
of the channel is T1 and lower wall has the temperature T0 such that T0 < T1. It depicts the physical
reasoning that heat will transfer from lower to upper wall. The wall surfaces are suggested as:

Y =

{
Hi = di + ai cos [2πω] , i = 1,

Hj = −dj − bi cos [2πω + φ] , j = 2,
(1)

and

ω =
X− ct

λ
, (2)

where a1 and b1 are the wave amplitudes, λ the wave length, t the time, c the velocity of the propagation,
and X is the direction of wave propagation. The phase difference φ has the range 0 ≤ φ ≤ π i.e., waves
out of phase φ = 0 associated to the symmetric channel, and φ = π associated to the waves are in
phase. Moreover, ai, bi, di, dj, and φ satisfy the condition:

ai
2 + bi

2
+ 2aibi cos φ ≤

(
di + dj

)2
. (3)

The equations of momentum in component forms are described as:

ρ
[
Dt + UDX + VDY

]
U = −DXP + DXSXX + DYSXY, (4)

where Dt =
∂
∂t , DX = ∂

∂X
, DY = ∂

∂Y
.

ρ
[
Dt + UDX + VDY

]
V = DYP + DXSYX + DYSYY. (5)

The stress tensor for the Williamson fluid model reads as:

S =
[
µ∞ − (µ∞ − µ0)

(
1− Γ

.
γ
)−1
] .

γ, (6)

where µ∞, µ0 the infinite and zero shear rate viscosity, Γ the time constant, and
.
γ reads as:

.
γ =

(
1
2 ∑

m
∑
n

.
γmn

.
γnm

) 1
2
=

(
1
2

St

) 1
2

, (7)

where St is the second invariant strain tensor. For the present flow problem, we considered µ∞ = 0
(the infinite shear rate viscosity is very small as compared to zero shear rate viscosity) and Γ

.
γ < i i.e.

i = 1. Then, Equation (6) takes the following form:

S = µ0
(
1− Γ

.
γ
)−1 .

γ. (8)
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The energy equation to represent the heat exchange in the channel is as stated below. The law of
conservation of energy in the dimensional mathematical pattern is given by:

Sh
[
Dt + UDX + VDY

]
T =

K
ρ

[
DXXT + DYYT

]
+

SXY
ρ

DYU. (9)

In the above equation, Sh is the specific heat coefficient, K the thermal conductivity, and ρ the
density of the governing fluid.

Introducing wave frame coordinates transformations with propagation velocity c away from the
fixed frame read as:

{x + ct, u + c, y, v, P(x)} = {X, U, Y, V, P
(
X, t
)
} (10)

Defining the dimensionless quantities as:

x =
x
λ

, y =
y
di

, u =
u
λ

, v =
v
λ

, Sxx =
λ

µ0c
SXX , Sxy =

di
µ0c

SXY, Syy =
di

µ0c
SYY,

θ =
T − T0

Ti − T0
, p =

di
2

cλµ0
P,

.
γ =

.
γd1

c
, a =

ai

di
, b =

bi

di
, d =

dj

di
, hi,j =

Hi,j

di
, (11)

where θ is the dimensionless temperature profile.
By invoking the above transformations in Equations (4)–(6), we arrive at (after ignoring the bars):

Re
[
δuDxu + vDyu

]
= −Dx p + DxSxx + DySxy, (12)

Reδ
[
δuDxv + vDyv

]
= −Dy p + DySyy + δ2DxSyx, (13)

PrRe
[
δuDxθ + δvDyθ

]
=
[
−δ2Dxxθ + Dyyθ

]
+ BrSxyDyuθ, (14)

and
Sxy = −

(
1 + We

·
γ
) (

Dyu + δDxv
)

, (15)

where,

δ =
d1

λ
, Re =

ρcd1

µ0
, We =

Γc
di

, Br = PrEc, Pr =
vShρ

K
, Ec =

c2

Sh (Ti − T0)
. (16)

