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Abstract: Recently, the so-called new type Euler polynomials have been studied without considering
Euler polynomials of a complex variable. Here we study degenerate versions of these new type Euler
polynomials. This has been done by considering the degenerate Euler polynomials of a complex
variable. We also investigate corresponding ones for Bernoulli polynomials in the same manner.
We derive some properties and identities for those new polynomials. Here we note that our result
gives an affirmative answer to the question raised by the reviewer of the paper.

Keywords: degenerate cosine-Euler polynomials; degenerate sine-Euler polynomials; degenerate
cosine-Bernoulli polynomials; degenerate sine-Bernoulli polynomials; degenerate cosine-polynomials;
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1. Introduction

The ordinary Bernoulli polynomials Bn(x) and Euler polynomials En(x) are respectively
defined by

t
et − 1

ext =
∞

∑
n=0

Bn(x)
tn

n!
, (1)

and
2

et + 1
ext =

∞

∑
n=0

En(x)
tn

n!
, (2)

(see [1–20]).
For any nonzero λ ∈ R, the degenerate exponential function is defined by

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = e1

λ(t), (3)

(see [8]).
In [1,2], Carlitz considered the degenerate Bernoulli and Euler polynomials which are given by

t
eλ(t)− 1

ex
λ(t) =

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞

∑
n=0

βn,λ(x)
tn

n!
, (4)

and
2

eλ(t) + 1
ex

λ(t) =
2

(1 + λt)
1
λ + 1

(1 + λt)
x
λ =

∞

∑
n=0
En,λ(x)

tn

n!
. (5)

Note that
lim
λ→0

βn,λ(x) = Bn(x), lim
λ→0
En,λ(x) = En(x).
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The falling factorial sequence is defined as

(x)0 = 1, (x)n = x(x− 1) · · · (x− n + 1), (n ≥ 1),

(see [17]).
The Stirling numbers of the first kind are defined by the coefficients in the expansion of (x)n in

terms of powers of x as follows:

(x)n =
n

∑
l=0

S(1)(n, l)xl , (6)

(see, [7,11,17]).
The Stirling numbers of the second kind are defined by

xn =
n

∑
l=0

S(2)(n, l)(x)l , (n ≥ 0), (7)

(see [9,10,17]).
In [9], the degenerate stirling numbers of the second kind are defined by

1
k!
(
eλ(t)− 1

)k
=

∞

∑
n=k

S(2)
λ (n, k)

tn

n!
, (k ≥ 0). (8)

Note that lim
λ→0

S(2)
λ (n, k) = S(2)(n, k), (n, k ≥ 0).

Recently, Masjed–Jamei, Beyki and Koepf introduced the new type Euler polynomials which are
given by

2ept

et + 1
cos qt =

∞

∑
n=0

E(c)
n (p, q)

tn

n!
, (9)

2ept

et + 1
sin qt =

∞

∑
n=0

E(s)
n (p, q)

tn

n!
, (10)

(see [15]).
They also considered the cosine-polynomials and sine-polynomials defined by

ept cos qt =
∞

∑
n=0

Cn(p, q)
tn

n!
, (11)

and

ept sin qt =
∞

∑
n=0

Sn(p, q)
tn

n!
, (see [15]). (12)

In [15], the authors deduced many interesting identities and properties for those polynomials.
It is well known that

eix = cos x + i sin x, where x ∈ R, i =
√
−1, (13)

(see [20]).
From (1) and (2), we note that

t
et − 1

e(x+iy)t =
∞

∑
n=0

Bn(x + iy)
tn

n!
, (14)
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and
2

et + 1
e(x+iy)t =

∞

∑
n=0

En(x + iy)
tn

n!
. (15)

By (14) and (15), we get

t
et − 1

ext cos yt =
∞

∑
n=0

Bn(x + iy) + Bn(x− iy)
2

tn

n!
=

∞

∑
n=0

B(c)
n (x, y)

tn

n!
, (16)

t
et − 1

ext sin yt =
∞

∑
n=0

Bn(x + iy)− Bn(x− iy)
2i

tn

n!
=

∞

∑
n=0

B(s)
n (x, y)

tn

n!
,

2
et + 1

ext cos yt =
∞

∑
n=0

En(x + iy) + En(x− iy)
2

tn

n!
=

∞

∑
n=0

E(c)
n (x, y)

tn

n!
,

and
2

et + 1
ext sin yt =

∞

∑
n=0

En(x + iy)− En(x− iy)
2i

tn

n!
=

∞

∑
n=0

E(s)
n (x, y)

