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Abstract: The weighted surplus division value is defined in this paper, which allocates to each player
his individual worth and then divides the surplus payoff with respect to the weight coefficients.
This value can be characterized from three different angles. First, it can be obtained analogously to
the scenario of getting the procedural value whereby the surplus is distributed among all players
instead of among the predecessors. Second, endowing the exogenous weight to the surplus brings
about the asymmetry of the distribution. We define the disweighted variance of complaints to remove
the effect of the weight and prove the weighted surplus division value is the unique solution of an
optimization model. Lastly, the paper offers axiomatic characterizations of the weighted surplus
division value through proposing new properties, including the ω-symmetry for zero-normalized
game and individual equity.

Keywords: cooperative games; weighted surplus division value; procedural interpretation;
optimization implementation; axiomatization

1. Introduction

Cooperative game theory offers an effective model of cooperation between rational persons [1].
It is widely used in economics, wireless networks, political science, and so on. The critical issue of
cooperative games is how to distribute social worth among all players. Various solutions in cooperative
games embody different criteria. Egalitarianism and utilitarianism are two key concepts related to
distribution preference in games. Generally, egalitarianism aims at making sure players get equal
treatment, while utilitarianism reflects distributing the payoff based on the players’ contribution and
ability [2,3].

The Shapley value [4] allocates the payoff based on players’ productivity and gives everyone
his expected marginal contribution, presuming that all permutations of players’ entrances be equal
possible. In the process, each new entrant does not share his marginal contribution with others, which
embodies utilitarianism. The equal division value (ED value) shares the worth equally among all
players no matter how much their contributions are, which reflects egalitarianism. The equal surplus
division value (ES value, [5]) gives everyone his individual worth at first and then divides the surplus
evenly among all players. The equal allocation of non-separable costs value (EANS value, [6]) is also
egalitarian in some sense because it first assigns to every player his grand marginal contribution
and average the remainder to everyone. Balancing the relationship between utilitarianism and
egalitarianism is a main issue of allocation problems.

Malawski [7] puts forward a family of procedural values, which are determined by a procedure
of dividing marginal contributions among players’ predecessors. Players share their marginal
contributions with their predecessors in the permutation, which is exactly a way to balance
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utilitarianism and egalitarianism. The convex combinations of solutions also efficiently reconcile
these two major economic allocation thoughts. Wang et al. [8] designs a process to achieve the convex
values of the Shapley value and the ED value. van den Brink et al. [9] discuss all convex combinations
of the ED value, the ES value and the EANS value.

Another method for balancing the relationship between utilitarianism and egalitarianism is
endowing weights to a value. The weighted division values treat every participant differently to
embody exogenous characteristics. Béal et al. [10] characterize the weighted ED values and Shapley
exhibits a family of weighted Shapley values [11]. Kalai and Samet [12] extend the “weights” to
“weight system” and enable a weight of zero for some players.

In this paper, we follow Shapley’s work and consider the positive weights to defining the weighted
surplus division value, which presents a new distribution rule for the marginal contributions.
The philosophical idea of the weighted surplus division value is similar but different to the procedural
values. The former studies how the marginal contributions are shared by every player, while the latter
discusses how the marginal contributions are divided among the predecessors. Through designing the
process of obtaining an extended procedural value, we determine that this extended procedural value
coincides with the weighted surplus division value. Therefore, we endow a reasonable procedural
interpretation to the weighted surplus division value.

Optimality theory is proposed to allocations for the first time by Ruiz et al. [13]. The least square
value is put forward as the unique value that minimizes the variance of the total complaints for
coalitions. Wang et al. [14] recommend the ideal values by minimizing the variance of all players
between the payoff and the individual expected reward. Taking into account the disweighted
variance between the payoff and individual worth, this paper proves the unique optimum solution of
an optimization model is exactly the weighted surplus division value.

Furthermore, we characterize the weighted surplus division value by some new properties.
The first axiomatization concerns an axiom called the ω-symmetry for zero-normalized game,
which implies that the disweighted payoffs of two different players are symmetric in a zero-normalized
game. Then, we replace the inessential game property with individual rationality to describe
the weighted surplus division value. Individual equity implies the inessential game property,
so we obtain an obvious corollary. Finally, the covariance is introduced to axiomatize the weighted
surplus division value.