In the above equation, We the Weissenberg number, Ec is the Eckert number, Pr the Prandlt
number, Re the Reynolds number, and Br the Brinkman number. Under the assumptions of long
wavelength and low Reynolds numbers (δ ≈ 1, Re ≈ 0), Equations (12)–(14) take the form:

Dx p = Dy
[(

1 + WeDyu
)

Dyu
]

, (17)

Dy p = 0, (18)

Dyyθ = −Br

[(
Dyu

)2
+ We

(
Dyu

)3
]

. (19)

This equation implies that p 6= p(y) so ∂p/∂x can be written as dp/dx. At We = 0, the above
equation turns into viscous fluid flow. The associated no slip and convective boundary conditions
selected for the problem read as:

u = −1, θ′ − Biθ = −Bi at y = hi (x) = 1 + a cos 2xπ,

u = −1, θ = 0 at y = hj (x) = −d− b cos (φ + 2πx) . (20)

where Bi is the Biot number.
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Figure 1. Flow structure.

3. Entropy Generation Analysis

According to the theory of thermodynamics, the physical process can be divided in to two types:
Irreversible and reversible process. The characterization of such kind of procedures is associated with
the change of entropy. Particularly, we say that the process is reversible if there is no change in the
entropy, whereas, if the change occurs i.e., entropy is not zero, it shows that the process is irreversible.
Therefore, the production of entropy is the measure of the irreversibility of a process. All the processes
that arise in nature are irreversible and this reveals a significant obstacle in the study of that process.

The entropy generation in the dimensional form can be defined as:

S′gen =
K
T2

0

(
DYT

)2
+

SXY
T0

DYU. (21)

Here we define some new dimensionless quantities in addition to those used above:

S′g =
K (Ti − T0)

T2
0 d2

i

, ∆ =
T0

K (Ti − T0)
. (22)

Using Equation (22) in Equation (21), we get the dimensionless form of entropy generation:

N =
S′gen

S′g
=
(

Dyθ
)2

+ ∆Br
[
−1 + WeDyu

] (
Dyu

)2 . (23)

In the above expression, ∆ shows the entropy production characteristics and temperature
difference parameter. Equation (23) is divided into two parts. The first is due to the finite temperature
difference whereas the second part defines the fluid frictional irreversibility.

The Bejan number is describe as the entropy production ratio because of heat transfer irreversibility
to the total entropy production:

Be =

(
Dyθ

)2(
Dyθ

)2
+ ∆Br

[
−1 + WeDyu

] (
Dyu

)2 . (24)

Bejan number lies between 0 to 1. Be < 1 represents that the total entropy production dominates
the total entropy production due to heat transfer. Be = 1 represents when the total entropy production
is equal to entropy production due to heat transfer irreversibility.
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4. Series Solution

Since Equation (17) is non linear, its exact solution may not be possible, therefore, we employ
the regular perturbation method to find the solution. For perturbation solution, we expand u, F and
dp/dx as:

u =
∞

∑
n=0

Wenun, (25)

F =
∞

∑
n=0

WenFn, (26)

dp
dx

=
∞

∑
n=0

Wen dpn

dx
, (27)

Substituting above expression in Equation (17) and their boundary conditions in Equation (20)
and comparing the coefficients of powers of We we get the zeroth and first order systems which can be
manipulated easily by a mathematical computing tool Mathematica and are conclusively stated as:

u =
1
2!

[
−2 + C1h1h2 − C1C3y + C1y2

]
+

1
3!

We
[
C2h1h2 + C2

1C3h1h2

−C2 (C3 + y) y + C2
1

(
h2

1 − 4h1h2 − h2
2

)
y + C2

1(3C3 − 2y)y
]
+ O(We2), (28)

dp
dx

= 12C1 + 12WeC2 + O(We2), (29)

where the constant are defined as:

C1 =
12 (1 + d− h1 + h2 −Q)

(h1 − h2)
3 , (30)

C2 =
36 (1 + d−Q)

(h1 − h2)
3 , (31)

C3 = h1 + h2, (32)

C4 = C2
3 + h1h2, (33)

