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Abstract: In this paper, we consider the flat FRW spacetime filled with interacting dark energy and
dark matter in fractal universe. We work with the three models of dark energy named as Tsallis,
Renyi and Sharma–Mittal. We investigate different cosmological implications such as equation of
state parameter, squared speed of sound, deceleration parameter, statefinder parameters, ωe f f − ´ωe f f
(where prime indicates the derivative with respect to ln a, and a is cosmic scale factor) plane and Om
diagnostic. We explore these parameters graphically to study the evolving universe. We compare
the consistency of dark energy models with the accelerating universe observational data. All three
models are stable in fractal universe and support accelerated expansion of the universe.
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1. Introduction

The presence of networks of voids and structures in distribution of galaxies in space is one
of the remarkable findings in the last two decades. The earlier pervasive examination of galaxy
distribution with focus only on angular coordinates was unable to locate such high scale structures.
Such findings refuse to accommodate the standard cosmological theories, in which homogeneity
at large scale is of immense importance [1]. The existence of such a large scale at which the matter
distribution approaches an average density is a matter of intense debate [2–4]. At small scales, it is well
established that the distribution of galaxies is fractal, although its deviation from homogeneity is still
debatable. Some statistical methods have been used to analyze the three dimensional data with some
disagreements [3,4]. The fractal scenario is still resisted due to its incompatibility with the standard
theories and isotropy of microwave back ground radiation [5,6]. The fractal distribution for matter
was suggested in the framework of an expanding universe, the Friedmann cosmology [7].

A fractal is an identical and fundamental altering distribution of points at all scales, excluding
its gravitational dynamics in framework of FRW solutions to general relativity [8,9]. The problem
arises because of incompatibility of a fractal with the Cosmological Principle, which requires matter
distribution to be isotropic and homogeneous [5]. In the case of non-analytical structure, such as fractal,
all points are statistically equivalent, satisfying the conditional cosmological principle [8–10]. Systems
whose effective dimensionality changes with scale may have fractal behavior. To understand the fractal
effects, the present work is an effort to analyze cosmic acceleration under influence of fractal effects.

Many pieces of observational evidence such as different luminosity type Ia supernovae (SNIa) [11],
Large Scale Structure [12] and Cosmic Microwave Background (CMB) radiation [13] strongly support
the accelerated expansion of our universe. The candidates responsible for this expanding scenario
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provoked a new type of matter violating strong energy condition, i.e., ρ + p < 0. Such exotic matters
with negative energy density are named as Dark Energy (DE) [14]. One amongst the proposed
candidates of DE appealing researchers the most is Holographic Dark energy (HDE). The idea behind
this model is the Holographic principle, which emphasizes that for a physical system the number of
degrees of freedom should be scaled by its bounding area instead of its volume [15,16] constrained
by infrared cutoff [17]. By using this idea, Li [18] recommended the following constraint on its
energy density: ρd ≤ 3C2M2

p/L2, where the equality sign holds only for saturated holographic
bound. Here, C2 is the dimensionless constant, L denotes the IR-cutoff radius and M2

p = (8πG)−1 is
the reduced Plank mass. Li used three options for IR cutoffs, namely Hubble horizon, the future event
horizon and the particle horizon. According to Li, only the future event horizon has the capability of
accommodating the sufficient acceleration of universe. Fischler and Susskind proposed HDE models
based on the cosmological state of Holographic principal [19]. The derivation of holographic energy
density ρd = 3C2M2

p/L2 is based on the entropy–area relationship S ~A ~L2 of black holes. Here,
A = 4πL2 is area of horizon. A more general representation of HDE model with NO cutoff was
presented Nojiri and Odinstov, who studied its cosmological and thermodynamical aspects [20,21].

Sheykhi [22] developed HDE model by using Hubble horizon as IR cutoff and believed that
this model is capable of illustrating present state of universe by considering interaction of DE and
Dark matter (DM). Hu and Ling examined the interacting HDE model and cosmological parameters
through observational constraints [23]. In the low red-shift region, the HDE model supports the
present observations. For a specific choice of interacting term, they attempted to reduce the cosmic
coincidence problem by using different options for time rate of change of ratio of DM to HDE densities.
By using a number of recent observational schemes, Ma et al. [24] observed big rip singularity for
different parameters while exploring interacting and non-interacting HDE with DM. They found that
HDE models are more compatible with observations as compared to ΛCDM Model.

The DE and horizon entropy has an apparent influence on each other in thermodynamics.
The exotic nature of space time and the Bekenstein entropy being non-extensive entropy measure,
the generalized entropies, i.e., Tsallis and Renyi entropies, have been used to examine cosmological
and gravitational phenomenon [25–28]. Amongst several generalized entropy formalisms to study
cosmological phenomena, Tsallis and Renyi entropies develop more precise pictures of the universe.
Another generalized entropy called the Sharma–Mittal measure [25] has been used to propose a new
model of HDE [29]. In this model, the role of IR-cutoff is played by the Hubble horizon. It is stable and
compatible with universe expansion history.

In the present work, we study the cosmological implications of HDE in fractal universe. We work
in a flat FRW universe filled with interacting DM and DE. We use three different HDE models, namely
Tsallis Holographic dark energy (THDE), Renyi Holographic dark energy (RHDE) and Sharma–Mittal
Holographic dark energy (SMHDE), for this purpose. These models of HDE can also be generated
from extended generalized form of EoS as presented by [21] and also presented in [30]. For analysis,
we take help of EoS parameter, square speed of sound and deceleration parameter. Further, we make
use of ωe f f − ω′e f f , statefinders {r, s} and Om diagnostics. In Section 2, the field equations under
selected scenario and expressions for all the used HDE models are given. Section 3 contains discussion
regarding deceleration parameter for the three HDE models in fractal universe. Similarly, Sections 4–8
contain the views about EoS parameter, square speed of sound, statefinder parameter, Om diagnostic
and ωe f f −ω′e f f , respectively. The last section comprises conclusion after detailed discussions of the
previous sections.