The organization of the article is as follows. The primary notions of cooperative games are briefly
presented in Section 2. Section 3 proposes the definition of the weighted surplus division value and
designs a procedure to achieve this value. Section 4 provides the optimization implementation for
the weighted surplus division value. Section 5 axiomatically characterizes the weighted surplus
division value using several newly defined properties from the cooperative viewpoint and gives
an example to validate the new defined value. We summarize the paper and exhibit further interesting
aspect of the weighted surplus division value in Section 6.

2. Preliminaries

A cooperative game on a finite participant set N is an ordered pair < N, v >, where characteristic
function v : 2N → R assigns to each coalition S ∈ 2N \ {∅} the worth v(S), satisfying v(∅) = 0,
in short denoted as a game v. For each coalition S, v(S) represents the reward that coalition S can be
guaranteed by just itself without collaboration of others. The cardinality of a set S is represented by s.
GN denotes the linear space of all games with player set N.

For any games v, w ∈ GN and a ∈ R, the games v + w and a · v are given by (v + w)(S) =

v(S) + w(S) and (a · v)(S) = a · v(S) for all S ⊆ N. A game v ∈ GN is zero-normalized, if v({i}) = 0
for all i ∈ N. A game v ∈ GN is weakly essential, if it satisfies ∑i∈N v({i}) ≤ v(N). A game v ∈ GN is
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inessential, if v(S) = ∑i∈S v({i}) holds, for each S ⊆ N. For any ∅ 6= T ⊆ N, the unanimity game uT
and standard game bT are respectively defined as

uT(S) =

{
1, S ⊇ T,
0, otherwise.

and bT(S) =

{
1, S = T,
0, otherwise.

Any game v ∈ GN can be represented employing unanimity games: v = ∑T⊆N,T 6=∅4v(T)uT ,
where 4v(T) = ∑S⊆T(−1)t−sv(S), which means the games {uT}T⊆N,T 6=∅ make up a basis of GN .
Similarly, v can be expressed by standard games: v = ∑T⊆N,T 6=∅ v(T)bT , which implies {bT}T⊆N,T 6=∅
also constitute a basis of GN .

Any vector x ∈ RN is called a payoff vector (or payoff), and x(S) = ∑i∈S xi for any coalition S.
A payoff x is efficient or a pre-imputation if x(N) = v(N). We denote the pre-imputation set of a game
v with I∗(v) = {x ∈ RN : x(N) = v(N)}. Formally, a value on GN is a function φ that gives each game
v ∈ GN a payoff, φ(v) = (φi(v))i∈N ∈ RN . The coordinate φi(v) gives an evaluation of i’s gains when
participating in the game v.

The equal surplus division value (ES value) [5] allocates the surplus evenly after gives every
player his individual worth.

ESi(v) = v({i}) + 1
n
[
v(N)− ∑

j∈N
v({j})

]
, for all i ∈ N.

The equal division value (ED value) averages the worth of the grand coalition to all players,

EDi(v) =
v(N)

n
, for all i ∈ N.

Given any α ∈ [0, 1], the α-ES value is defined as the convex of the ED value and the ES
value [9], i.e.,

ESα
i (v) = αv({i}) + 1

n
[
v(N)− ∑

j∈N
αv({j})

]
, for all i ∈ N.

First, each player gets a fraction α of his own worth, then all players divides up the surplus
equally. Xu et al. [15] present several axiomatizations and a bidding mechanism interpretation for
the α-ES value.

Let φ : GN → RN be a value. Some well-known properties of φ are listed.

• Efficiency: For any game v ∈ GN , ∑i∈N φi(v) = v(N).
• Symmetry: For any game v ∈ GN , if players i, j ∈ N are symmetric, then φi(v) = φj(v).
• Individual rationality: For any weakly essential game v ∈ GN , φi(v) ≥ v({i}), for all i ∈ N.
• Additivity: For any games v, w ∈ GN , φ(v + w) = φ(v) + φ(w).
• Linearity: For any games v, w ∈ GN and p, q ∈ R, φ(pv + qw) = pφ(v) + qφ(w).
• Inessential game property: For any inessential game v ∈ GN , φi(v) = v({i}) for all i ∈ N.

