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Abstract: The topic “converging shock waves” is quite useful in Inertial Confinement Fusion (ICF).
Most of the earlier studies have assumed that the medium of propagation is ideal. However, due to
very high temperature at the axis of convergence, the effect of medium on shock waves should be
taken in account. We have considered a problem of propagation of cylindrical shock waves in real
medium. Magnetic field has been assumed in axial direction. It has been assumed that electrical
resistance is zero. The problem can be represented by a system of hyperbolic Partial Differential
Equations (PDEs) with jump conditions at the shock as the boundary conditions. The Lie group
theoretic method has been used to find solutions to the problem. Lie’s symmetric method is quite
useful as it reduces one-dimensional flow represented by a system of hyperbolic PDEs to a system of
Ordinary Differential Equations (ODEs) by means of a similarity variable. Infinitesimal generators
of Lie’s group transformation have been obtained by invariant conditions of the governing and
boundary conditions. These generators involves arbitrary constants that give rise to different possible
cases. One of the cases has been discussed in detail by writing reduced system of ODEs in matrix
form. Cramer’s rule has been used to find the solution of system in matrix form. The results are
presented in terms of figures for different values of parameters. The effect of non-ideal medium on the
flow has been studied. Guderley’s rule is used to compute similarity exponents for cylindrical shock
waves, in gasdynamics and in magnetogasdynamics (ideal medium), in order to set up a comparison
with the published work. The computed values are very close to the values in published articles.
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1. Introduction

The method of the Lie group of invariance has played a significant role in solving various kinds
of systems of PDEs for a long time. In fact, it has become an important tool to deal with a nonlinear
system of PDEs. The dimensional analysis gives rise to the natural scaling invariance of a problem. It
has presented a way to find a self-similar solution, considered as a specific solution of a governing
system of Hyperbolic PDEs, a problem involving symmetry. Point implosion and explosion problems
discussed by Taylor [1] and Sedov [2] are the two most common examples of it. Usually, the imposed
boundary conditions are not satisfied globally by such types of solutions. However, it can be shown
that symmetric solutions can be found using asymptotical analysis in fixed domains. Zeldovich and
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Raizer [3] have given simple scaling arguments to obtain similarity solutions with an illustration of
self-similar or invariant nature of the scaled solutions. Furthermore, the great application of their work
is given by Barenblatt [4], giving a clear explanation of the nature of invariant solutions of the first and
second kind.

A large number of natural phenomena [5–7], magnetized stellar winds, shapes of planetary
nebulae, galactic winds, complex filamentary structures in molecular clouds, synchrotron radiation
from supernova remnants, gamma-ray bursts, dynamo effects in stars, galaxies and galaxy clusters,
structure and interaction of supershells as well as other interesting problems all have important
roles in magnetic field. Due to its theoretical and practical importance in the variety of astrophysical
situations, plasma physics, nuclear science and engineering physics, analysis of magnetogasdynamics
has received more attention from researchers in the fields ranging from condensed matter to gas
dynamics. Lie’s approach is applied to estimate the structure of strong imploding shock waves.
Guderley [8], Zeldovich and Raizer [3], Sedov [2], Korobeinikov [9] and Arora et al. [10], etc. studied
the imploding shock waves and contributed remarkably in this field. Steeb [11] has applied a group
theoretic approach to obtain a similarity solution of the Euler equation and the Navier–Stokes equation
for incompressible fluid flow. Bluman and Kumei [12], Ovasiannikov [13], Logan [14] and Bluman and
Cole [15] have also used the method to study various symmetric flows. Van Dyke and Guttmann [16],
Whitham [17], and Halfner [18] have applied other approximation theories to find a solution for the
converging shock waves problem. Converging symmetrical waves in real gases have been studied by
Madhumita and Sharma [19]. A similarity solution of symmetric shock waves in radiative gas with an
axial magnetic field has been analysed by Radha and Sharma [20] using the group theoretic approach.

Pandey et al. [21] obtained the exact solution of magnetogasdynamic equations with cylindrical
symmetry using the symmetry analysis. It is worth mentioning the work of Singh et al. [22], Baty
and Tucker [23], and Singh and Pandey [24], on magnetogasdynamic equations in both ideal and
non-ideal plasma. Chisnell [25] gave an analytical description of flow field. Chisnell [25] has first
proposed a technique for the evaluation of exponent in similarity variable. Applying the simple
analytic method, a similarity exponent is determined in a non-ideal plasma by Patel and Rao [26]. In
the present study, self-similar solutions of a second kind for cylindrical symmetric flow in non-ideal
magnetogasdynamics is determined. Lie group of invariance, as presented in Bluman and Cole [15]
and Bluman and Kumei [12], has been used to find the solution for the problem.

This paper is organized as follows: Section 2 describes the basic governing equations of the planar
and cylindrical symmetric flow in real medium with an axial magnetic field. Boundary conditions at
the shock are given by Rankine–Hugoniot conditions. A brief discussion on method of Lie group of
invariance is given in Section 3. The method is applied on the earlier described system of PDEs to
obtain group of transformations in the section. In Section 4, all possible cases for similarity solutions
are discussed in detail and a system of ODEs with an initial condition are obtained in each case.
Depending upon the arbitrary constants that appear in the transformations, different possible cases
have been constructed in the section. The solution of these systems of ODEs enables us to explore the
solution for the considered system of PDEs. In Section 6, a particular case among the possible cases
has been studied in detail . Numerical results and discussion are presented in Section 7. A comparison
for the exponents of similarity variable by Guderley’s method and our scheme is also presented in
the section in Table 1. Flow profiles are drawn in the section to study various effects of parameters on
the problem.
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Table 1. Computed values of similarity exponent δ for different values of γ, b and C0 in non-ideal
magnetogasdynamics for cylindrically symmetric flow.