tn

n!
,

(see [12]).
In view of (4) and (5), we study the degenerate Bernoulli and Euler polynomials with complex

variables and investigate some identities and properties for those polynomials. The outline of this
paper is as follows. In Section 1, we will briefly recall the degenerate Bernoulli and Euler polynomials
of Carlitz and the degenerate Stirling numbers of the second kind. Then we will introduce the so-called
the new type Euler polynomials, and the cosine-polynomials and sine-polynomials recently introduced
in [15]. Then we indicate that the new type Euler polynomials and the corresponding Bernoulli
polynomials can be expressed by considering Euler and Bernoulli polynomials of a complex variable
and treating the real and imaginary parts separately. In Section 2, the degenerate cosine-polynomials
and degenerate sine-polynomials were introduced and their explicit expressions were derived.
The degenerate cosine-Euler polynomials and degenerate sine-Euler polynomials were expressed in
terms of degenerate cosine-polynomials and degenerate sine-polynomials and vice versa. Further, some
reflection identities were found for the degenerate cosine-Euler polynomials and degenerate sine-Euler
polynomials. In Section 3, the degenerate cosine-Bernoulli polynomials and degenerate sine-Bernoulli
polynomials were introduced. They were expressed in terms of degenerate cosine-polynomials and
degenerate sine-polynomials and vice versa. Reflection symmetries were deduced for the degenerate
cosine-Bernoulli polynomials and degenerate sine-Bernoulli polynomials.

2. Degenerate Euler Polynomials of Complex Variable

Here we will consider the degenerate Euler polynomials of complex variable and, by treating the
real and imaginary parts separately, introduce the degenerate cosine-Euler polynomials and degenerate
sine-Euler polynomials. They are degenerate versions of the new type Euler polynomials studied
in [15].

The degenerate sine and cosine functions are defined by

cosλ t =
ei

λ(t) + e−i
λ (t)

2
, sinλ t =

ei
λ(t)− e−i

λ (t)
2i

. (17)

From (13), we note that

lim
λ→0

cosλ t = cos t, lim
λ→0

sinλ t = sin t.

By (5), we get
2

eλ(t) + 1
ex+iy

λ (t) =
∞

∑
n=0
En,λ(x + iy)

tn

n!
. (18)



Symmetry 2019, 11, 1168 4 of 16

and
2

eλ(t) + 1
ex−iy

λ (t) =
∞

∑
n=0
En,λ(x− iy)

tn

n!
. (19)

Now, we define the degenerate cosine and degenerate sine function as

cos(y)λ (t) =
eiy

λ (t) + e−iy
λ (t)

2
= cos

(
y
λ

log(1 + λt)
)

, (20)

sin(y)
λ (t) =

eiy
λ (t)− e−iy

λ (t)
2i

= sin
(

y
λ

log(1 + λt)
)

. (21)

Note that lim
λ→0

cos(y)λ (t) = cos yt, lim
λ→0

sin(y)
λ (t) = sin yt.

From (18) and (19), we note that

2
eλ(t) + 1

ex
λ(t) cos(y)λ (t) =

∞

∑
n=0

(En,λ(x + iy) + En,λ(x− iy)
2

)
tn

n!
, (22)

and
2

eλ(t) + 1
ex

λ(t) sin(y)
λ (t) =

∞

∑
n=0

(En,λ(x + iy)− En,λ(x− iy)
2i

)
tn

n!
. (23)

In view of (9) and (10), we define the degenerate cosine-Euler polynomials and degenerate
sine-Euler polynomials respectively by

2
eλ(t) + 1

ex
λ(t) cos(y)λ (t) =

∞

∑
n=0
E (c)n,λ(x, y)

tn

n!
, (24)

and
2

eλ(t) + 1
ex

λ(t) sin(y)
λ (t) =

∞

∑
n=0
E (s)n,λ(x, y)

tn

n!
. (25)

Note that lim
λ→0
E (c)n,λ(x, y) = E(c)

n (x, y), lim
λ→0
E (s)n,λ(x, y) = E(s)

n (x, y), (n ≥ 0), where E(c)
n (x, y) and

E(s)
n (x, y) are the new type of Euler polynomials of Masjed-Jamei, Beyki and Koepf (see [15]).