3. The Weighted Surplus Division Value and Its Procedural Interpretation

Procedural values [7] are obtained through a procedure that stipulating how to distribute
the marginal contributions of coalitions formed by players joining randomly. If a player wants to enter
a coalition already formed, he must take out part of his marginal contribution as an “admission fee”
to his predecessors. As a new viewpoint, a player who hopes to enter a coalition would like to
share his extra contribution with all players rather than only with his predecessors after getting his
guaranteed return. Based on this view, we can define a new value employing the weight and give it
a procedural explain.

Let4n := {ω ∈ RN
++|∑i∈N ωi = 1} be the positive exogenous given weight system to all players.
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Definition 1. Given a game v ∈ GN and weight vector ω ∈ 4n, the weighted surplus division value is
defined as

SDω
i (v) = v({i}) + ωi

[
v(N)− ∑

j∈N
v({j})

]
, for i ∈ N. (1)

This value is a new generalization of the ES value, associates every player i ∈ N with a positive
real number ωi. Please note that each weight coefficient ωi is exogenously given, which means it is
independent to the game v under consideration. The weight of every player can be explained as a
measure of his negotiating ability or player’s probability of forming coalitions with other players.

Given a game v ∈ GN , let Π(N) be the set including all permutations on N. Given a permutation
π ∈ Π(N), denote Pπ

i := {π(k) ∈ N|k ≤ π−1(i)} as player i’s predecessors (containing player i).
In the following, we design a procedure in terms of a weight system ω ∈ 4n to obtain the weighted
surplus division value.

PROCEDURE 1

Step 1 Each player goes into a permutation π randomly and all orders in Π(N) have
the same probability.

Step 2 Every arriving player, i ∈ N, joins the coalition of his predecessors to form a new coalition Pπ
i

and brings his marginal contribution v(Pπ
i )− v(Pπ

i \{i}) to the coalition of his predecessors.
Step 3 The arriving player i ∈ N claims his individual worth v({i}) and the surplus (or deficit),

v(Pπ
i )− v(Pπ

i \{i})− v({i}), is shared (or afforded) by all players according to the weight
system ω.

Step 4 A player’s value is the expected payoff of his part of v(N) (over all orders of arrival).

In PROCEDURE 1, given an order, players go into the game one after another. Each newcomer
asks for his individual worth and the remaining marginal contributions are put into a common pool.
Afterwards, the worth in the common pool is divided according to the exogenous weight ωi, i ∈ N
among all players. Lastly, compute the expected payoff over all permutations.

Theorem 1. For any game v ∈ GN and weight vector ω ∈ 4n, the expected value in PROCEDURE 1
coincides with the weighted surplus division value SDω(v).

Proof. In light of PROCEDURE 1, for any game v ∈ GN and any order π in Π(N), given the weight
vector ω ∈ 4n, player i’s payoff ϕω

i,π(v) is determined as

ϕω
i,π(v) = v({i}) + ωi

n

∑
k=1

[v(Pπ
π(k))− v(Pπ

π(k)\π(k))− v(π(k))]. (2)

The value ϕω(v) defined in the above procedure, i.e., the expected payoff is

ϕω
i (v) =

1
n! ∑

π∈Π(N)

ϕω
i,π(v), for i ∈ N. (3)

Computing Equation (2), we can get

ϕω
i,π(v) = v({i}) + ωi

[
v(N)−

n

∑
k=1

v(π(k))
]
.

Please note that the payoff ϕω
i,π(v) is independent to the permutation π, hence

ϕω
i (v) =

1
n! ∑

π∈Π(N)

ϕω
i,π(v) = v({i}) + ωi

[
v(N)− ∑

j∈N
v({j})

]
= SDω

i (v).
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Observing the definition of the weighted surplus division value, the following conclusion can
be deduced.

Remark 1. For any game v ∈ GN , if we perform the procedure by assuming that every player has the same
weight, i.e., ωi =

1
n , the expected value will coincide with the ES value.

Remark 2. For any game v ∈ GN and 0 ≤ α ≤ 1, if in Step 2, the player i ∈ N entering the coalition wants to
take αv({i}), and assuming that every player has the same weight, i.e., ωi =

1
n , the expected value will coincide

with the α-ES value.

4. Optimization Implementation

The least square value [13] is testified to be the only pre-imputation that minimizes the variance
of the excess of coalitions by optimality theory. This section focuses on studying the optimization
implementation of the weighted surplus division value.