γ b C0 Computed δ Guderley δ Arora & Sharma [27]

1.4 0.25 0 0.71517095 0.71159620 0.7157703

1.4 0.2 0 0.73163770 0.73010800 0.72834400

1.4 0.1 0 0.77410944 0.77567800 0.77411040

1.4 0.02 0 0.8225961 0.82001151 -

1.4 0.01 0 0.82865997 0.82801210 -

1.4 0.001 0 0.8349957 0.83401995 -

1.4 0.2 0.02 0.72995791 0.72559179 -

1.4 0.1 0.02 0.76995941 0.76011995 -

1.4 0.02 0.02 0.81499587 0.81401121 -

1.4 0.01 0.02 0.81859961 0.81015911 -

1.4 0.001 0.02 0.82089959 0.82159921 -

1.4 0.2 0.05 0.72854121 0.72550110 -

1.4 0.1 0.05 0.75592815 0.75125994 -

1.4 0.02 0.05 0.8055967 0.80154497 -

1.4 0.01 0.05 0.80599987 0.80202170 -

1.4 0.001 0.05 0.80600151 0.80559210 -

1.66 0.2 0 0.75195451 0.75179000 0.75170810

1.66 0.1 0 0.77969441 0.77873000 0.77939910

1.66 0.02 0 0.80755197 0.80959170 -

1.66 0.01 0 0.81159549 0.81125900 -

1.66 0.001 0 0.81559594 0.81599959 -

1.66 0.2 0.02 0.74559197 0.74059917 -

1.66 0.1 0.02 0.77459125 0.77091887 -

1.66 0.02 0.02 0.80615917 0.80011759 -

1.66 0.01 0.02 0.80910059 0.80159520 -

1.66 0.001 0.02 0.81195419 0.81999595 -

1.66 0.2 0.05 0.73559188 0.73139146 -

1.66 0.1 0.05 0.76017755 0.76001151 -

1.66 0.02 0.05 0.80415990 0.80019880 -

1.66 0.01 0.05 0.80554279 0.80111595 -

1.66 0.001 0.05 0.80750951 0.80799150 -

2. Governing Equations and Shock Conditions

Consider a problem of the propagation of converging symmetric shock waves in a real medium
with an axial magnetic field. We assume that the converging shock moves inward in a radial direction.
The governing equations for the phenomena may be written as follows [9,17,28–30]:
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∂h
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+ 2h
∂u
∂r

+
2hmu

r
= 0,

where ρ, u, p h = µH2/2 are gas density, velocity, pressure and magnetic pressure, respectively. µ and
H denote permeability and magnetic field in transverse direction respectively. m denote the geometry
of converging shock. m = 0 refers to planar shock while m = 1 refers to cylindrical shock. r is used for
radial distance and t refers to time. a = (γp/ρ(1− bρ))1/2 is the speed of sound in non-ideal plasma,
where γ is the ratio of specific heat at constant pressure Cp and specific heat at constant volume Cv.
Equation of state for real gases is taken as follows (Wu and Roberts [31]):

p =
ΓρT

1− bρ
, e = CvT =

p(1− bρ)

ρ(γ− 1)
, (2)

where Γ is the gas constant, T the absolute temperature, Cv = Γ
γ−1 and b is the “van der Waals excluded

gas volume”; it places a limit ρmax = 1
b , on the density of gas. The temperature T and the gas constant

Γ are assumed to obey the thermodynamic relation Γ = Cp − Cv.
As our aim is to study the converging cylindrical shock waves, we consider the case when the

shock is moving with locus r = ϕ(t) in the medium with the propagation velocity of shock front
V = dϕ

dt produced by a cylindrical piston with radius r0 initially. Let the initial conditions for the flow
variables be specified at the shock front as: u0 = 0, p0 = constant, ρ0 = ρ0(r) and h0 = constant.

All the variables referred as lengths to r0, speed to V, density to ρ0, pressure to ρ0V2, magnetic
pressure to h0, van der Waals excluded gas volume b to 1/ρ0 and time to r0

V are non-dimensional.
At the shock front (r = ϕ(t)), the usual Rankine–Hugoniot jump conditions for strong shocks can

be written as:

u = 2(1−b̄)V
γ+1 ,

ρ = (γ+1)ρ0
(γ−1+2b̄) ,

(3)

p = 2(1−b̄)ρ0V2

γ+1 + 2C0((γ−1)b̄−γ)ρ0V2

(γ−1+2b̄)2 ,

h = C0(γ+1)2

2(γ−1+2b̄)2 ρ0V2.

Here, b̄ = bρ0 and C0 = 2h0
ρ0V2 denotes the cowling number for the shock.