2. Field Equations with Solutions

In a Fractal universe, time and space coordinates scale identically, i.e., [xµ] = −1, µ = 0,1, ..., D− 1.
The non-trivial measure (as in Lebesgue–Stieltjes integrals): dDx → dρ(x), [ρ] = −Dα 6= −D
replaces the standard measure in action. Here, D is the topological dimension of the embedding
space-time. During the evolution of the system, for a given time, a preserved fraction of states is
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represented roughly by the parameter α > 0. Such structures are obtainable by varying effective
dimensionality of universe at different scales. This attribute can be acquired by introducing fractal
action [31,32]. The general Boral probability measure ρ is assumed as measure on Fractal set. Therefore,
the metric-spacetime M furnished with measure ρ is represented by (M, ρ) in D dimensions. In this case,
ρ is continuous with dρ = dDxν(x), some multidimensional Lebesgue measure, and ν is the weight
function (fractal function). The total action of Einstein gravity in fractal spacetime can be given as

S = Sg + Sm. (1)

The gravitational part of action is

Sg = M2
p

∫
dDxν(x)

√
−g(R− 2Λ−ω∂µν∂µν),

and
Sm =

∫
dDxν(x)

√
−gLm,

is action of matter part minimally coupled with gravity [31–33]. Here, Mp = (8πG)−
1
2 is the reduced

Planck mass and ω represents fractal parameter, R is the Ricci scalar.
In homogeneous, isotropic FLRW spacetime model, the Friedmann equations in a fractal universe

can be obtained by taking variation of action with respect to metric tensor as given below

H2 +
k
a2 + H

ν̇

ν
− ω

6
ν̇2 =

1
3
(ρd + ρm) +

Λ
3

. (2)

Here, ρd and ρm are energy densities of DE and DM, respectively, H = ȧ
a is Hubble parameter.

k is the curvature constant with k = −1, 0, 1 for open, flat and closed universe, respectively. We take
time-like fractal profile ν = a−γ with assumptions Λ = 0, k = 0 and γ =constant. Now, the Equation (2)
takes the following form

H2
(

1− γ− ω

6
ν2γ2

)
=

1
3
(ρd + ρm). (3)

The energy conservation equation in Fractal universe is given as

ρ̇ + (ρ + p)(3H +
ν̇

ν
) = 0. (4)

After substituting ν = a−γ, Equation (4) can be written as

ρ̇ + H(ρ + p)(3− γ) = 0. (5)

We introduce the phenomenological term Q to represent interaction between dark matter and
dark energy model. Here, the decay rate should be proportional to the present value of Hubble
parameter H as determined by Supernova and CMB data. The interaction term Q describes the energy
flow between the two fluids. Observations from [34,35] give clear picture of interaction between DE
and DM. The supernova data together with CMB and large scale structure [36] describe that such
an interaction could be inferred from the expansion history of the universe. The relevant studies on
the interaction between DE and DM have been carried out in [37–39]. The transition from matter
domination to DE domination is given by an appropriate energy exchange rate. An interaction term
having decay rate proportional to present value of Hubble parameter is assumed to be a good fit to
the expansion history of the universe. The evidence for such interacting DE has also been provided by
Baryon Oscillation Spectroscopic Survey (BOSS) [40]. Some authors [41] have also discussed various
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DE models in different frameworks and found interesting results. Amongst the different forms of Q
available in the literature, we choose the following form of Q as in [42]

Q = 3ξHρm. (6)

Here, ξ (may be positive or negative) is the interaction parameter. Now the conservation equation
takes the following form

ρ̇d + H(ρd + pd)(3− γ) = −Q, ˙ρm + H(ρm)(3− γ) = Q, (7)

with pm = 0 being pressureless fluid. From Equation (7), we can easily find

ρm = ρ0(1 + z)−(3ξ+γ−3). (8)

Next, we discuss the energy densities for HDE models under consideration.

2.1. THDE

The Tsallis definition of entropy plays a vital role in the study of gravitational and cosmological
systems. The Tsallis entropy content of system is the power law function of system area confirmed by
the quantum gravity considerations. The horizon entropy of black hole can be modified as shown by
Tsallis and Cirto [43].

Sδ = γAδ. (9)

Here, δ is the non additivity parameter [43] and γ is unknown constant and A = 4πL2 representing
the area of horizon. The Bekenstein entropy is recoverable at the limit δ = 1 and γ = 1

4G with
h̄ = kb = c = 1. At this limit, the system is describable by ordinary distribution of probability. By using
Equation (9) and relation L3Λ3 ≤ (Sδ)

3
4 described by Cohen et al. [17], we get Λ4 ≤ γ(4π)δL2δ−4. This

gives the following form to energy density of Tsallis holographic dark energy (THDE) [44].

ρd = BH4−2δ. (10)

By using Equations (3) and (7), we can calculate Ḣ and pd as

Ḣ =
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ(γ2)

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

, (11)

pd = 3ξρ0(1 + z)−(3ξ+γ−3) − BH4−2δ +
B(4− 2δ)H2−2δ

γ− 3

ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ(γ2)

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

. (12)

2.2. RHDE

Renyi (S) and Tsallis (ST) are two well-known one-parameter generalized entropies defined as

S =
1
δ

lnΣW
i=1P1−δ

i , (13)

ST =
1
δ

ΣW
i=1(P1−δ

i − Pi). (14)
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Here, δ = 1−Q; combining the above one-parametric entropy measures with each other, we can
get the following relation as in [45–48]

S =
1
δ

ln(1 + δST). (15)

Using the above equation and assumption ρddV ∝ TdS, Renyi holographic dark energy (RHDE)
can be defined as

ρd =
3C2H2

8π(1 + δπ
H2 )

. (16)

The following expression for Ḣ and pd can be obtained by using Equations (3) and (7):

Ḣ =
ρ0
3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)
, (17)

pd =
−1

H(3− γ)

(
3ξHρ0(1 + z)−(3ξ+γ−3) +

3C2H3(3− γ)

8π(1 + δπ
H2 )

+ 2FH3(H2 + 2δπ)

(H2 + δπ)−2
ρ0
3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)
. (18)