In cooperative games, every participant is reluctant to accept the payoff that is lower than his
individual worth. Therefore, given any payoff x ∈ I∗(v), the excess of player i ∈ N at the payoff,
which is expressed as e(i, x) = v({i})− xi, is an effective measure of i’s complaint. The larger e(i, x) is,
the more dissatisfied i would feel.

In general, the sum of all the excesses is constant. It is impossible to decreasing everyone’s excess
altogether. To look for an allocation in which all the dissatisfactions are relatively balanced, the least
Euclidean distance function can be used to minimize the variance of the excesses of every player
according to the egalitarian philosophy.

Furthermore, in the definition of the weighted surplus division value, every player has a different
level of importance, so we need to take the weight coefficients ωi, i ∈ N into account when evaluating
the variance of excesses of every player. If a player’s weight coefficient is relatively larger, then his
ability or significance is greater, correspondingly his allowed variance of complaints should be bigger
than that of the others. We construct the following problem to equilibrate the complaints of all players.
For any game v ∈ GN and weight vector ω ∈ 4n,

Problem X : min
x∈RN

∑
i∈N

1
ωi

[v({i})− xi]
2

s.t. ∑
i∈N

xi = v(N). (4)

Theorem 2. For any game v ∈ GN and weight vector ω ∈ 4n, the optimal solution of Problem X uniquely
exists and coincides with the weighted surplus division value, i.e.,

x∗i = v({i}) + ωi
[
v(N)− ∑

j∈N
v({j})

]
= SDω

i (v), for all i ∈ N. (5)

Proof. This problem’s optimal solution is unique if it exists because this is a convex optimization
model. We just need to verify its Lagrange conditions. The Lagrange function of this problem is

L(x, λ) = ∑
i∈N

1
ωi

[v({i})− xi]
2 + λ[∑

i∈N
xi − v(N)].

Then, compute the partial derivative of L(x, λ) with respect to xi, i ∈ N, the Lagrange conditions
are obtained as following

Lxi (x, λ) = − 2
ωi

[v({i})− xi] + λ = 0.
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Obviously, the partial derivative with respect to λ actually states the efficiency constraint

Lλ(x, λ) = ∑
i∈N

xi − v(N) = 0.

Through solving this linear problem, we find that the optimal solution is SDω(v) given by (5).

Ignoring the weight coefficient, we naturally deduce the following corollaries from the proof of
Theorem 2. Given any game v ∈ GN ,

Problem X′ : min
x∈RN

∑
i∈N

[v({i})− xi]
2

s.t. ∑
i∈N

xi = v(N).

Corollary 1. For any game v ∈ GN , the optimal solution of Problem X′ is uniquely exists and coincides with
the ES value,

x∗i = v({i}) + 1
n
[
v(N)− ∑

j∈N
v({j})

]
= ESi(v), for all i ∈ N.

Similarly, for any game v ∈ GN and α ∈ [0, 1],

Problem X′′ : min
x∈RN

∑
i∈N

[αv({i})− xi]
2

s.t. ∑
i∈N

xi = v(N).

Corollary 2. For any game v ∈ GN , the optimal solution of Problem X′′ is uniquely exists and coincides with
the α-ES value, i.e.,

x∗i = αv({i}) + 1
n
[
v(N)− ∑

j∈N
αv({j})

]
= ESα

i (v), for all i ∈ N.

The definition of the weighted surplus value creatively incorporates the weight into consideration.
As a result, the excess (or complaint) of every player may be imbalanced. We offer a new complaint
related with the weight as below.

For any game v ∈ GN , weight vector ω ∈ 4n and a payoff x ∈ I∗(v), define the disweighted
complaint of i ∈ N as

eω(i, x) =
1

ωi
[v({i})− xi].

• Equal disweighted complaint property: For any game v ∈ GN and weight vector ω ∈ 4n,
the value φ : GN → RN verifies that

eω(i, φ) = eω(j, φ), for i, j ∈ N.

According to Definition 1, it is explicit that

Theorem 3. For any game v ∈ GN and weight vector ω ∈ 4n, the weighted surplus division value is
the unique efficient value that possesses the equal disweighted complaint property.