3. Lie Group Analysis

Now, suppose we are able to find a family of curves along which the governing PDEs (1)
contain a solution. This solution is known as the similarity solution and the family of curves is
known as similarity curves. Actually, our set of partial differential equations reduces to the set of
ordinary differential equations along these similarity curves. In order to find the similarity solutions
and similarity curves to the system of partial differential Equation (1), we try to find its symmetry
group. Symmetry group is a group of transformations under which a corresponding system of partial
differential equations remains invariant, which means that the solution of the original system can also
be transformed to the solution of the transformed system by this transformation. It makes it easier
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to find the solution of the original system of equations. With the help of these transformations, we
convert the given system of PDEs into system of ODEs. Now, we do some calculations to find a one
parameter infinitesimal group of transformations. Consider the following transformations as given in
Sharma and Arora [32]:

r∗ = r + εφ, t∗ = t + εψ,

u∗ = u + εU, p∗ = p + εP, (4)

ρ∗ = ρ + εΛ, h∗ = h + εE,

where the symmetry generators φ, ψ, U, P, Λ, E are the functions of r, t, u, p, ρ and h. The above
one parameter infinitesimal transformation (4) is such that our system of PDEs (1) and its boundary
conditions (3) will remain invariant under these transformations. The parameter ε is considered to
be very small so the terms of higher powers of ε can be considered as negligible. Under the above
Lie group transformations, the system of equations are invariant. It gives us a similarity variable that
reduces the system of PDEs (1) to much simpler ODEs.

Thus, to proceed further, we use the summation convention and introduce the following notations:
x1 = t, x2 = r, u1 = u, u2 = p, u3 = ρ, u4 = h and pi

j =
∂ui
∂xj

, where i varies from 1 to 4 and j varies from
1 to 2. The system of basic Equation (1) may be represented as

Gk(xj, ui, pi
j), k = 1, 2, 3, 4.

Now, if we consider that the above system is constant conformally invariant under the action of
infinitesimal group of transformations, then, for all smooth surfaces, ui = ui(xj), we must have

LGk = αknGn, (5)

where αkn (k, n = 1, 2, 3, 4) are arbitrary constants and L is the Lie derivative defined as follows:

L = ξ
j
x

∂

∂xj
+ ξ i

u
∂

∂ui
+ ξ i

pj

∂

∂pi
j
, (6)

with ξ1
x = ψ, ξ2

x = φ , ξ1
u = U, ξ2

u = P, ξ3
u = Λ, ξ4

u = E and

ξ i
pj

=
∂ξ i

u
∂xj

+
∂ξ i

u
∂uk

pk
j −

∂ξ l
x

∂xj
pi

l −
∂ξ l

x
∂um

pi
l pm

j , (7)

where i, m and k vary from 1 to 4 while l and j from 1 to 2. Here, repetition of indices indicates
summation convention and ξ i

pj
is the notation for generalization of the derivative transformation.

Thus, substituting the value of L from (6) into (5), we obtain

ξ
j
x

∂Gk
∂xj

+ ξ i
u

∂Gk
∂ui

+ ξ i
pj

∂Gk

∂pi
j

= αknGn, k = 1, 2, 3, 4, n = 1, 2, 3, 4. (8)

Here, k and n both vary as 1, 2, 3, 4. Now, a polynomial equation in pi
j is obtained from Equation (8)

when the value of ξ i
pj

from (7) is substituted into (8). On comparing all the coefficients of pi
j and pi

l pm
j

on both sides of the resulting equation, a system of linear PDEs of the first order is obtained involving
the generators ψ, φ, U, P, Λ, E. Now, we try to find out a solution of the obtained system, which we call
the system of determining equations. A solution of these determining equations forms an invariant
group of transformations.
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The above procedure is applied on the each equation of the system of PDEs (1). The following
system of determining linear PDEs involving generators are obtained from the invariance of first
equation in (1):

U − φt + uΛρ − uφr + ρUρ = α11u, Λp = α13, Λh = α14,

ρUp + uΛp = α12
1
ρ + α13u, Λρ − ψt − uψr = α11,

ρUh + uΛh = α14u + α12
1
ρ , Λu − ρψr = α12, (9)

Λ + uΛu + ρ(Uu − φr) = α11ρ + α12u + α13
γp

1−bρ + 2α14h,

Λt + uΛr + ρUr +
m
r (ρU + uΛ− uρφ

r ) = α11
muρ

r + α13
γmpu

r(1−bρ)
+ 2α14

hmu
r .

Invariance of the second equation in (1) under the Lie group transformation gives the following
linear PDEs in terms of generators of the Lie group:

uUρ + ρ−1(Pρ + Eρ) = α21u, Uu − ψt − uψr = α22,

Uρ = α21, Uh − ρ−1ψr = α24, Up − ρ−1ψr = α23,

−Λρ−2 + uUp + ρ−1(Pp − φr + Ep) = α22ρ−1 + α23u,

−Λρ−2 + uUh + ρ−1(Ph − φr) + Eh = α22ρ−1 + α24u, (10)

Ut + uUr + ρ−1(Pr + Er) = α21
muρ

r + α23
γpmu

r(1−bρ)
+ 2α24

hmu
r ,

U − φt + u(Uu − φr) + ρ−1(Pu + Eu) = α21ρ + α22u + α23
γp

(1−bρ)
+ 2α24h.

Invariance of the third equation in (1) gives the following set of determining equations:

Pu − γp
(1−bρ)

ψr = α32, uPρ +
γp

(1−bρ)
Uρ = α31u, Pp − ψt − uψr = α33,

uPh +
γp

(1−bρ)
Uh = α32ρ−1 + α34u, Pρ = α31,

U − φt +
γp

(1−bρ)
Up + uPp − uφr = α32ρ−1 + α33u, Ph = α34, (11)

γp
(1−bρ)

+ uPu +
γp

(1−bρ)
(Uu − φr) = α31ρ + α32u + α33

γp
(1−bρ)

+ 2α34h− γpb
(1−bρ)2 Λ,

Pt + uPr +
γp

(1−bρ)
Ur +

γm
r (uP + pU − puφ

r ) = α31
muρ

r + α33
mupγ
(1−bρ)r + 2α34

hmu
r −

γpbmu
r(1−bρ)2 Λ.