From (22)–(25), we note that

E (c)n,λ(x, y) =
En,λ(x + iy) + En,λ(x− iy)

2
, (26)

and

E (s)n,λ(x, y) =
En,λ(x + iy)− En,λ(x− iy)

2i
, (n ≥ 0). (27)

We recall here that the generalized falling factorial sequence is defined by

(x)0,λ = 1, (x)n,λ = x(x− λ)(x− 2λ) · · · (x− (n− 1)λ), (n ≥ 1).

Note that lim
λ→1

(x)n,λ = (x)n, lim
λ→0

(x)n,λ = xn.
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We observe that

eiy
λ (t) = (1 + λt)

iy
λ = e

iy
λ log(1+λt) (28)

=
∞

∑
k=0

(
iy
λ

)k 1
k!
(

log(1 + λt)
)k

=
∞

∑
k=0

λ−k(iy)k
∞

∑
n=k

S(1)(n, k)
λn

n!
tn

=
∞

∑
n=0

( n

∑
k=0

λn−kikykS(1)(n, k)
)

tn

n!
.

From (20), we can derive the following equation.

cos(y)λ (t) =
eiy

λ (t) + e−iy
λ (t)

2
(29)

=
1
2

∞

∑
n=0

( n

∑
k=0

λn−k(ik + (−i)k)ykS(1)(n, k)
)

tn

n!

=
∞

∑
n=0

( [ n
2 ]

∑
k=0

λn−2k(−1)ky2kS(1)(n, 2k)
)

tn

n!

=
∞

∑
k=0

( ∞

∑
n=2k

λn−2k(−1)ky2kS(1)(n, 2k)
)

tn

n!
.

Note that

lim
λ→0

cos(y)λ (t) =
∞

∑
k=0

(−1)ky2k t2k

(2k)!
= cos yt.

By (21), we get

sin(y)
λ (t) =

eiy
λ (t)− e−iy

λ (t)
2i

(30)

=
1
2i

∞

∑
n=0

( n

∑
k=0

λn−k(ik − (−i)k)ykS(1)(n, k)
)

tn

n!

=
∞

∑
n=1

( [ n−1
2 ]

∑
k=0

λn−2k−1(−1)ky2k+1S(1)(n, 2k + 1)
)

tn

n!

=
∞

∑
k=0

( ∞

∑
n=2k+1

(−1)kλn−2k−1S(1)(n, 2k + 1)
tn

n!

)
y2k+1,

where [x] denotes the greatest integer ≤ x.

Note that

lim
λ→0

sin(y)
λ (t) =

∞

∑
k=0

(−1)ky2k+1 t2k+1

(2k + 1)!
= sin(yt).
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From (18), we note that

∞

∑
n=0
En,λ(x + iy)

tn

n!
=

2
eλ(t) + 1

ex
λ(t) · e

iy
λ (t) (31)

=
∞

∑
l=0
El,λ(x)

tl

l!

∞

∑
j=0

(iy)j,λ
tj

j!

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
(iy)n−l,λEl,λ(x)

)
tn

n!
.

On the other hand

2
eλ(t) + 1

ex+iy
λ (t) =

∞

∑
n=0
El,λ

tl

l!

∞

∑
j=0

(x + iy)j,λ
tj

j!
(32)

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
(x + iy)n−l,λEl,λ

)
tn

n!
.

Therefore, by (31) and (32), we obtain the following theorem,

Theorem 1. For n ≥ 0, we have

En,λ(x + iy) =
n

∑
l=0

(
n
l

)
(iy)n−l,λEl,λ(x)

=
n

∑
l=0

(
n
l

)
(x + iy)n−l,λEl,λ.

Also, we have

En,λ(x− iy) =
n

∑
l=0

(
n
l

)
(−1)n−l〈iy〉n−l,λEl,λ(x)

=
n

∑
l=0

(
n
l

)
(−1)n−l〈iy− x〉n−l,λEl,λ,

where 〈x〉0,λ = 1, 〈x〉n,λ = x(x + λ) · · · (x + λ(n− 1)), (n ≥ 1).

By (29), we get

ex
λ(t) cos(y)λ (t) =

∞

∑
l=0

(x)l,λ
tl

l!

∞

∑
m=0

[ m
2 ]

∑
k=0

λm−2k(−1)ky2kS(1)(m, 2k)
tm

m!
(33)

=
∞

∑
n=0

( n

∑
m=0

[ m
2 ]

∑
k=0

(
n
m

)
λm−2k(−1)ky2kS(1)(m, 2k)(x)n−m,λ

)
tn

n!
,

and

ex
λ(t) sin(y)

λ (t) =
∞

∑
l=0

(x)λ,l
tl

l!