2.3. SMHDE

Another generalized entropy measure introduced by Sharma and Mittal defined as [49,50]

SSM =
1

1− r

((
ΣW

i=1P1−δ
i
) 1−r

δ − 1
)

(19)

Using Equations (13)–(15), one can easily write

SSM =
1
R

((
1 + δST

) R
δ − 1

)
, (20)

with R = 1− r. As Bekenstein–Hawking entropy is supposed to be an appropriate candidate for Tsallis
entropy, we can replace ST in Equation (20) by SB = A

4 with A being the horizon area and get

SSM =
1
R

((
1 + δ

A
4
) R

δ − 1
)

, (21)

Using Equation (21) and Λ4 ∝ S
L4 as described above, we approach SMHDE density given below

ρd =
3C2H4

8πR

((
1 +

πδ

H2

) R
δ − 1

)
, (22)

with C2 being free parameter. With the help of Equations (3), (7) and (22), we derive the following
expressions for Ḣ and pd

Ḣ =

(
ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)

− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1

, (23)
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Figure 1. Deceleration parameter.

pd =
1

H(3− γ)

(
− 3ξHρ0(1 + z)−(3ξ+γ−3) − 3C2H5(3− γ)

8πR

(
(1 +

δπ

H2 )
β − 1

)
− 3C2

8πR

(
4H3((1 + δπ

H2

)β − 1)− 2δπβH
(
1 +

δπ

H2

)β
)

)(
ρ0

3
(3ξ + γ− 3)

(1 + z)−(3ξ+γ−3)H − H3(
ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)−

( C2

8πR(
4H3(1 +

δπ

H2 )
β − 1

))
− 2δπβH(1 +

δπ

H2

)β−1
)−1

. (24)

3. Deceleration Parameter

To determine the cosmological acceleration of any cosmological model, the deceleration parameter
plays a vital role. A negative value of deceleration parameter q < 0 exhibit cosmic acceleration of model
under discussion, while positive q > 0 shows a decelerating universe. The deceleration parameter can
be calculated as

q = −1− Ḣ
H2 . (25)

3.1. THDE

In the case of THDE, by using the expression of Ḣ from Equation (11) in Equation (25), we get
the following expression for deceleration parameter q

q = −1− ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H3(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H5−2δ

. (26)

In Figure 1, we plot the variation of deceleration parameter with respect to redshift parameter with
in the range −0.9 ≤ z ≤ 0.1. Here, we take ω = −0.9, ξ = −2, B = −1, ρ0 = 1, γ = 2, α = 1 and δ = 2.
From the plot, we see that the deceleration parameter remains negative before z = −0.15, exhibiting
the cosmic acceleration. After z = −0.15, the curve representing q becomes positive. For the redshift
parameter 0.1 ≤ z ≤ −0.15, q represents decelerated phase and then for −0.15 ≤ z ≤ −0.9, q exhibits
accelerated expansion. From the curve, it is evident that the universe is evolving from early decelerated
phase towards late accelerated phase.
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3.2. RHDE

The following expression of deceleration parameter for RHDE can be obtained by substituting
value of Ḣ from Equation (17) into Equation (25)

q = −1− ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3ν2

6H3(1− γ− ω
6 ν2γ2)− 2FH5

(
H2 + δπ

)−2(H2 + 2δπ
) . (27)

Figure 2 contains the plot of the expression for deceleration parameter versus redshift parameter
−0.9 ≤ z ≤ 0.1 for RHDE. Here, we use same values of constants as discussed above. We observe that
the deceleration parameter q remains negative before z = −0.14 and becomes positive after z = −0.14.
It represents accelerated universe before about z = −0.14 and decelerated phase of universe after
z = −0.14. This means our universe is going through an accelerated phase of expansion.

-0.8 -0.6 -0.4 -0.2 0.0

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

z

q

RHDE

Figure 2. Deceleration parameter.

3.3. SMHDE

To get deceleration parameter expression in SMHDE, we replace Ḣ in Equation (25) by
Equation (23) and achieve the following

q = −1− H−2
(

ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)(
2H(1− γ

− ω

6
ν2γ2)−

(
C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

))
− 2δπβH(1 +

δπ

H2

)β−1
)−1

. (28)

The plot of the expression for deceleration parameter versus redshift parameter −0.9 ≤ z ≤ 0.1
for SMHDE is given in Figure 3. Under the same above-mentioned values for constants along with
C = 1 and β = −800, the behavior of deceleration parameter is identical with those in THDE and
RHDE. It shows decelerated phase of the universe in the early epoch and eventually enters the era of
accelerated expansion of the universe.
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Figure 3. Deceleration parameter.

4. Eos Parameter

EoS parameter is mainly used for categorizing DE models, i.e., for non-relativistic matter we
have ωe f f < 0. Likewise, for quintessence, we must have −1 < ωe f f <

−1
3 . The cosmological model

is represented by ωe f f = −1 and the phantom barrier holds for ωe f f < −1. Similarly, ωe f f > −1
corresponds to quintom behavior. To achieve the EoS parameter, we use the following equation

ωe f f =
pe f f

ρe f f
. (29)

4.1. THDE

By substituting values from Equations (10) and (12) into Equation (29), we get the following
expression for square speed of sound.

ωe f f =

(
ρ0(1 + z)−(3ξ+γ−3) + BH4−2δ

)−1(3ξρ0(1 + z)−(3ξ+γ−3)

γ− 3
− BH4−2δ +

(
B

(4− 2δ)
H2−2δ

γ− 3

)
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

)
. (30)

Figure 4 gives the plot of EoS parameter ωe f f for THDE for redshift parameter −0.9 ≤ z ≤ −0.2
with all the constants bearing same values as mentioned above. Following the classification described
previously, we interpret the plot as below. The EoS parameter attains the value −1 from z = −0.9
to z = −0.7, showing that THDE is behaving as cosmological constant. Afterwards, it behaves as
quintessence as it takes values within the range −1 < ωe f f < −0.33 when redshift parameter is
in range −0.7 < z < −0.27. For z > −0.27, THDE shows quintom behavior.
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Figure 4. Eos parameter.