5. Axiomatizations

Axiomatization is a normal tool to depict the reasonability of solutions in cooperative games.
The α-ES value is characterized with a series of α-version of the classical properties [15]. In this section,
we will offer a new property concerning the weight to describe the weighted surplus division value.
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Symmetry says that the players, whose marginal contributions are equal, should get the same
payoff. This axiom is used to characterize the ES value by van den Brink and Funaki [9]. However,
asymmetry arises when the weight coefficient is given to the participant. If players still wish to get
equitable treatment when removing the impact of the weights, we consider the following property,

• ω-symmetry for zero-normalized game: For any zero-normalized game v ∈ GN and weight vector
ω ∈ 4n, the value φ : GN → RN verifies that

φi(v)
ωi

=
φj(v)

ωj
, for any i, j ∈ N.

The ω-symmetry for zero-normalized game says that discarding the effects of the weights,
the players will get the same in the zero-normalized games. It is trivial that the weighted surplus
division value verifies this axiom. Moreover, the weighted surplus division value can be axiomatized
by this property as follows.

Theorem 4. Given any weight vector ω ∈ 4n, the weighted surplus division value is the unique value that
possesses efficiency, additivity, the inessential game property and the ω-symmetry for zero-normalized game.

Proof. Given any weight vector ω ∈ 4n. It is straightforward that the weighted surplus division
value satisfies the axioms listed in the theorem.
The proof of the uniqueness. Let φ : GN → RN be a solution satisfies the above properties. For any game
v ∈ GN , define

v0(S) := v(S)−∑
j∈S

v({j}), S ⊆ N.

For i ∈ N, v0({i}) = 0, so v0 is a zero-normalized game. Because of the ω-symmetry for
zero-normalized game, we get

φi(v0)

ωi
=

φj(v0)

ωj
, for any i, j ∈ N.

Combined with the efficiency, we can obtain

φi(v0) = ωiv0(N) = ωi[v(N)− ∑
j∈N

v({j})].

Let v∗ := v− v0, then v∗ is an inessential game. We conclude from the inessential game axioms
that φi(v∗) = v∗({i}) = v({i}).

Because v = v∗ + v0, involved with additivity we have

φi(v) = φi(v∗) + φi(v0)

= v({i}) + ωi[v(N)− ∑
j∈N

v({j})]

= SDω
i (v).

Remark 3. According to the above proof, linearity can be used to replace additivity in the Theorem 4.

Individual rationality recommends that a player gets at least his individual worth in weakly
essential games. We can substitute the inessential game property in Theorem 4 with this axiom.
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Corollary 3. Given any weight vector ω ∈ 4n, the weighted surplus division value is the unique value that
possesses efficiency, linearity, the individual rationality and the ω-symmetry for zero-normalized game.

Proof. Given any weight vector ω ∈ 4n, we can easily check the weighted surplus division value
satisfies efficiency, linearity, the individual rationality and the ω-symmetry for zero-normalized game.
The proof of uniqueness. Let φ : GN → RN be a solution possesses these four axioms.

(i) For any unanimity game uT , T ⊆ N and t = 1, it follows that ∑j∈N uT({j}) ≤ uT(N).
According to the individual rationality,{

i /∈ T, φi(uT) ≥ uT({i}) = 0,
i ∈ T, φi(uT) ≥ uT({i}) = 1.

With efficiency, we obtain that

φi(N, uT) =

{
1, i ∈ T,
0, i /∈ T.

(ii) Given a standard game bT , T ⊆ N and 1 < t < n, it holds that ∑j∈N bT({j}) ≤ bT(N).
According to the individual rationality, for any i ∈ N, φi(bT) ≥ bT({i}) = 0. With efficiency,
φi(bT) = 0, i ∈ N.

(iii) For T = N, the standard game bN is a zero-normalized game. According to the ω-symmetry

for zero-normalized game, we have, for any i, j ∈ N, φi(bN)
ωi

=
φj(bN)

ωj
. With efficiency, φi(bN) =

ωi, i ∈ N.

The unanimity games {uT}T⊆N,t=1 and standard games {bT}T⊆N,t≥2 make up a basis of GN .
Together with linearity for φ, we have proved φ(v) is unique for v ∈ GN .

Remark 4. If a value satisfies efficiency and individual rationality, it also satisfies the inessential game property.
Therefore, Corollary 3 can be deduced from Theorem 4. Here we exhibit a new method to prove the above
Corollary.