∞

∑
m=1

[ m−1
2 ]

∑
k=0

λm−2k−1(−1)ky2k+1S(1)(m, 2k + 1)
tm

m!
(34)

=
∞

∑
n=1

( n

∑
m=1

[ m−1
2 ]

∑
k=0

(
n
m

)
λm−2k−1(−1)ky2k+1S(1)(m, 2k + 1)(x)n−m,λ

)
tn

n!
.
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Now, we define the degenerate cosine-polynomials and degenerate sine-polynomials
respectively by

ex
λ(t) cos(y)λ (t) =

∞

∑
k=0

Ck,λ(x, y)
tk

k!
, (35)

and

ex
λ(t) sin(y)

λ (t) =
∞

∑
k=0

Sk,λ(x, y)
tk

k!
. (36)

Note that
lim
λ→0

Ck,λ(x, y) = Ck(x, y), lim
λ→0

Sk,λ(x, y) = Sk(x, y),

where Ck(x, y) and Sk(x, y) are the cosine-polynomials and sine-polynomials of Masijed–Jamei, Beyki
and Koepf.

Therefore, by (33)–(36), we obtain the following theorem.

Theorem 2. For n ≥ 0, we have

Cn,λ(x, y) =
n

∑
m=0

[ m
2 ]

∑
k=0

(
n
m

)
λm−2k(−1)ky2kS(1)(m, 2k)(x)n−m,λ

=
[ n

2 ]

∑
k=0

n

∑
m=2k

(
n
m

)
λm−2k(−1)ky2kS(1)(m, 2k)(x)n−m,λ.

Also, for n ∈ N, we have

Sn,λ(x, y) =
n

∑
m=1

[ m−1
2 ]

∑
k=0

(
n
m

)
λm−2k−1(−1)ky2k+1S(1)(m, 2k + 1)(x)n−m,λ

=
[ n−1

2 ]

∑
k=0

n

∑
m=2k+1

(
n
m

)
λm−2k−1(−1)ky2k+1S(1)(m, 2k + 1)(x)n−m,λ.

and S0,λ(x, y) = 0.

From (24), we note that

∞

∑
n=0
E (c)n,λ(x, y)

tn

n!
=

2
eλ(t) + 1

ex
λ(t) cos(y)λ (t) (37)

=
∞

∑
m=0
Em,λ

tm

m!

∞

∑
l=0

Cl,λ(x, y)
tl

l!

=
∞

∑
n=0

( n

∑
m=0

(
n
m

)
Em,λCn−m,λ(x, y)

)
tn

n!
.

On the other hand,

2
eλ(t) + 1

ex
λ(t) cos(y)λ (t) =

∞

∑
m=0
Em,λ(x)

tm

m!

∞

∑
l=0

[ l
2 ]

∑
k=0

λl−2k(−1)ky2kS(1)(l, 2k)
tl

l!
(38)

=
∞

∑
n=0

( n

∑
l=0

[ l
2 ]

∑
k=0

(
n
l

)
λl−2k(−1)ky2kS(1)(l, 2k)En−l,λ(x)

)
tn

n!

=
∞

∑
n=0

( [ n
2 ]

∑
k=0

n

∑
l=2k

(
n
l

)
λl−2k(−1)ky2kS(1)(l, 2k)En−l,λ(x)

)
tn

n!
.
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By (30), we get

2
eλ(t) + 1

ex
λ(t) sin(y)

λ (t) =
∞

∑
m=0
Em,λ(x)

tm

m!

n

∑
l=1

[ l−1
2 ]

∑
k=0

(−1)kλl−2k−1y2k+1S(1)(l, 2k + 1)
tl

l!
(39)

=
∞

∑
n=1

( n

∑
l=1

[ l−1
2 ]

∑
k=0

(
n
l

)
λl−2k−1(−1)ky2k+1S(1)(l, 2k + 1)En−l,λ(x)

)
tn

n!

=
∞

∑
n=1

( [ n−1
2 ]

∑
k=0

n

∑
l=2k+1

(
n
l

)
λl−2k−1(−1)ky2k+1S(1)(l, 2k + 1)En−l,λ(x)

)
tn

n!
.

Therefore, by (24), (25), and (37)–(39), we obtain the following theorem.