4.2. RHDE

To get an expression for EoS parameter in RHDE, we substitute values into Equation (29) from
Equations (16) and (18)

ωe f f =
−1

H(3− γ)

(
3ξHρ0(1 + z)−(3ξ+γ−3) + H(3− γ)FH4(H2 + δπ)−1 +

2
3

FH3

(H2 + δπ)−2(H2 + 2δπ)

(
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H −ων2γ2H3

)
(

2H
(
1− γ− ω

6
ν2γ2)− 2

3
FH3(H2 + δπ)−2(H2 + 2δπ)

)−1)(
FH2

(H2 + δπ)−1 + ρ0(1 + z)−(3ξ+γ−3)
)−1

. (31)

The plot of EoS parameter ωe f f for RHDE against redshift parameter −0.9 ≤ z ≤ −0.3 is given
by Figure 5. Here, all the constants have same values as mentioned above. Here, RHDE behaves
as cosmological constant as the EoS parameter attains the value −1 from z = −0.9 to z = −0.8.
Then, for redshift parameter z > −0.8, the curve lies in the range −1 < ωe f f < −0.33, showing
the quintessence behavior.

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

z

Ω
e
ff

RHDE

Figure 5. EoS parameter.
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4.3. SMHDE

To obtain the expression for EoS parameter in the case of SMHDE as given below we substitute
values from Equations (22) and (24) into Equation (29)

ωe f f =
1

H(3− γ)

(
− 3ξHρ0(1 + z)−(3ξ+γ−3) − 3C2H5(3− γ)

8πR

(
(1 +

δπ

H2 )
β − 1

)
− 3C2

8πR

(
4H3((1 + δπ

H2

)β − 1)− 2δπβH
(
1 +

δπ

H2

)β
)

)(
ρ0

3
(3ξ + γ− 3)H

(1 + z)−(3ξ+γ−3) − ων2γ3H3

3

)(
2H(1− γ− ων2γ2

6
)− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1(3C2H4

8πR

(
(1 +

δπ

H2 )
β − 1

)
+ ρ0(1 + z)−(3ξ+γ−3)

)−1

. (32)

The graph for EoS parameter in case of SMHDE is given in Figure 6. Here, we use same previously
described vales of constant for redshift parameter −0.35 ≤ z ≤ −0.26. For redshift parameter
−0.35 ≤ z ≤ −0.29, SMHDE acts as quintessence and after z = −0.29 it shows quintom-like behavior.

-0.34 -0.32 -0.30 -0.28 -0.26

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

z

Ω
e
ff

SMHDE

Figure 6. EoS parameter.

5. Square Speed Of Sound

For stability analysis of HDE models, we make use of the square speed of sound C2
s . We calculate

it as follows

C2
s =

∂pe f f

∂ρe f f
. (33)

Here, pe f f = pd + pm and ρe f f = ρd + ρm. For a HDE model to be stable, we must have C2
s > 0.

5.1. THDE

The expression for square speed of sound in THDE is as given below

C2
s =

(
3ξρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)

γ− 3
H +

B(4− 2δ)H2−2δ

3(γ− 3)((
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3) − 5H2ωγ3(1 + z)2γ

)
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ
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+
ρ0(3ξ + γ− 3)2(1 + z)−(3ξ+γ−3)H2

3
+

2ωγ4H4(1 + z)2γ

3

−
(

2
(
1− γ− ω

6
(1 + z)2γγ2)− B

3
(4− 2δ)(3− 2δ)H2−2δ

)
(

ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

)2)
(
2H
(
1− γ− ω

6
(1 + z)2γγ2)− B

3
(4− 2δ)(3− 2δ)H2−2δ

)−1

+

(
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

)2

B(4− 2δ)(2− 2δ)

γ− 3
H1−2δ − B(4− 2δ)H3−2δ

(ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

))
(

ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H + B(4− 2δ)H3−2δ

ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

)−1

. (34)

In Figure 7, we plot the expression for C2
s versus redshift parameter−0.7 ≤ z ≤ 0 with same values

of constants. The square speed of sound remains positive. This exhibits the stability of interacting
THDE model in fractal universe.

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

2

4

6

8

z

C
s2

THDE

Figure 7. Square speed of sound.

5.2. RHDE

For RHDE, the square speed of sound has the following expression

C2
s =

3ξρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H
γ− 3

− 2FH3(H2 + δπ)−2(H2 + 2δπ)

( ρ0
3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)
+

1
γ− 3

(
H−1

(
2H(1− γ− ω

6
ν2γ2)− 2

3
FH3(H2 + δπ)−2(H2 + 2δπ)

)−1



Symmetry 2019, 11, 1174 12 of 27

2FH3(H2 + δπ)−2(H2 + 2δπ)

(
ρ0

3
(3ξ + γ− 3)2H2(1 + z)−(3ξ+γ−3)

− 2ω

3
H4γ4ν2 + 2

( ρ0
3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)2

(
FH2(H2 + δπ)−2(H2 + 2δπ)− 4

3
FH4(H2 + δπ)−3(H2 + 2δπ)

+
2
3

FH4(H2 + δπ)−2 − (1− γ− ω

6
ν2γ2)

)

−
( ρ0

3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)
(

2
3

H2ωγ3ν2 − H2ωγ3ν2 − ρ0

3
(3ξ + γ− 3)2(1 + z)−(3ξ+γ−3)

))

+ 2F
( ρ0

3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2
H(1− γ− ω

6
ν2γ2)

− C2

4π
H3(H2 + δπ)−2(H2 + 2δπ)

)2(
3H2(H2 + δπ)−2(H2 + 2δπ)− 4H4

(H2 + δπ)−3(H2 + 2δπ) + 2H4(H2 + δπ)−2
)
− (H2 + δπ)−2(H2 + 2δπ)

2FH
( ρ0

3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)2)
. (35)

The square speed of sound for RHDE is given in Figure 8 against the redshift parameter. Here,
we take ξ = 2, α = 1 and the other constants are same as described above. It is evident from plot that
square speed of sound remains positive for −0.46 ≤ z ≤ −0.454. Hence, the RHDE model in fractal
universe is stable.