C5 = 17C2
3 + 4h1h2, (34)

C6 = 7C2
3 + 2h1h2. (35)

The solution for velocity u obtained by above perturbation method can be used in Equation (19).
The final solution for θ can be obtained by integrating Equation (19) along with their associated
boundary conditions (See Equation (20)) and can be written as:

θ = θ1 + θ2y + θ3y2 + θ4y3 + θ5y4 + θ6y5 + θ7y6 + θ8y7 + θ9y8, (36)



Symmetry 2020, 12, 102 7 of 15

where constants of integration θ1 and θ2 can be evaluated by using boundary conditions defined
in Equation (20) and the expression obtained are very large and therefore are not presented here.
The remaining constants are defined as:

θ3 =
Br
√

C3

432

[
3

dp0

dx
+

(
C3

(
dp0

dx

)2
+ 3

dp1

dx

)
We

]2

×
[
−6 + 3C3We

dp0

dx
+ C3

(
C3

(
dp0

dx

)2
+ 3

dp1

dx

)
We2

]
, (37)

θ4 = −BrC3

72

(
dp0

dx
+ C3We

(
dp0

dx

)2
+

dp1

dx

)

×
[

3
dp0

dx
+

(
C3

(
dp0

dx

)2
+ 3

dp1

dx

)
We

]

×
[
−4 + 3C3We

dp0

dx
+ C3

(
C3

(
dp0

dx

)2
+ 3

dp1

dx

)
We2

]
, (38)

θ5 =
Br

12

[
−12

(
dp0

dx

)2
− 6

dp0

dx

(
3C3

(
dp0

dx

)2
+ 4

dp1

dx

)

+

(
(7h1 + 5h2)(5h1 + 7h2)

(
dp0

dx

)4
+ 18C3

(
dp0

dx

)2 dp1

dx
− 12

(
dp1

dx

)2
)

We2

+ 6
dp0

dx

(
6C3C4

(
dp0

dx

)4
+ C5

(
dp0

dx

)2 dp1

dx
+ 9C3

(
dp1

dx

)2
)

+C3

(
C3

(
dp0

dx

)2
+ 3

dp1

dx

)(
C6

(
dp0

dx

)4
+ 15C3

(
dp0

dx

)2 dp1

dx
+ 6

(
dp1

dx

)2
)

We4

]
, (39)

θ6 = −BrWe
20

(
dp0

dx
+ C3

(
dp0

dx

)2
+ We

dp1

dx

)

×
[
−
(

dp0

dx

)2
+

dp0

dx
We

(
5C3

(
dp0

dx

)2
+ 2

dp1

dx

)
We

+

(
2C4

(
dp0

dx

)4
+ 5C3

(
dp0

dx

)2 dp1

dx
+

(
dp1

dx

)2
)

We2

]
, (40)

θ7 =
BrWe2

60

(
dp0

dx

)2
[

4
(

dp0

dx

)4
+ 3

dp0

dx

(
5C3

(
dp0

dx

)2
+ 4

dp1

dx

)
We

+

(
C6

(
dp0

dx

)4
+ 15C3

(
dp0

dx

)2 dp1

dx
+ 6

(
dp1

dx

)2
)

We2

]
, (41)

θ8 = −BrWe3

14

(
dp0

dx

)4
[

dp0

dx
+ C3We

(
dp0

dx

)2
+ We

dp1

dx

]
, (42)
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θ9 =
1

56
BrWe4

(
dp0

dx

)6
. (43)

The dimensionless mean flow reads as:

F = d + 1−Q. (44)

and

F =

h1∫
h2

udy. (45)

The expression for entropy generation and Bejan number can be easily obtained by incorporating
value of u and θ in Equation (24).

5. Discussion

In this section, we present our results by varying the quantities under the variation of several
factors. Figures of temperature profile θ, entropy generation coefficient N, and streamlines are
illustrated below. Figures 2–5 reflect the behavior of θ for some useful parameters. Entropy generation
graphs are given in Figures 6–11. The streamlines conducting the flow samples are depicted in
Figures 12 and 13.