Lastly, invariance of the magnetic field equation in (1) gives:

Ep = α43, 2hUρ + uEρ = α41u,

Eu − 2hψr = α42, Eh − ψt − uψr = α44,

2hUp + uEp = α42ρ−1 + α43u, Eρ = α41,

U − φt + 2hUh + uEh − uφr = α44u + α42ρ−1,

2E + 2hUu − 2hφr + uEu = α41ρ + α42u + α43
γp

(1−bρ)
+ 2α44h,

Et + uEr + 2hUr − 2hmur−2φ + 2hmr−1U + 2mur−1E = α41muρr−1 + α43mu γp
r(1−bρ)

+ 2α44hmur−1.

(12)
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On solving these determining equations, we obtain the symmetry generators given as under

ψ = αt + β, φ =

{
(α22 + 2α)r + k1t + c, if m = 0,

(α22 + 2α)r, if m 6= 0,
,

U =

{
(α22 + α)u + k1, if m = 0,

(α22 + α)u, if m 6= 0,
Λ =

{
(α11 + α)ρ, if b = 0,

0, if b 6= 0,
(13)

P =

{
(2α22 + α11 + 3α)p, if b = 0,

(2α22 + 2α)p, if b 6= 0,
E =

{
(2α22 + α11 + 3α)h, if b = 0,

(2α22 + 2α)h, if b 6= 0,

where α11, α22 and α44 are the arbitrary constants.

4. Similarity Solutions

On the basis of the values of arbitrary constants, all possibilities are discussed considering the
following different cases.

Case I: α 6= 0, α22 + 2α 6= 0.

We convert (r, t) to (r̄, t̄ ) using the following translation:

r̄ =

{
r, if m 6= 0,

r + (c + k1β
α )(α22 + 2α)−1, if m = 0,

, t̄ = t +
β

α
, (14)

the system of PDEs (1) remains unaltered. Thus, using the translation (14), the group of
transformations (13) can be rewritten as under with a bar sign being suppressed here:

ψ = αt, φ =

{
(α22 + 2α)r + k1t, if m = 0,

(α22 + 2α)r, if m 6= 0,
,

U =

{
(α22 + α)u + k1, if m = 0,

(α22 + α)u, if m 6= 0,
Λ =

{
(α11 + α)ρ, if b = 0,

0, if b 6= 0,
(15)

P =

{
(2α22 + α11 + 3α)p, if b = 0,

(2α22 + 2α)p, if b 6= 0,
E =

{
(2α22 + α11 + 3α)h, if b = 0,

(2α22 + 2α)h, if b 6= 0.

Using the invariant surface condition (see, Logan [14]), we get:

φur + ψut = U, φpr + ψpt = P,

(16)

φρr + ψρt = Λ, φhr + ψht = E.
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On integrating the set of Equation (16), together with (15), the flow variables are obtained in the
following forms:

u =

{
t(δ−1)Û(ξ), if m 6= 0,

t(δ−1)Û(ξ)− k∗, if m = 0,
ρ =

t
(α11+α)

α Λ̂(ξ), if b = 0,

Λ̂(ξ), if b 6= 0,

(17)

p =

{
t2δ−1+ α11

α P̂(ξ), if b = 0,

t2(δ−1)P̂(ξ), if b 6= 0,
h =

{
t2δ−1+ α11

α Ê(ξ), if b = 0,

t2(δ−1)Ê(ξ), if b 6= 0,

where

k∗ =
k1

(δ− 1)α
, δ =

α22 + 2α

α
. (18)

Thus, Û, P̂, Λ̂ and Ê are functions of dimensionless variable ξ, which is called similarity variable
and defined as follows:

ξ =

{
r

Atδ , if m 6= 0,
r

Atδ +
k∗

Atδ−1 , if m = 0.
(19)

A is constant. The dimension of A is such that ξ becomes dimensionless. Since shock must be
a similarity curve and ξ remains constant at shock, hence for the sake of simplicity, shock may be
normalized at ξ = 1. Therefore, at ξ = 1, we get the following expressions for the path ϕ(t) and
velocity of shock V

ϕ(t) =

{
Atδ, if m 6= 0,

At[tδ−1 − k∗
A ], if m = 0,

(20)

V =

{
δϕ(t)

t , if m 6= 0,

Aδtδ−1 − k∗, if m = 0.
(21)

Thus, at shock, the following conditions must be followed by the flow variables:

u|ξ=1 =

{
t(δ−1)Û(1), if m 6= 0,

t(δ−1)Û(1)− k∗, if m = 0,
ρ|ξ=1 =

t
(α11+α)

α Λ̂(1), if b = 0,

Λ̂(1), if b 6= 0,

(22)

p|ξ=1 =

{
t2δ−1+ α11

α P̂(1), if b = 0,

t2(δ−1)P̂(1), if b 6= 0,
h|ξ=1 =

{
t2δ−1+ α11

α Ê(1), if b = 0,

t2(δ−1)Ê(1), if b 6= 0.