-0.460 -0.459 -0.458 -0.457 -0.456 -0.455 -0.454

0

2

4

6

8

10

12

z

C
s
2

RHDE

Figure 8. Square speed of sound.

5.3. SMHDE

The square speed of sound has the following expression in the case of SMHDE:

C2
s =

1
3− γ

(
− 3ξρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3) − H−1 3C2

8πR

(
12H2
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((
1 +

δπ

H2

)β − 1
)
− 10δπβ

(
1 +

δπ

H2

)β−1
+ 4δ2π2β(β− 1)

(
1 +

δπ

H2

)β−1

H−2
)((

ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)(
(1− γ− ω

6
ν2γ2)

2H − C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1)3

+
3C2

8πR

(
4H3

((
1 +

δπ

H2

)β − 1
)
− 2δβH

(
1 +

δπ

H2

)β−1
)(

2H(1− γ− ω

6
γ2ν2)

− C2

8πR

(
4H3

((
1 +

δπ

H2

)β − 1
)
− 2δβH

(
1 +

δπ

H2

)β−1
))−1(2

3
ωγ4ν2H4

+
1
3
(
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)

((
ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H

− H3 ων2γ3

3

)(
2H(1− γ− ω

6
ν2γ2)− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH

(1 +
δπ

H2

)β−1
)−1)

+ ρ0(3ξ + γ− 3)2H2(1 + z)−(3ξ+γ−3))− 2(1− γ− ω

6
γ2ν2)

− C2

8πR

(
ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)

− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1(

12H2
((

1 +
δπ

H2

)β − 1
)

− 10δπβ
(
1 +

δπ

H2

)β−1
+ 4δ2π2β(β− 1)

(
1 +

δπ

H2

)β−1H−2
)((

ρ0

3
(3ξ + γ− 3)

(1 + z)−(3ξ+γ−3)H − H3 ων2γ3

3

)(
2H(1− γ− ω

6
ν2γ2)− C2

8πR
(
4H3(1 +

δπ

H2 )
β

− 1
)
− 2δπβH(1 +

δπ

H2

)β−1
)−1)2

− 5
3

ωγ3ν2H2
(

ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H

− H3(
ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH

(1 +
δπ

H2

)β−1
)−1)

+ (H−2 − 3 + γ)
3C2

8πR

(
4H3

((
1 +

δπ

H2

)β − 1
)
− 2δβH

(
1 +

δπ

H2

)β−1
)(

ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)(
2H

(1− γ− ω

6
ν2γ2)− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1)

(
3C2

8πR

(
4H3

((
1 +

δπ

H2

)β − 1
)
− 2δβH

(
1 +

δπ

H2

)β−1
)(

ρ0

3
(3ξ + γ− 3)

(1 + z)−(3ξ+γ−3)H − H3(
ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)− C2

8πR
(
4H3

(1 +
δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1)−1

. (36)

Figure 9 contains the plot of the square speed of sound for SMHDE, with all values of constants as
mentioned above and ξ as in the previous plot with β = −800. Here, the trajectory shows the stability
of SMHDE model from z = −0.8 to z = −0.5.



Symmetry 2019, 11, 1174 14 of 27

-0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50

0

20

40

60

80

100

z

C
s2

SMHDE

Figure 9. Square speed of sound.

6. Statefinder Parameters

To obtain a diagnostic tool involving higher derivative of scale factor, Sahni et al. [51] introduced
the state finder pair {r, s}. It is a geometrical diagnostic being depending on scale factor. Mainly, it is
used to recognize DE models. Distinct evolutionary trajectories are shown in {r, s} plane by different
DE models. Trajectories in s-r plane relevant to different cosmological models show qualitatively
different behaviors. By using statefinder diagrams, we can explicitly diagnose the spatial curvature
contribution in different DE models. This statefinder parameter {r, s} in terms of Hubble parameter
can be defined as

r = 1 + 3
Ḣ
H2 +

Ḧ
H3 (37)

and

s = − 3HḢ + Ḧ
3H(2Ḣ + 3H2)

. (38)

6.1. THDE

By using Equation (11) in Equations (37) and (38), we get the following expressions for r and s:

r = 1 +
3

H2
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

+
1

H3

(((
ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3) − 5H2ωγ3(1 + z)2γ

3

)
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

+
ρ0

3
(3ξ + γ− 3)

(1 + z)−(3ξ+γ−3)H2 +
2ωγ4

3
(1 + z)2γ −

(
2
(
1− γ− ω

6
(1 + z)2γγ2 − B

3
(4− 2δ)

(3− 2δ)H2−2δ
))(ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

)2
)

(
2
(
1− γ− ω

6
(1 + z)2γγ2 − B

3
(4− 2δ)(3− 2δ)H2−2δ

)−1
)

, (39)

s =
1
3

(
3

H2
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ
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+
1

H3

(((
ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3) − 5H2ωγ3(1 + z)2γ

3

)
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

+
ρ0

3
(3ξ + γ− 3)

(1 + z)−(3ξ+γ−3)H2 +
2ωγ4

3
(1 + z)2γ −

(
2
(
1− γ− ω

6
(1 + z)2γγ2 − B

3
(4− 2δ)

(3− 2δ)H2−2δ
))(ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

)2
)

(
2
(
1− γ− ω

6
(1 + z)2γγ2 − B

3
(4− 2δ)(3− 2δ)H2−2δ

)−1
))(

− 1

− ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ

6H3(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H5−2δ

)−1

. (40)

Figure 10 shows variation of statefinder parameter s against r in the case of THDE. It is evident
from the plot that we have r = 1 for s = 0. This corresponds to the standard ΛCDM cosmological
model for accelerating universe.
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1

2

3

4

5

6

s

r

THDE

Figure 10. Statefinder parameter.