Theorem 3. For n ≥ 0, we have

E (c)n,λ(x, y) =
n

∑
k=0

(
n
k

)
Ek,λCn−k,λ(x, y)

=
[ n

2 ]

∑
k=0

n

∑
l=2k

(
n
l

)
λl−2k(−1)ky2kS(1)(l, 2k)En−l,λ(x).

Also, for n ∈ N, we obtain

E (s)n,λ(x, y) =
n

∑
k=0

(
n
k

)
Ek,λSn−k,λ(x, y)

=
[ n−1

2 ]

∑
k=0

n

∑
l=2k+1

(
n
l

)
λl−2k−1(−1)ky2k+1S(1)(l, 2k + 1)En−l,λ(x).

By (24), we get

2ex
λ(t) cos(y)λ (t) =

∞

∑
l=0
E (c)l,λ (x, y)

tl

l!
(eλ(t) + 1) (40)

=
∞

∑
l=0
E (c)l,λ (x, y)

tl

l!

∞

∑
m=0

(1)m,λ
tm

m!
+

∞

∑
n=0
E (c)n,λ(x, y)

tn

n!

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
(1)n−l,λE

(c)
l,λ (x, y) + E (c)n,λ(x, y)

)
tn

n!
.

Therefore by comparing the coefficients on both sides of (35) and (40), we obtain the
following theorem.

Theorem 4. For n ≥ 0, we have

Cn,λ(x, y) =
1
2

( n

∑
l=0

(
n
l

)
(1)n−l,λE

(c)
l,λ (x, y) + E (c)n,λ(x, y)

)
,

and

Sn,λ(x, y) =
1
2

( n

∑
l=0

(
n
l

)
(1)n−l,λE

(s)
l,λ (x, y) + E (s)n,λ(x, y)

)
.
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From (24), we have

∞

∑
n=0
E (c)n,λ(x + r, y)

tn

n!
=

2
eλ(t) + 1

ex+r
λ (t) cos(y)λ (t) (41)

=
2

eλ(t) + 1
ex

λ(t) cos(y)λ (t)er
λ(t)

=
∞

∑
l=0
E (c)l,λ (x, y)

tl

l!

∞

∑
m=0

(r)m,λ
tm

m!

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
E (c)l,λ (x, y)(r)n−l,λ

)
tn

n!
.

Therefore, by comparing the coefficients on both sides of (41), we obtain the following proposition.

Proposition 1. For n ≥ 0, we have

E (c)n,λ(x + r, y) =
n

∑
l=0

(
n
l

)
E (c)l,λ (x, y)(r)n−l,λ,

and

E (s)n,λ(x + r, y) =
n

∑
l=0

(
n
l

)
E (s)l,λ (x, y)(r)n−l,λ,

where r is a fixed real (or complex) number.

Now, we consider the reflection symmetric identities for the degenerate cosine-Euler polynomials.
By (24), we get

∞

∑
n=0
E (c)n,λ(1− x, y)

tn

n!
=

2
eλ(t) + 1

e1−x
λ (t) cos(y)λ (t) (42)

=
2

1 + e−1
λ (t)

e−x
λ (t) cos(y)λ (t)

=
2

e−λ(−t) + 1
ex
−λ(−t) cos(y)−λ(−t)

=
∞

∑
n=0
E (c)n,−λ(x, y)

(−1)ntn

n!
,

and

∞

∑
n=0
E (s)n,λ(1− x, y)

tn

n!
=

2
eλ(t) + 1

e1−x
λ (t) sin(y)

λ (t) (43)

=
2

1 + e−1
λ (t)

e−x
λ (t) sin(y)

λ (t)

=
2

e−λ(−t) + 1
ex
−λ(−t) sin(y)

−λ(−t)

= −
∞

∑
n=0
E (s)n,−λ(x, y)

(−1)ntn

n!
.

Therefore, by (42) and (43), we obtain the following theorem.

Theorem 5. For n ≥ 0, we have

E (c)n,λ(1− x, y) = (−1)nE (c)n,−λ(x, y),
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and
E (s)n,λ(1− x, y) = (−1)n+1E (s)n,−λ(x, y),

Now, we observe that

∞

∑
n=0
E (c)n,λ(x, y)

tn

n!
=

2
eλ(t) + 1

(eλ(t)− 1 + 1)x cos(y)λ (t) (44)

=
2

eλ(t) + 1

∞

∑
l=0

(
x
l

)
(eλ(t)− 1)l cos(y)λ (t)

=
2

eλ(t) + 1
cos(y)λ (t)

∞

∑
l=0

(x)l

∞

∑
k=l

S(2)
λ (k, l)

tk

k!