Figure 2 shows the impact of parameters a and b on temperature profile θ. It can be observed
from this plot that temperature is getting increased for both parameters from the lower wall to the
upper wall. Figure 3 shows the mechanism of the Biot number and Brinkman number. Biot number is
an important mechanism to determine the heat transfer. It can be visualized from this figure that an
enhancement in Biot number tends to boost the temperature profile while the contrary behavior has
been observed with the Brinkman number. Brinkman number is the product of Eckert and Prandtl
numbers Br = PrEc, or it is the ratio of the heat generated by viscous dissipation and propagation of
heat by molecular conduction, such as, the ratio of the viscous heat production to extrinsic heating.
Therefore, the enhancement of Brinkman’s number tends to increase the temperature profile. It can be
seen in Figure 4 that the volumetric flow rate significantly enhances the temperature profile. It can
also be noticed that the temperature profile has a lower magnitude for smaller values of d whereas the
behavior is converse for higher values. It can be viewed from Figure 5 that the Weissenberg number
causes a remarkable resistance for higher values. By enhancing the Weissenberg number, the elastic
forces are more dominant, which diminishes the temperature profile. However, the phase difference φ

also produces a significant resistance in the temperature profile.
Figures 6–9 are presented for entropy profiles against the leading parameters. It can be viewed

from Figure 6 that an increment in a and b tends to boost the entropy profile whereas the entropy
profile is increasing along the whole channel. Figure 7 shows that by increasing the Brinkman number,
the entropy profile rises, and it decreases by increasing the Weissenberg number. However, the entropy
remains positive and growing along the entire channel. It is seen from Figure 8 that the Biot number
enhances the entropy profile. It can be seen that at the lower wall, the entropy profile is maximum and
minimum at the upper wall, whereas it is uniform in the middle of the channel. The entropy profile
for various values of ∆ is presented in Figure 9. It is noticed in this figure that the entropy profile is
uniform, and no change occurs in the middle of the channel i.e., y ∈ (0, 0.5). Although it shows a
decreasing pattern, but it rises along the upper wall of the channel and remains positive.

Figures 10 and 11 are plotted for the Bejan number profile against the governing parameters. It is
observed from Figure 10 that the Bejan number profile diminishes for higher values of the Brinkman
number and shows a converse behavior for the Weissenberg number. In Figure 11, we can see that the
phase difference shows versatile behavior for higher values on the Bejan number profile. When Bejan
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number rises, then the phase difference’s effects are negligible for the domain y ∈ (0, 1.3), while when
the Bejan number is small, it decreases in a similar area.

The most interesting and useful phenomena of peristaltic motion are trapping, which is plotted
in Figures 12 and 13 via streamlines. It was found that by enhancing the phase difference parameter,
the effects are negligible on the trapping bolus despite the fact that an unusual movement in the
magnitude of the bolus is noticed. Furthermore, we can see in Figure 13 that an increment in the
Weissenberg number profile tends to diminish the width of the trapping bolus. The number of boluses
disappeared more quickly in the lower region as compared with the upper one.

b = 0.1

b = 0.3

a = 0.1, 0.15, 0.2

-1.0 -0.5 0.0 0.5 1.0

0.0

0.1

0.2

0.3

0.4

y

θ

Figure 2. Temperature distribution for different values of a and b. Solid line: a = 0.1, dashed line:
a = 0.15 and dot-dashed line: a = 0.2.

Br = 0.4

Br = 0.35

Bi = 0.1, 0.25, 0.3

-0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

y

θ

Figure 3. Temperature distribution for different values of Bi and Br. Solid line: Bi = 0.1, dashed line:
Bi = 0.25 and dot-dashed line: Bi = 0.3.
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Q = 1, 1.2, 1.4

d = 0.4

d = 1

-1.0 -0.5 0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

2.0

2.5

y

θ

Figure 4. Temperature distribution for different values of Q and d. Solid line: Q = 1.0, dashed line:
Q = 1.2 and dot-dashed line: Q = 1.4.