On applying the condition of invariance on the jump conditions, we obtain the following form
of ρ0(r):

ρ0(r) =

{
ρc(

r
r0
)θ , if b = 0,

ρc, if b 6= 0,
(23)
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where ρc is some reference constants associated with the medium and θ = α11+α
α22+2α . The following

conditions are imposed on the functions Û, P̂, Λ̂ and Ê at the position of shock (ξ = 1):

Û(1) =

{
2δA
γ+1 , if b = 0,
2δ(1−b̄)A

γ+1 , if b 6= 0,
P̂(1) =


2ρcδ2 A2+θ

(γ+1)rθ
0
− 2C0ρcδ2 A2+θ γ

(γ−1)2rθ
0

, if b = 0,
2(1−b̄)ρc A2δ2

(γ+1) + 2C0ρc((γ−1)b̄−γ)A2δ2

(γ−1+2b̄)2 , if b 6= 0,

(24)

Λ̂(1) =


(γ+1)ρc Aθ

(γ−1)rθ
0

, if b = 0,
(γ+1)ρc
(γ+2b̄−1) , if b 6= 0,

Ê(1) =


C0ρc A2+θ δ2(γ+1)2

2(γ−1)2 , if b = 0,
C0ρc A2δ2(γ+1)2

2(γ−1+2b̄)2 , if b 6= 0.

Now, making use of (24), we rewrite Equations (17) as under

u = VU∗(ξ), ρ =

{
ρ0(ϕ(t))Λ∗(ξ), if b = 0,

ρcΛ∗(ξ), if b 6= 0,

(25)

p =

{
ρ0(ϕ(t))V2P∗(ξ), if b = 0,

ρcV2P∗(ξ), if b 6= 0,
h =

{
ρ0(ϕ(t))V2E∗(ξ), if b = 0,

ρcV2E∗(ξ), if b 6= 0,

where

U∗(ξ) = Û(ξ)
δA , Λ∗(ξ) =


rθ

0Λ̂(ξ)

ρc Aθ , if b = 0,
Λ̂(ξ)

ρc
, if b 6= 0,

P∗(ξ) =


rθ

0 P̂(ξ)
ρcδ2 Aθ+2 , if b = 0,

P̂(ξ)
δ2 A2ρc

, if b 6= 0,
E∗(ξ) =


rθ

0 Ê(ξ)
ρcδ2 Aθ+2 , if b = 0,

Ê(ξ)
δ2 A2ρc

, if b 6= 0.

On applying (25) and making use of (23), the considered system of PDEs (1) reduces to a system
of ODEs in U∗, Λ∗, P∗ and E∗, having ξ as an independent variable for both the cases ideal (b = 0)
and non-ideal (b 6= 0). Thus, for b = 0, the obtained system of ODEs, on suppressing the asterisk sign
is given by

θΛ + (U − ξ)Λ
′
+ ΛU

′
+

mΛU
ξ

= 0,

(δ− 1)
δ

ΛU + (U − ξ)U
′
Λ + P

′
+ E

′
= 0,

(U − ξ)P
′
+ γPU

′
+ P[

γmU
ξ

+
2(δ− 1)

δ
+ θ] = 0, (26)

(U − ξ)E
′
+

2(δ− 1)
δ

E + (θ + 2mUξ−1 + 2U
′
)E = 0,

and for b 6= 0,

(U − ξ)Λ
′
+ ΛU

′
+

mΛU
ξ

= 0,

(δ− 1)
δ

ΛU + (U − ξ)U
′
Λ + P

′
+ E

′
= 0,

(U − ξ)P
′
+

γP
1− bρcΛ

[U
′
+

mU
ξ

] +
2(δ− 1)

δ
P = 0, (27)

(U − ξ)E
′
+

2(δ− 1)
δ

E + (2mUξ−1 + 2U
′
)E = 0,
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together with the following initial conditions

U(1) = 2(1−b̄)
γ+1 , P(1) =

2(1− b̄)
γ + 1

+
2C0[(γ− 1)b̄− γ]

(γ− 1 + 2b̄)2 ,

(28)

Λ(1) = γ+1
γ−1+2b̄ , E(1) =

(γ + 1)2C0

2(2b̄ + γ− 1)2 .

Case II: α = 0 and α22 6= 0.

We change the variables (r, t) to (r̄, t̄) defined as r̄ = r + c(α22)
−1, t̄ = t, which does not make any

change in the considered system of PDEs (1). Following the same procedure as above, flow variables
readily follow the similarity solutions of the following forms, on suppressing the bar sign:

u = VU∗(ξ), ρ =

{
ρ0(ϕ(t))Λ∗(ξ), if b = 0,

ρcΛ∗(ξ), if b 6= 0,

(29)

p =

{
ρ0(ϕ(t))V2P∗(ξ), if b = 0,

ρcV2P∗(ξ), if b 6= 0,
h =

{
ρ0(ϕ(t))V2E∗(ξ), if b = 0,

ρcV2E∗(ξ), if b 6= 0,

with the initial density:

ρ0(r) =

{
ρc(

r
r0
)θ , if b = 0,

ρc, if b 6= 0,
(30)

where ξ, ϕ(t) and V have the same meaning as mentioned earlier and are given as follows:

ξ = r
r0

e−
δt
A , ϕ(t) = r0e

δt
A , V = δr0

A e
δt
A ,

(31)

θ = α11
α22

, δ = α22
β .