=
∞

∑
j=0
E (c)j,λ (y)

tj

j!

∞

∑
k=0

( k

∑
l=0

(x)lS
(2)
λ (k, l)

)
tk

k!

=
∞

∑
n=0

( n

∑
k=0

k

∑
l=0

(
n
k

)
(x)lS

(2)
λ (k, l)E (c)n−k(y)

)
tn

n!
.

Therefore, by (44), we obtain the following theorem.

Theorem 6. For n ≥ 0, we have

E (c)n,λ(x, y) =
n

∑
k=0

k

∑
l=0

(
n
l

)
(x)lS

(2)
λ (k, l)E (c)n−k,λ(y).

Also, for n ∈ N, we have

E (s)n,λ(x, y) =
n

∑
k=0

k

∑
l=0

(
n
k

)
(x)lS

(2)
λ (k, l)E (s)n−k,λ(y).

3. Degenerate Bernoulli Polynomials of Complex Variable

In this section, we will consider the degenerate Bernoulli polynomials of complex variable
and, by treating the real and imaginary parts separately, introduce the degenerate cosine-Bernoulli
polynomials and degenerate sine-Bernoulli polynomials.

From (4), we have
t

eλ(t)− 1
ex+iy

λ (t) =
∞

∑
n=0

βn,λ(x + iy)
tn

n!
, (45)

and
t

eλ(t)− 1
ex−iy

λ =
∞

∑
n=0

βn,λ(x− iy)
tn

n!
. (46)

Thus, by (45) and (46), we get

∞

∑
n=0

(
βn,λ(x + iy) + βn,λ(x− iy)

) tn

n!
= 2

t
eλ(t)− 1

ex
λ(t) cos(y)λ (t), (47)

and
∞

∑
n=0

(
βn,λ(x + iy)− βn,λ(x− iy)

) tn

n!
= 2i

t
eλ(t)− 1

ex
λ(t) sin(y)

λ (t). (48)
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In view of (24) and (25), we define the degenerate cosine-Bernoulli polynomials and degenerate
sine-Bernoulli polynomials respectively by

t
eλ(t)− 1

ex
λ(t) cos(y)λ (t) =

∞

∑
n=0

β
(c)
n,λ(x, y)

tn

n!
, (49)

and
t

eλ(t)− 1
ex

λ(t) sin(y)
λ (t) =

∞

∑
n=0

β
(s)
n,λ(x, y)

tn

n!
. (50)

Note that β
(s)
0,λ(x, y) = 0.

From (47)–(50), we have

β
(c)
n,λ(x, y) =

βn,λ(x + iy) + βn,λ(x− iy)
2

, (51)

and

β
(s)
n,λ(x, y) =

βn,λ(x + iy)− βn,λ(x− iy)
2i

, (n ≥ 0). (52)

Note that
lim
λ→0

β
(c)
n,λ(x, y) = B(c)

n (x, y), lim
λ→0

β
(s)
n,λ(x, y) = B(s)

n (x, y),

where B(c)
n (x, y), B(s)

n (x, y) are cosine-Bernoulli polynomials, and sine-Bernoulli polynomials
(see [12,16]).

By (49), we get

∞

∑
n=0

β
(c)
n,λ(x, y)

tn

n!
=

t
eλ(t)− 1

ex
λ(t) cos(y)λ (t) (53)

=
∞

∑
l=0

βl,λ
tl

l!

∞

∑
m=0

Cm,λ(x, y)
tm

m!

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
βl,λCn−l,λ(x, y)

)
tn

n!
.

On the other hand,

t
eλ(t)− 1

ex
λ(t) cos(y)λ (t) (54)

=
∞

∑
m=0

βm,λ(x)
tm

m!

n

∑
l=0

[ l
2 ]

∑
k=0

λl−2k(−1)ky2kS(1)(l, 2k)
tl

l!

=
∞

∑
n=0

( n

∑
l=0

[ l
2 ]

∑
k=0

(
n
l

)
λl−2k(−1)ky2kS(1)(l, 2k)βn−l,λ(x)

)
tn

n!

=
∞

∑
n=0

( [ n
2 ]

∑
k=0

n

∑
l=2k

(
n
l

)
λl−2k(−1)ky2kS(1)(l, 2k)βn−l,λ(x)

)
tn

n!
.