6.2. RHDE

In the case of RHDE, Equations (37) and (38) can be modified using Equation (17) to get
the following expressions:

r = 1 + 3H−2
( ρ0

3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)

+ H−3
(

2H(1− γ− ω

6
ν2γ2)− 2

3
FH3(H2 + δπ)−2(H2 + 2δπ)

)−1

(
ρ0

3
(3ξ + γ− 3)2H2(1 + z)−(3ξ+γ−3) − 2ω

3
H4γ4ν2

+ 2
( ρ0

3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)2

(
FH2(H2 + δπ)−2(H2 + 2δπ)− 4

3
FH4(H2 + δπ)−3(H2 + 2δπ)
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+
2
3

FH4(H2 + δπ)−2 − (1− γ− ω

6
ν2γ2)

)

−
( ρ0

3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)
(

2
3

H2ωγ3ν2 − H2ωγ3ν2 − ρ0

3
(3ξ + γ− 3)2(1 + z)−(3ξ+γ−3)

))
, (41)

s =
1
3

(
3H−2

( ρ0
3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)

+ H−3
(

2H(1− γ− ω

6
ν2γ2)− 2

3
FH3(H2 + δπ)−2(H2 + 2δπ)

)−1

(
ρ0

3
(3ξ + γ− 3)2H2(1 + z)−(3ξ+γ−3) − 2ω

3
H4γ4ν2

+ 2
( ρ0

3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)2

(
FH2(H2 + δπ)−2(H2 + 2δπ)− 4

3
FH4(H2 + δπ)−3(H2 + 2δπ)

+
2
3

FH4(H2 + δπ)−2 − (1− γ− ω

6
ν2γ2)

)

−
( ρ0

3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)
(

2
3

H2ωγ3ν2 − H2ωγ3ν2 − ρ0

3
(3ξ + γ− 3)2(1 + z)−(3ξ+γ−3)

)))
(
− 3

2
− ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3ν2

6H3(1− γ− ω
6 ν2γ2)− 2FH5

(
H2 + δπ

)−2(H2 + 2δπ
))−1

. (42)

Figure 11 gives plot of statefinder parameter s against r in the case of RHDE. It is clear from
the plot that we have r = 1 for s = 0. This corresponds to the standard ΛCDM cosmological model for
accelerating universe.
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Figure 11. Statefinder parameter.
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6.3. SMHDE

For SMHDE, we customize Equations (37) and (38) using Equation (23) to attain the
following expressions:

r = 1 + 3H−2
(

ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)(
2H(1− γ

− ω

6
ν2γ2)− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1

+ H−3
(

2H(1

− γ− ω

6
γ2ν2)− C2

8πR

(
4H3

((
1 +

δπ

H2

)β − 1
)
− 2δβH

(
1 +

δπ

H2

)β−1
))−1(2

3
ωγ4

ν2H4 +
1
3

(
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)

(
ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H

− H3(
ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH

(1 +
δπ

H2

)β−1
)−1

+ ρ0(3ξ + γ− 3)2H2(1 + z)−(3ξ+γ−3)
)
− 2(1− γ− ω

6
γ2ν2)

− C2

8πR

(
12H2

((
1 +

δπ

H2

)β − 1
)
− 10δπβ

(
1 +

δπ

H2

)β−1
+ 4δ2π2β(β− 1)

(
1 +

δπ

H2

)β−1

H−2
)((

ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2

γ2)− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1)2

− 5
3

ωγ3ν2H2
(

ρ0

3

(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(
ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)− C2

8πR(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1)

, (43)

s =
1
3

(
3H−2

(
ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)

− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1

+ H−3
(

2H(1− γ− ω

6
γ2ν2)

− C2

8πR

(
4H3

((
1 +

δπ

H2

)β − 1
)
− 2δβH

(
1 +

δπ

H2

)β−1
))−1(2

3
ωγ4ν2H4 +

1
3

(
ρ0(3ξ

+ γ− 3)(1 + z)−(3ξ+γ−3)
(

ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)
(

2H(1− γ− ω

6
ν2γ2)− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1

+ ρ0(3ξ + γ− 3)2H2(1 + z)−(3ξ+γ−3)
)
− 2(1− γ− ω

6
γ2ν2)− C2

8πR(
12H2

((
1 +

δπ

H2

)β − 1
)
− 10δπβ

(
1 +

δπ

H2

)β−1
+ 4δ2π2β(β− 1)

(
1 +

δπ

H2

)β−1

H−2
)((

ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)



Symmetry 2019, 11, 1174 18 of 27

− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1)2

− 5
3

ωγ3ν2H2
(

ρ0

3

(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(
ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)− C2

8πR(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1))(

− H−2
(

ρ0

3
(3ξ + γ− 3)

(1 + z)−(3ξ+γ−3)H − H3(
ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)−

(
C2

8πR
(
4H3

(1 +
δπ

H2 )
β − 1

))
− 2δπβH(1 +

δπ

H2

)β−1
)−1

− 3
2

)−1

. (44)

The variation of statefinder parameter s against r in the case of SMHDE is given in Figure 12.
This corresponds to the standard ΛCDM cosmological model for accelerating universe as it is clear
from the plot that we have r = 1 for s = 0.
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Figure 12. Statefinder parameter.

7. Om Parameter

Regarding observations, Om diagnostic appeared to be more simple as compared to {r, s}
statefinder. One among its salient features is its capability of discriminating dynamical DE models
from Λ-CDM without any information about matter density. For Λ-CDM, quintessence and phantom
models, Om has zero negative and positive curvatures, respectively.

Figure 13 gives the plot of Om-diagnostic for THDE versus redshift parameter z. Within the range
−0.9 ≤ z ≤ −0.1, the trajectory shows positive curvature. This leads to phantom behavior of THDE
model in the fractal universe. The plot of Om-diagnostic for RHDE against redshift parameter z is
given in Figure 14. For range −0.9 ≤ z ≤ −0.1, the plot represents positive curvature leading to
phantom behavior of the RHDE model in the fractal universe. Following the same pattern, SMHDE
also crosses the phantom line. It is evident in Figure 15, which shows positive curvature of trajectory.
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8. ωe f f - ´ωe f f Plane Analysis

The dynamical property of DE models can be analyzed by using ωe f f - ´ωe f f plane proposed by

Linder and Caldwell [52]. Here, ωe f f =
pe f f
ρe f f

is the EoS parameter and ´ωe f f is the evolution parameter
for EoS parameter. To get this evolution parameter, we differentiate EoS parameter ωe f f with respect
to lna. The ωe f f - ´ωe f f plane has been divided into two parts, namely “thawing” and “freezing”.
The conditions for thawing and freezing parts are ωe f f < 0, ´ωe f f > 0 and ωe f f < 0, ´ωe f f < 0,
respectively.