Here, A is a dimensional constant. On applying the transformations (29) with appropriate use
of (31), the considered system of PDEs is converted into the system of ODEs in U∗, Λ∗, P∗ and E∗,
which can be expressed as under on suppressing the asterisk sign:

For b = 0,

(U − ξ)Λ
′
+ θΛ + ΛU

′
+

mΛU
ξ

= 0,

(U − ξ)U
′
Λ + SΛ + P

′
+ E

′
= 0,

(U − ξ)P
′
+ γP[U

′
+

mU
ξ

] + (2 + θ)P = 0, (32)

(U − ξ)E
′
+ (2 + θ + 2mUξ−1 + 2U

′
)E = 0,
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and for b 6= 0,

(U − ξ)Λ
′
+ ΛU

′
+

mΛU
ξ

= 0,

(U − ξ)U
′
Λ + ΛU + P

′
+ E

′
= 0,

(U − ξ)P
′
+

γP
1− bρcΛ

[U
′
+

mU
ξ

] + 2P = 0, (33)

(U − ξ)E
′
+ (2 + 2mUξ−1 + 2U

′
)E = 0,

together with the following initial conditions:

U(1) =


2(1−b̄)

γ+1 , if m 6= 0,
2(1−b̄)

γ+1 + K∗
V , if m = 0,

, P(1) =
2(1− b̄)

γ + 1
+

2C0[(γ− 1)b̄− γ]

(γ− 1 + 2b̄)2 ,

(34)

Λ(1) = γ+1
γ−1+2b̄ , E(1) =

(γ + 1)2C0

2(2b̄ + γ− 1)2 .

Case III: α 6= 0 and α22 + 2α = 0.

In this case, the study reveals that the similarity solution for the cylindrical symmetric flow
(m = 1) does not exist, while it allows the existence of the similarity solution for the planar flow
(m = 0). We change (r, t) to (r̄, t̄) as follows:

r̄ = r, t̄ = t +
β

α
. (35)

It makes no change in the governing equations of the phenomena. Consequently, on suppressing
the bar sign, the flow variables readily follow the similarity solutions of following forms:

u = VU∗(ξ), ρ =

{
ρ0(ϕ(t))Λ∗(ξ), if b = 0,

ρcΛ∗(ξ), if b 6= 0,

p =

{
ρ0(ϕ(t))V2P∗(ξ), if b = 0,

ρcV2P∗(ξ), if b 6= 0,
h =

{
ρ0(ϕ(t))V2E∗(ξ), if b = 0,

ρcV2E∗(ξ), if b 6= 0,
(36)

where the initial density and initial magnetic pressure are defined as

ρ0(r) =

{
ρc expθ( r

r0
), if b = 0,

ρc, if b 6= 0,
(37)

where ξ, ϕ(t) and V are the dimensionless similarity variable, shock location and shock velocity,
respectively, and are defined as follows:

ξ =
r− r0δ ln( t

A )

r0
, ϕ(t) = r0δ ln(

t
A
), V =

δr0

t
,

(38)

θ =
α11 + α

c3
, c3 = c− k1β

α
, δ =

c3

α
.

Substitution of (36)–(38) in the considered system of PDEs (1) reduces the system (1) into the
system of ODEs in U∗, Λ∗, P∗ and E∗. We drop “∗” sign for simplicity to get the following ODEs for
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b = 0:

(U − 1)Λ
′
+ θΛ + ΛU

′
= 0,

(U − 1)U
′
Λ− δ−1ΛU + P

′
+ E

′
= 0,

(U − 1)P
′
+ γPU

′
+

δθ − 2
δ

P = 0, (39)

(U − 1)E
′
+

δθ − 2
δ

E + 2U
′
E = 0,

and for b 6= 0,

(U − 1)Λ
′
+ ΛU

′
= 0,

(U − 1)U
′
Λ− δ−1ΛU + P

′
+ E

′
= 0,

(U − 1)P
′
+

γP
1− bρcΛ

U
′ − 2

δ
P = 0, (40)

(U − 1)E
′ − 2

δ
E + 2U

′
E = 0,

together with the following initial conditions:

U(0) = 2(1−b̄)
γ+1 , P(0) =

2(1− b̄)
γ + 1

+
2C0[(γ− 1)b̄− γ]

(γ− 1 + 2b̄)2 ,

(41)

Λ(0) = γ+1
γ−1+2b̄ , E(0) =

(γ + 1)2C0

2(2b̄ + γ− 1)2 .

Case IV: α = 0 and α22 = 0.

Again as in the previous case, the similarity solution exists only for the planar flow (m = 0), so it
does not allow for the existence of similarity solutions in the radially symmetric (m = 1) flows in such
a flow configuration. The basic equations in the given system remains unaltered by changing the
variables from (r, t) to (r̄, t̄) defined as

r̄ = r, t̄ = t +
β

α
. (42)

On suppressing the bar sign, the forms of the similarity solutions of the flow variables are given as

u = VU∗(ξ), ρ =

{
ρ0(ϕ(t))Λ∗(ξ), if b = 0,

ρcΛ∗(ξ), if b 6= 0,

p =

{
ρ0(ϕ(t))V2P∗(ξ), if b = 0,

ρcV2P∗(ξ), if b 6= 0,
h =

{
ρ0(ϕ(t))V2E∗(ξ), if b = 0,

ρcV2E∗(ξ), if b 6= 0.
(43)

The initial density and initial magnetic pressure are defined as under

ρ0(r) =

ρc expθ(
r−r0

r0
), if b = 0,

ρc, if b 6= 0,
(44)
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where ξ, ϕ(t) and V have the same meaning as described in earlier cases. These are defined as follows:

ξ =
r− r0δ( t

A )

r0
, ϕ(t) = r0(1 + δ(

t
A
)), V =

δr0

t
,

(45)

θ =
α11

c
, δ =

c
β

.