Therefore, by (53) and (54), we obtain the following theorem.
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Theorem 7. For n ≥ 0, we have

β
(c)
n,λ(x, y) =

n

∑
k=0

(
n
k

)
βk,λCn−k,λ(x, y)

=
[ n

2 ]

∑
k=0

n

∑
l=2k

(
n
l

)
λl−2k(−1)ky2kS(1)(l, 2k)βn−l,λ(x).

Also, for n ∈ N, we have

β
(s)
n,λ(x, y) =

n

∑
k=0

(
n
k

)
βk,λSn−k,λ(x, y)

=
[ n−1

2 ]

∑
k=0

n

∑
l=2k+1

(
n
l

)
λl−2k−1(−1)ky2k+1S(1)(l, 2k + 1)βn−l,λ(x).

and
β
(s)
0,λ(x, y) = 0.

From (49), we have

∞

∑
n=0

β
(c)
n,λ(1− x, y)

tn

n!
=

t
1− e−1

λ (t)
e−x

λ (t) cos(y)λ (t) (55)

=
−t

e−λ(−t)− 1
ex
−λ(−t) cos(y)−λ(−t)

=
∞

∑
n=0

β
(c)
n,−λ(x, y)

(−1)n

n!
tn.

Therefore, by (55), we obtain the following theorem.

Theorem 8. For n ≥ 0, we have

β
(c)
n,λ(1− x, y) = (−1)nβ

(c)
n,−λ(x, y),

and
β
(s)
n,λ(1− x, y) = (−1)n+1β

(s)
n,−λ(x, y).

By (49), we easily get

∞

∑
n=0

β
(c)
n,λ(x + r, y)

tn

n!
=

t
eλ(t)− 1

ex+r
λ (t) cos(y)λ (t) (56)

=
t

eλ(t)− 1
ex

λ(t) cos(y)λ (t)er
λ(t)

=
∞

∑
l=0

β
(c)
l,λ(x, y)

tl

l!

∞

∑
m=0

(r)m,λ
tm

m!

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
β
(c)
l,λ(x, y)(r)n−l,λ

)
tn

n!
.
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By comparing the coefficients on both sides of (56), we get

β
(c)
nλ(x + r, y) =

n

∑
l=0

(
n
l

)
β
(c)
l,λ(x, y)(r)n−l,λ, (57)

and

β
(s)
n,λ(x + r, y) =

n

∑
l=0

(
n
l

)
β
(s)
l,λ(x, y)(r)n−l,λ, (58)

where r is a fixed real (or complex) number.
From (49), we note that

tex
λ(t) cos(y)λ (t) =

∞

∑
l=0

β
(c)
l,λ(x, y)

tl

l!
(eλ(t)− 1) (59)

=
∞

∑
l=0

β
(c)
l,λ(x, y)

tl

l!

∞

∑
m=0

(1)m,λ
tm

m!
−

∞

∑
n=0

β
(c)
n,λ(x, y)

tn

n!

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
β
(c)
l,λ(x, y)(1)n−l,λ − β

(c)
n,λ(x, y)

)
tn

n!

=
∞

∑
n=1

(
β
(c)
n,λ(x + 1, y)− β

(c)
n,λ(x, y)

)
tn

n!

=
∞

∑
n=0

(
β
(c)
n+1,λ(x + 1, y)− β

(c)
n+1,λ(x, y)

n + 1

)
tn+1

n!
.

By (59), we get

∞

∑
n=0

(
β
(c)
n+1,λ(x + 1, y)− β

(c)
n+1,λ(x, y)

n + 1

)
tn

n!
= ex

λ(t) cos(y)λ (t) =
∞

∑
n=0

Cn,λ(x, y)
tn

n!
. (60)

Therefore, by comparing the coefficients on both sides of (60), we obtain the following theorem.

Theorem 9. For n ≥ 0, we have

Cn,λ(x, y) =
1

n + 1
{

β
(c)
n+1,λ(x + 1, y)− β

(c)
n+1,λ(x, y)

}
,

and
Sn,λ(x, y) =

1
n + 1

{
β
(s)
n+1,λ(x + 1, y)− β

(s)
n+1,λ(x, y)

}
.

Corollary 1. For n ≥ 1, we have

Cn,λ(x, y) =
1

n + 1

n

∑
l=0

(
n + 1

l

)
β
(c)
l,λ(x, y)(1)n+1−l,λ,

and

Sn,λ(x, y) =
1

n + 1

n

∑
l=0

(
n + 1

l

)
β
(s)
l,λ(x, y)(1)n+1−l,λ.