8.1. THDE

By differentiating ωe f f for THDE with respect to lna, we get the following expression for ´ωe f f in
the case of THDE:

´ωe f f = H−1(ρ0(1 + z)−(3ξ+γ−3) + BH4−2δ
)−2
((

ρ0(1 + z)−(3ξ+γ−3) + BH4−2δ
)

(
3ξρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H

γ− 3
− B(4− 2δ)H3−2δ

(
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ(γ2)

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

)
+

B
γ− 3

(4− 2δ)

(
H2−2δ

((
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)

3
− 5H2ωγ3ν2

3

)
(

ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ(γ2)

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

)
+

ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H2

3
+

(
B(4− 2δ)(3− 2δ)H2−2δ

3
− 2
(
1− γ

− ω

6
ν2γ2))(ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ(γ2)

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

)2)
(

2H
(
1− γ− ω

6
ν2γ2)− B

3
(4− 2δ)H3−2δ

)−1

+ (2− 2δ)H1−2δ

(
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ(γ2)

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

)2))
−

(
3ξρ0(1 + z)−(3ξ+γ−3)

γ− 3
− BH4−2δ +

B(4− 2δ)H2−2δ

γ− 3(
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ(γ2)

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

))
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H + B(4− 2δ)H3−2δ(

ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3(1 + z)2γ(γ2)

6H(1− γ− ω
6 (1 + z)2γγ2)− B(4− 2δ)H3−2δ

))
. (45)

In the case of THDE, the plot for ωe f f - ´ωe f f is given by Figure 16. We use the same values of
constant as described above. It is quite clear from the plot that the Eos parameter ωe f f < 0 and
the evolutionary parameter ´ωe f f < 0 as well. This shows THDE represents the freezing region.
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Figure 16. Plot of EoS parameter ωe f f = X and its evolution parameter ´ωe f f = G.

8.2. RHDE

The expression for ´ωe f f in the case of RHDE takes the following form:

´ωe f f = H−1(ρ0(1 + z)−(3ξ+γ−3) + FH2(H2 + δπ)−1)−2
((

ρ0(1 + z)−(3ξ+γ−3)

+ FH2(H2 + δπ)−1)(3ξρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H
(γ− 3)

+
H−1

(γ− 3)
2FH3

(H2 + δπ)−2(H2 + 2δπ)

(
2H(1− γ− ω

6
ν2γ2)− 2

3
FH3(H2 + δπ)−2

(H2 + 2δπ)

)−1(
ρ0

3
(3ξ + γ− 3)2H2(1 + z)−(3ξ+γ−3) − 2ω

3
H4γ4ν2

+ 2
( ρ0

3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)2

(
FH2(H2 + δπ)−2(H2 + 2δπ)− 4

3
FH4(H2 + δπ)−3

(H2 + 2δπ) +
2
3

FH4(H2 + δπ)−2 − (1− γ− ω

6
ν2γ2)

)

−
( ρ0

3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)
(

2
3

H2ωγ3ν2 − H2ωγ3ν2 − ρ0

3
(3ξ + γ− 3)2(1 + z)−(3ξ+γ−3)

))

+ 2F
( ρ0

3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2
H(1− γ− ω

6
ν2γ2)

− C2

4π
H3(H2 + δπ)−2(H2 + 2δπ)

)2(
3H2(H2 + δπ)−2(H2 + 2δπ)

− 4H4(H2 + δπ)−3(H2 + 2δπ) + 2H4(H2 + δπ)−2
)
− 2FH3(H2 + δπ)−2

(H2 + 2δπ)

( ρ0
3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)

)2
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(
1

H2(γ− 3)

ρ0
3 (3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(ων2γ3

3 )

2H(1− γ− ω
6 ν2γ2)− C2

4π H3(H2 + δπ)−2(H2 + 2δπ)
+ 1
))

+
1

H(γ− 3)

(
3ξHρ0(1 + z)−(3ξ+γ−3) + H(3− γ)FH4(H2 + δπ)−1

+
2
3

FH3(H2 + δπ)−2(H2 + 2δπ)

(
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H

− H3ωγ3ν2
)(

2H(1− γ− ω

6
ν2γ2)− 2

3
FH3(H2 + δπ)−2(H2 + 2δπ)

)−1)
(

ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3ωγ3ν2
)(

2H(1− γ− ω

6
ν2γ2)

− 2
3

FH3(H2 + δπ)−2(H2 + 2δπ)

)−1)
. (46)

The plot for ωe f f - ´ωe f f in the case of RHDE is given by Figure 17. Clearly, it is representing
freezing region, being Eos parameter ωe f f < 0 and the evolutionary parameter ´ωe f f < 0.
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Figure 17. Plot of EoS parameter ωe f f = X and its evolution parameter ´ωe f f = G.