We = 0.01

We = 0.3

ϕ = 0.1, 0.5, 0.9

-1.0 -0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

y

θ

Figure 5. Temperature distribution for different values of φ and We. Solid line: φ = 0.1, dashed line:
φ = 0.5 and dot-dashed line: φ = 0.9.

a = 0.1, 0.15, 0.2

b = 0.1b = 0.3

-0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

y

N

Figure 6. Entropy profile for different values of a and b. Solid line: a = 0.1, dashed line: a = 0.15,
and dot-dashed line: a = 0.2.
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Br = 1, 1.2, 1.4We = 0.01

We = 0.1

-0.5 0.0 0.5 1.0

0

20

40

60

80

y

N

Figure 7. Entropy profile for different values of We and Br. Solid line: Br = 1.0, dashed line: Br = 1.2,
and dot-dashed line: Br = 1.4.

Bi = 0.1, 0.25, 0.3

Br = 0.35

Br = 0.4

-0.5 0.0 0.5 1.0

0

1

2

3

y

N

Figure 8. Entropy profile for different values of Bi and Br. Solid line: Bi = 0.1, dashed line: Bi = 0.25,
and dot-dashed line: Bi = 0.3.

Δ = 0.1, 0.2, 0.3, 0.4

-0.5 0.0 0.5 1.0

0

5

10

15

y

N

Figure 9. Entropy profile for different values of ∆. Solid line: ∆ = 0.1, dashed line: ∆ = 0.2, dot-dashed
line: ∆ = 0.3, and dot-dashed line: ∆ = 0.4.
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Figure 10. Bejan number for different values of We and Br. Solid line: Br = 1.0, dashed line: Br = 1.2,
and dot-dashed line: Br = 1.4.
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Figure 11. Bejan number for different values of φ and Bi. Solid line: φ = 0.1, dashed line: φ = 0.5,
and dot-dashed line: φ = 0.9.
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Figure 12. Trapping mechanism for different values of φ.
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Figure 13. Trapping mechanism for different values of We.

6. Conclusions

In this study, we analyzed the entropy generation on the asymmetric peristaltic propulsion
of non-Newtonian fluid with convective boundary conditions. The Williamson fluid model was
considered to examine the entropy profile. The mathematical modeling was performed under the
approximation of small Reynolds number and long wavelength of the peristaltic wave. A regular
perturbation method was employed to get the series solutions up to third-order approximation.
The significant results of the governing flow problem are summarized below:

(i) It was noticed that the temperature profile revealed an increasing behavior by increasing the
amplitude in the upper and lower region;

(ii) The Biot number and Brinkman number significantly enhanced the temperature profile, whereas
the behavior is converse for the phase difference parameter and Weissenberg number;

(iii) Entropy profile represented an increment profile for higher values of Brinkmann number and
Biot number, and a decrement behavior for the Weissenberg number;

(iv) The Weissenberg number boosedt the Bejan number profile, whereas it decreased due to the Biot
number and Brinkman number;

(v) Trapping mechanism showed that the phase difference parameter affected the magnitude of the
trapped bolus, while the Weissenberg number not only affected the magnitude of the trapped
bolus and the number of trapped boluses reduced in the lower region;

(vi) The non-Newtonian results in the present study could be reduced to Newtonian fluid flow by
taking We = 0.

The present results provide an excellent benchmark for further study on the entropy production
with mass transfer and peristaltic pumping mechanism. The mass transfer phenomena with magnetic
and porosity effects that were not covered in this paper is a topic for future research.
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Nomenclature

d1, d2 channel width
T temperature
c wave speed
t time
X, Y coordinate system
U, V velocity components
S stress tensor
Sh specific heat
K thermal conductivity
P pressure
a, b wave amplitude
Re Reynold’s number
Ec Eckert number
Pr Prandtl number
Br Brinkmann number
Bi Biot number
We Weissenberg number
Be Bejan number
S
′
gen entropy

Greek Symbol

φ phase difference
ρ density
λ wavelength
µ viscosity
Γ time constant
δ wave number
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