When x = 0, let β
(c)
n,λ(0, y) = β

(c)
n,λ(y), β

(s)
n,λ(0, y) = β

(s)
n,λ(y), E

(c)
n,λ(0, y) = E (c)n,λ(y), and

E (s)n,λ(0, y) = E (s)n,λ(y).
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For n ≥ 0, we have

β
(c)
n,λ(y) =

[ n
2 ]

∑
k=0

n

∑
l=2k

(
n
l

)
λl−2k(−1)ky2kS(1)(l, 2k)βn−l,λ. (61)

Also, for n ∈ N, we get

β
(s)
n,λ(y) =

[ n−1
2 ]

∑
k=0

n

∑
l=2k+1

(
n
l

)
λl−2k−1(−1)ky2k+1S(1)(l, 2k + 1)βn−l,λ. (62)

By (49), we get

∞

∑
n=0

β
(c)
n,λ(x, y)

tn

n!
=

t
eλ(t)− 1

cos(y)λ (t)
(
eλ(t)− 1 + 1

)x (63)

=
∞

∑
m=0

β
(c)
m,λ(y)

tm

m!

∞

∑
l=0

(x)l

∞

∑
k=l

S(2)
λ (k, l)

tk

k!

=
∞

∑
m=0

β
(c)
m,λ(y)

tm

m!

∞

∑
k=0

k

∑
l=0

(x)lS
(2)
λ (k, l)

tk

k!

=
∞

∑
n=0

( n

∑
k=0

k

∑
l=0

(
n
k

)
(x)lS

(2)
λ (k, l)β

(c)
n−k,λ(y)

)
tn

n!
.

Comparing the coefficients on both sides of (63), we have

β
(c)
n,λ(x, y) =

n

∑
k=0

k

∑
l=0

(
n
k

)
(x)lS

(2)
λ (k, l)β

(c)
n−k,λ(y).

Also, for n ∈ N, we get

β
(s)
n,λ(x, y) =

n

∑
k=0

k

∑
l=0

(
n
k

)
(x)lS

(2)
λ (k, l)β

(s)
n−k,λ,

and
β
(s)
0,λ(x, y) = 0.

4. Conclusions

In [15], the authors introduced the so-called the new type Euler polynomials by means of
generating functions (see (9) and (10)) and deduced several properties and identities for these
polynomials. Hacène Belbachir, the reviewer of the paper [15], asked the following question in
Mathematical Reviews (MR3808565) of the American Mathematical Society: Is it possible to obtain
their results by considering the classical Euler polynomials of complex variable z, and treating the real
part and the imaginary part separately?

Our result gives an affirmative answer to the question (see (16)). In this paper, we considered
the degenerate Euler and Bernoulli polynomials of a complex variable and, by treating the real and
imaginary parts separately, were able to introduce degenerate cosine-Euler polynomials, degenerate
sine-Euler polynomials, degenerate cosine-Bernoulli polynomials, and degenerate sine-Bernoulli
polynomials. They are degenerate versions of the new type Euler polynomials studied by
Masjed–Jamei, Beyki and Koepf [15] and of the ’new type Bernoulli polynomials.’
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In Section 2, the degenerate cosine-polynomials and degenerate sine-polynomials were introduced
and their explicit expressions were derived. The degenerate cosine-Euler polynomials and degenerate
sine-Euler polynomials were expressed in terms of degenerate cosine-polynomials and degenerate
sine-polynomials and vice versa. Further, some reflection identities were found for the degenerate
cosine-Euler polynomials and degenerate sine-Euler polynomials. In Section 3, the degenerate
cosine-Bernoulli polynomials and degenerate sine-Bernoulli polynomials were introduced. They
were expressed in terms of degenerate cosine-polynomials and degenerate sine-polynomials and
vice versa. Reflection symmetries were deduced for the degenerate cosine-Bernoulli polynomials and
degenerate sine-Bernoulli polynomials. Further, some expressions involving the degenerate Stirling
numbers of the second kind were derived for them.

It was Carlitz [1,2] who initiated the study of degenerate versions of some special polynomials,
namely the degenerate Bernoulli and Euler polynomials. Studying degenerate versions of some special
polynomials and numbers have turned out to be very fruitful and promising (see [3,5–11,13,14,19] and
references therein). In fact, this idea of considering degenerate versions of some special polynomials
are not limited just to polynomials but can be extended even to transcendental functions like gamma
functions [8].
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