Substitution of (43)–(45) in the considered system of PDEs (1) results in the system of ODEs in U∗,
Λ∗, P∗ and E∗, which are expressed below on suppression of “∗” sign for b = 0 and b 6= 0, respectively.

For b = 0,

(U − 1)Λ
′
+ θΛ + ΛU

′
= 0,

(U − 1)U
′
Λ + P

′
+ E

′
= 0,

(U − 1)P
′
+ γPU

′
+ θP = 0, (46)

(U − 1)E
′
+ (θ + 2U

′
)E = 0,

and, for b 6= 0,

(U − 1)Λ
′
+ ΛU

′
= 0,

(U − 1)U
′
Λ + P

′
+ E

′
= 0,

(U − 1)P
′
+

γP
1− bρcΛ

U
′
= 0, (47)

(U − 1)E
′
+ 2U

′
E = 0,

together with the following initial conditions:

U(1) = 2(1−b̄)
γ+1 , P(1) =

2(1− b̄)
γ + 1

+
2C0[(γ− 1)b̄− γ]

(γ− 1 + 2b̄)2 ,

(48)

Λ(1) = γ+1
γ−1+2b̄ , E(1) =

(γ + 1)2C0

2(2b̄ + γ− 1)2 .

5. Imploding Shocks

We elaborate the Case I of the given problem for an imploding shock for which it is assumed that
V >> a0 (the speed of sound) in some neighborhood of implosion. In such a case, an imploding shock
is about to collapse at the center or axis. We suppose that the time at which converging shock reaches
to axis of implosion is t = 0. Therefore, t ≤= 0 for the process of converging shock. We accordingly
re-define the similarity variable as follows:

ξ =
r

A(−t)δ
, ϕ = A(−t)δ, (49)

where the interval for the variables r and t is defined as −∞ < t ≤ 0 and ϕ ≤ r < ∞, which implies
that 1 ≤ ξ < ∞. At any finite radial distance ‘r’, the density, pressure, magnetic pressure, sound speed
and the gas velocity are bounded at the instant of collapse (t = 0). However, it may be noted that ‘ξ’
reaches to ‘∞’ at ‘t→ 0′ for any finite value of radial distance. Thus, in order to keep the quantities ρ,
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p, u and h bounded at the instant of the collapse, we must have to impose the following conditions at
ξ = ∞:

U(∞) = 0,


P(∞)
Λ(∞)

= 0, if b = 0,
P(∞)(1+bΛ(∞))

Λ(∞)
= 0, if b 6= 0,

E(∞) = 0. (50)

Thus, Systems (25) and (26) together with (50) form a boundary value problem. We solve this
system to get the flow variables behind the shock. Let us consider the system in a non-ideal case (26).
Using matrix notation, system (26) can be written as under

AB′ = C, (51)

where B = (U, Λ, P, E)tr, A is a 4× 4 matrix and C is a 4× 1 matrix. The matrices A and C can be read
off by inspecting system (26). Observing system (51), we notice that there exists an unknown parameter
δ, the value of which can not be calculated using energy balance or dimensional considerations. We
can compute its value only by solving the nonlinear eigenvalue problem for the system of ODEs.
As we discussed above for the converging shocks, similarity variables vary in the range 1 ≤ ξ < ∞.
Now, system (51) would be solved for the variables, U′, Λ′, P′ and E′ using the Cramer’s rule in the
following manner:

U′ =
∆1

∆
, Λ′ =

∆2

∆
, P′ =

∆3

∆
, E′ =

∆4

∆
, (52)

where ∆, a notation used for the determinant A, may be written as

∆ = (U − ξ)2[(U − ξ)2 − γP
Λ(1− bρcΛ)

− 2E
Λ

]. (53)

Notations ∆k (k = 1, ..., 4) are used for the determinants that are obtained by replacing the kth
column by vector C in ∆. It is obvious that U < ξ in [1, ∞), and ∆ changes its sign from positive to
negative in the interval [1, ∞) as ∆ > 0 at ξ = 1 and ∆ < 0 at ξ = ∞. Thus, it confirms the existence of
a singular solutions of (52) for some ξc ∈ [1, ∞) due to ∆ = 0 at ξc. Thus, to obtain a non-zero solution
of (51) in interval [1, ∞), we have to choose the value of δ such that ∆ and ∆k all vanish simultaneously.
To find such an exponent δ, we define new variable Z as

Z(ξ) = (U − ξ)2 − γP
Λ(1− bρcΛ)

− 2E
Λ

. (54)

Taking the first derivative of Z with respect to ξ, and using (52), we obtain

dZ
dξ

= [2(U − ξ)(∆1 − ∆)− γ∆3

Λ(1− bρcΛ)
− 2∆4

Λ
+

γP(1− 2bρcΛ)∆2

Λ2(1− bρcΛ)2 +
2E∆2

Λ2 ]/∆. (55)

Thus, using (55) in (52), we obtain

dU
dZ

=
∆1

∆5
,

dΛ
dZ

=
∆2

∆5
,

dP
dZ

=
∆3

∆5
,

dE
dZ

=
∆4

∆5
, (56)

where ∆5 = 2(U − ξ)(∆1 − ∆) − γ∆3
Λ(1−bρcΛ)

− 2∆4
Λ + γP(1−2bρcΛ)∆2

Λ2(1−bρcΛ)2 + 2E∆2
Λ2 , with ξ = U +

Z + γP
Λ(1−bρcΛ)

+ 2E
Λ .
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6. Numerical Results and Discussion

To evaluate the numerical results, the fourth order Runge–Kutta method is applied to system (56).
For this, we begin with a trial value of δ and integrate Equation (56) under definite limits Z = Z(1) to
Z = 0. Integrating (56), we get the values of the generators and ∆1 at Z = 0. In order to obtain the
correct value of δ, we have to adopt a hit and trial technique. We are searching for that value of δ for
which the determinant ∆1 vanishes at Z = 0. We perform these numerical calculations for m = 1 with
different values of C0, b and γ, and obtain the corresponding values of similarity exponent δ, which is
shown in Table 1, which also depicts the comparison with the corresponding values of δ obtained by
Guderley’s rule and Arora and Sharma [27]. It can be seen that the computed results match well with
these results.