8.3. SMHDE

For SMHDE, we get ´ωe f f as given below:

´ωe f f = H−1
(

3C2H4

8πR

(
(1 +

δπ

H2 )
β − 1

)
+ ρ0(1 + z)−(3ξ+γ−3)

)−2(3C2H4

8πR

(
(1 +

δπ

H2 )
β − 1

)
+ ρ0(1 + z)−(3ξ+γ−3)

(
1

3− γ

(
− 3ξρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3) − H−1 3C2

8πR

(
12H2

((
1 +

δπ

H2

)β − 1
)
− 10δπβ

(
1 +

δπ

H2

)β−1
+ 4δ2π2β(β− 1)

(
1 +

δπ

H2

)β−1

H−2
)((

ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)(
(1− γ− ω

6
ν2γ2)

2H − C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1)3

+
3C2

8πR

(
4H3

((
1 +

δπ

H2

)β − 1
)
− 2δβH

(
1 +

δπ

H2

)β−1
)(

2H(1− γ− ω

6
γ2ν2)
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− C2

8πR

(
4H3

((
1 +

δπ

H2

)β − 1
)
− 2δβH

(
1 +

δπ

H2

)β−1
))−1(2

3
ωγ4ν2H4

+
1
3
(
ρ0(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)

((
ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H

− H3 ων2γ3

3

)(
2H(1− γ− ω

6
ν2γ2)− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH

(1 +
δπ

H2

)β−1
)−1)

+ ρ0(3ξ + γ− 3)2H2(1 + z)−(3ξ+γ−3))− 2(1− γ− ω

6
γ2ν2)

− C2

8πR

(
ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)

− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1(

12H2
((

1 +
δπ

H2

)β − 1
)

− 10δπβ
(
1 +

δπ

H2

)β−1
+ 4δ2π2β(β− 1)

(
1 +

δπ

H2

)β−1H−2
)((

ρ0

3
(3ξ + γ− 3)

(1 + z)−(3ξ+γ−3)H − H3 ων2γ3

3

)(
2H(1− γ− ω

6
ν2γ2)− C2

8πR
(
4H3(1 +

δπ

H2 )
β

− 1
)
− 2δπβH(1 +

δπ

H2

)β−1
)−1)2

− 5
3

ωγ3ν2H2
(

ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H

− H3(
ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH

(1 +
δπ

H2

)β−1
)−1)

+ (H−2 − 3 + γ)
3C2

8πR

(
4H3

((
1 +

δπ

H2

)β − 1
)
− 2δβH

(
1 +

δπ

H2

)β−1
)(

ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)(
2H

(1− γ− ω

6
ν2γ2)− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1))

− 1
H(3− γ)

(
− 3ξHρ0(1 + z)−(3ξ+γ−3) − 3C2H5(3− γ)

8πR

(
(1 +

δπ

H2 )
β − 1

)
− 3C2

8πR

(
4H3((1 + δπ

H2

)β − 1)− 2δπβH
(
1 +

δπ

H2

)β
)

)(
ρ0

3
(3ξ + γ− 3)

(1 + z)−(3ξ+γ−3)H − H3(
ων2γ3

3
)

)(
2H(1− γ− ω

6
ν2γ2)−

( C2

8πR(
4H3(1 +

δπ

H2 )
β − 1

))
− 2δπβH(1 +

δπ

H2

)β−1
)−1 3C2

8πR

(
4H3

((
1 +

δπ

H2

)β − 1
)

− 2δβH
(
1 +

δπ

H2

)β−1
)(

ρ0

3
(3ξ + γ− 3)(1 + z)−(3ξ+γ−3)H − H3(

ων2γ3

3
)

)(
2H

(1− γ− ω

6
ν2γ2)− C2

8πR
(
4H3(1 +

δπ

H2 )
β − 1

)
− 2δπβH(1 +

δπ

H2

)β−1
)−1)

. (47)

In the case of SMHDE, the plot for ωe f f - ´ωe f f is given by Figure 18. Clearly, it is representing
thawing region, being the EoS parameter ωe f f < 0 and the evolutionary parameter ´ωe f f > 0.
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Figure 18. Plot of EoS parameter ωe f f = X and its evolution parameter ´ωe f f = G.

9. Conclusions

In this paper, we have considered the flat FRW universe in fractal spacetime. We have investigated
some cosmological implications such as EoS parameter, deceleration parameter, Om parameter,
State-finder parameter and ωe f f - ´ωe f f plane. For this purpose we have taken three DE models, namely
Tsallis DE, Renyi DE and Sharma mittal DE. We have selected an appropriate interacting situation
for HDE and DM to avoid coincidence. We have derived the expressions for all above-mentioned
cosmological parameters in terms of red shift parameter z. We have fixed the constants as ξ = −2,
ρ = 1, δ = 1, B = 1, γ = 2 and α = 1 generally. For some cases of RHDE and SMHDE, we have taken
ξ = −2 and β = −800. The deceleration parameter q describes the evolution of the universe. The three
cosmological models, i.e., THDE, RHDE and SMHDE, of the evolving universe transit from early
decelerating phase (q > 0) to current accelerating phase (q < 0). On the basis of the EoS parameter ωe f f ,
we can say THDE exhibit quintom-like nature as it shows transition of the universe from Cosmological
constant towards quintessence. RHDE shows conversion of the universe from Cosmological constant
towards quintessence. SMHDE shows quintom-like behavior. For the stability analysis of THDE,
RHDE and SMHDE, we investigate the graphical behavior of square speed of sound. All three
interacting HDE models under consideration in fractal universe are stable. From ωe f f − ´ωe f f plane,
we can say that THDE and RHDE represent the freezing region and reinforce the accelerated expansion
of the universe, whereas the third model, SMHDE, represents the thawing region. In the same manner,
we have {r, s} = {1, 0} representing standard ΛCDM cosmological model of the accelerating universe
for THDE, RHDE and SMHDE. The plots for Om diagnostic of THDE, RHDE and SMHDE are almost
identical. The plot shows positive curvature leading to phantom behavior of selected HDE models.
It is noted that the constraints on effective EoS are also compatible with recent results [53].

Finally, it is observed that EoS parameter of all DE models lies within the following constraints at
the present epoch (Table 1).
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Table 1. Summary of the observational data on ωDE.

ωe f f Observational Schemes Refrences

−1.13+0.24
−0.25 Planck+WP+BAO [54]

−1.09± 0.17 Planck+WP+Union 2.1 [54]

−1.13+0.13
−0.14 Planck+WP+SNLS [54]

−1.24+0.18
−0.19 WMAP+eCMB+BAO+H0+SNe Ia [54]

−1.073+0.090
−0.089 WMAP+eCMB+BAO+H0 [55]

−1.084± 0.063 WMAP+eCMB+BAO+H0+SNe [55]
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