• Individual equity: For any game v ∈ GN , if ∑j∈N v({j}) = v(N), then φi(v) = v({i}),
for all i ∈ N.

The individual equity demands that a player merely gets his individual worth if the sum of
all players’ individual worth equals to v(N), which means the cooperation cannot bring any extra
worth. Evidently, the individual equity implies the inessential game property. Therefore, it upholds
the following Corollary.

Corollary 4. Given any weight vector ω ∈ 4n, the weighted surplus division value is the unique value that
possesses efficiency, linearity, the individual equity and ω-symmetry for zero-normalized game.

In contrast to additivity and linearity, covariance describes that the value can keep the same affine
transformation with the game.

• Covariance: For any game v ∈ GN , p ∈ R and q ∈ RN , φi(pv + q) = pφi(v) + qi, for i ∈ N, where
(pv + q)(S) = pv(S) + ∑j∈S qj, S ⊆ N.

Corollary 5. Given any weight vector ω ∈ 4n, the weighted surplus division value is the unique value that
possesses efficiency, linearity, covariance and ω-symmetry for zero-normalized game.
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Proof. Given any weight vector ω ∈ 4n. It is trivial that the weighted surplus division value satisfies
efficiency, linearity, covariance and the ω-symmetry for zero-normalized game. The uniqueness will
be proved in the following paragraphs.

Let φ : GN → RN be a solution satisfies the above axioms.

(i) For any unanimity game u{k}, k ∈ N, let

u0(S) := u{k}(S)−∑
j∈S

u{k}({j}), S ⊆ N.

For i ∈ N, u0({i}) = 0, so u0 is a zero-normalized game. Because of the ω-symmetry for
zero-normalized game,

φi(u0)

ωi
=

φj(u0)

ωj
, for any i, j ∈ N.

Combined with the efficiency, we can obtain

φi(u0) = ωiu0(N) = 0, for i ∈ N.

Because u{k}(S) = u0(S) + ∑j∈S u{k}({j}), S ⊆ N, with covariance, it holds that

φi(u{k}) = φi(u0) + u{k}({i}) = u{k}({i}), for i ∈ N.

(ii) Given any standard game bT , T ⊆ N and t ≥ 2, they are all zero-normalized games. According

to the ω-symmetry for zero-normalized game, we have, for any i, j ∈ N, φi(bT)
ωi

=
φj(bT)

ωj
.

With efficiency, φi(bT) = ωibT(N), i ∈ N.

The unanimity games {uT}T⊆N,t=1 and standard games {bT}T⊆N,t≥2 constitute a basis of GN .
Combining with linearity for φ, we conclude that φ(v) is unique for v ∈ GN .

Example 1. Three persons set up a new company with certain amount of money. They create alliance profits
through collaboration of their funds and labor. Deduction of funds for company expansion, how the overall payoff
be divided among all participants?

This situation can be condensed into a cooperative game. The player set is N = {1, 2, 3}.
The overall payoff can be written as v(N). Each person first receives his salary according to their labor
contribution, denoted by v({i}), (i = 1, 2, 3).

(i) If we divide the surplus division value v(N)− ∑i∈N v({i}) equally, then the payoff coincides
with the equal surplus division value ES(v).

(ii) If we allocate the surplus part according to a weight wi, (i = 1, 2, 3), the payoff coincides with
the weighted surplus division value SDω(v). Naturally, the weight can be set to be the proportion
of their investment.

The SDω(v) is more feasible than ED(v) and the ES(v) in this economic example. In the wireless
network, this value can be applied to distribute joint payoff through the cooperation of each node and
the weight can be adjust flexible according to the performance of the node periodically.

6. Conclusions

This article defines a new value called the weighted surplus division value in cooperative games.
This value considers the exogenous weights when distributing the surplus portion after every player
takes his individual worth. Through modifying the classical procedural values, we determine that
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the result coincides with the weighted surplus division value. Moreover, the weighted surplus
division value is also the only solution minimizing the disweighted variance of players’ complaints.
Additionally, several new axioms are proposed to depict the weighted surplus division value.
For further research, some more general properties are expected to characterize the weighted surplus
division value. How to apply this new value to the economic model is also deserving to research.
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