Magnetic effects in our problem are present in our problem in terms of the parameter C0 (shock
cowling number). C0 = 0 refers to the phenomena under consideration in gas dynamics with ideal or
non-ideal conditions (without magnetic field). The computed values for the similarity exponent match
well with earlier values obtained by Arora and Sharma [27]. Furthermore, it is observed that, as we
move towards the higher values of the parameter C0, the obtained values of δ starts decaying which in
turns reduce the velocity of shock as shock moves to axis of convergence. The same observations have
been noticed in the case of of parameter ‘b’ which measures the non-ideal gas effect.

The analytical solution of flow variables behind converging shock at the time of collapse (t = 0,
ϕ = 0 (ξ = ∞ as r > 0)) of the shock wave, are of the following forms:

U ∼ ξ
(δ−1)

δ , Λ ∼ K0, P ∼ ξ
2(δ−1)

δ , E ∼ ξ
2(δ− 1)

δ
, (57)

where K0 is a constant.
From the above expressions, it is clearly observed that U, pressure P and E approach ‘0’ as

‘ξ → ∞’, due to the value of δ being smaller than unity at the instant of collapse, whereas the density S
remains bounded thereat. The system (52) is integrated over the range 1 ≤ ξ < ∞, and the values of u,
p, ρ and h behind the shock collapse are illustrated in Figures 1–3. It is also interesting to note that our
computed solutions in vicinity of ξ = ∞ are found in agreement with the ones that are obtained by the
asymptotic relations (57).

Figures 1–3 show that, as we move to the axis of convergence, i.e., when ξ → ∞, there is an
increase in density and decrease in velocity. Pressure and magnetic pressure are such that they first
increase and attain their maximum values and then start to decrease. Figure 1 shows that, for the
fixed values of C0 and γ, when the value of b increases, the velocity, density and magnetic pressure
of the gas decrease, while the pressure increases. Figure 2 shows that, for the fixed values of b and
γ, when the value of C0 increases, the velocity, density and pressure of the gas decrease, while the
magnetic pressure increases. Figure 3 shows that, for the fixed values of C0 and b, when the value
of γ increases the velocity, density and magnetic pressure of the gas decrease, while the pressure
increases. The reason behind this type of profiles’ behavior is that the particles of gas experience
shock compression while moving across it. In fact, this behavior of profiles can also be regarded as the
property of geometrical convergence of the shock wave or area contraction.
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(a) (b)

(c) (d)

Figure 1. Flow patterns of non-dimensional (a) velocity (U); (b) density (Λ); (c) pressure (P); and (d)
magnetic pressure (E); for cylindrically symmetric flow (m = 1) with γ = 1.4 and C0 = 0.02.

(a) (b)

(c) (d)

Figure 2. Flow patterns of non-dimensional (a) velocity (U); (b) density (Λ); (c) pressure (P); and (d)
magnetic pressure (E) for cylindrically symmetric flow (m = 1) with γ = 1.4 and b = 0.02.
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(a) (b)

(c) (d)

Figure 3. Flow patterns of non-dimensional (a) velocity (U); (b) density (Λ); (c) pressure (P); and (d)
magnetic pressure E for cylindrically symmetric flow (m = 1) with b = 0.01 and C0 = 0.02 .

7. Conclusions

We have used the Lie group theoretic method to find a similarity solution of a problem of
converging cylindrical shock in real gases. For most real gases, bρ << 1. The magnetic field is taken in
an axial direction and presented in our problem by the parameter C0. Propagation of cylindrical shocks
under these conditions are useful in Inertial Confinement Fusion (ICF). A complete description of Lie
group transformations is presented in the article for the problem. Invariance of governing system
of PDEs and boundary conditions under the Lie group of transformation is used to obtain the Lie
generators and similarity variable. Similarity variable reduces the system of PDEs to the system of
ODEs. Furthermore, the arbitrary constants in generators give rise to four different possible cases. One
of the cases has been worked out in detail and the effect of magnetic field and non-ideal parameter
is studied. Figure 1a–d shows the effect of b on the flow field behind the shock. It can be seen in
Figure 1a that velocity decreases with an increase in b. It is a physically correct result as the increase
in a non-ideal property will increase the collisions of gas molecules, which, in turn, will reduce the
root mean square velocity of the gas molecules. Increased collisions with the increase in a non-ideal
property of the medium will create higher pressure behind the converging shock as may be seen in
Figure 1c. In Figure 2a,d, the effect of C0 is presented on a flow field behind converging cylindrical
shock. It can be seen in Figure 2c that the pressure behind the shock decreases with the increase
in C0. It can be understood as the charged particles are transported away by the strong magnetic
field. Different real gases have different values of γ. Therefore, the effect of γ on flow profiles has
been presented in Figure 3a,d. It can be seen by Figure 3a that velocity decreases with increase in γ

associated with a real gas. However, pressure shows the increment with the increase in γ.
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