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Abstract: Nowadays, individual identification is a problem in many private companies, but also in
governmental and public order entities. Currently, there are multiple biometric methods, each with
different advantages. Finger vein recognition is a modern biometric technique, which has several
advantages, especially in terms of security and accuracy. However, image deformations and
time efficiency are two of the major limitations of state-of-the-art contributions. In spite of affine
transformations produced during the acquisition process, the geometric structure of finger vein
images remains invariant. This consideration of the symmetry phenomena presented in finger vein
images is exploited in the present work. We combine an image enhancement procedure, the DAISY
descriptor, and an optimized Coarse-to-fine PatchMatch (CPM) algorithm under a multicore parallel
platform, to develop a fast finger vein recognition method for real-time individuals identification.
Our proposal provides an effective and efficient technique to obtain the displacement between
finger vein images and considering it as discriminatory information. Experimental results on two
well-known databases, PolyU and SDUMLA, show that our proposed approach achieves results
comparable to deformation-based techniques of the state-of-the-art, finding statistical differences
respect to non-deformation-based approaches. Moreover, our method highly outperforms the baseline
method in time efficiency.

Keywords: individuals identification; finger vein recognition; sparse matching; multicore algorithm

1. Introduction

Currently, biometric systems are developed as a response to current increasing security demands.
People identification and authentication through biometric procedures are basic tools in present-day
society, as they can prevent frauds, impersonation, access control to human beings movement,
and undesired access to office, without utilizing passwords, keys, ID, magnetic cards, or any other
vulnerable means of identification [1]. They are very useful in e-commerce since they help the consumer
to carry out safe transactions in an undisturbed way. In the current state of affairs in the world, in which
digital mobility and e-commerce are on the rise, these benefits are increasingly important [2]. It should
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be mentioned that in the last six years 112 billion US dollars have been lost around the world due to
identity supplantation, which is equivalent to a loss of 35,600 US dollars every minute [3].

Unar et al. [4] extensively review the biometric technology along their potentialities, market
value, trends, and prospects. A biometric system aims to recognize the identity of a person based on
its physiological characteristics or other behavioral traits [5,6]. Jain et al. [5] established the criteria
that should be satisfied by any biometric trait, essentially: universality, distinctiveness, collectability,
performance, acceptability, and circumvention. Thus, several types of biometric traits have been
proposed, such as fingerprint [7,8], face [9,10], iris [11,12], palmprint [13,14], voice [15,16], finger and
palm vein [17,18], gait [19,20], signature [21,22], DNA [23,24], among others.

Particularly, finger and palm vein patterns, also known as vascular biometrics, have focused the
attention of the scientific community in recent years [25]. Finger and palm vein are internal structures
in the human body, which present significant biometric attributes such as universality, distinctiveness,
permanence, and acceptability. Besides, vascular biometrics have three distinct advantages [26]:
(1) must be caught in a living body, avoiding fraud techniques with parts of deceased individuals;
(2) are very difficult to duplicate or adulterate; and (3) do not present harms because of external
components, contrarily to fingerprint, iris, or face. These advantages guarantee the high security the
technique, which has multiple applications such as in banks, legality support, as well as countless
applications with high-security requirements. Table 1 compares the main characteristics of the most
used biometric techniques [17].

Table 1. Comparison of the main characteristics of the most used biometric techniques, from the work
by the authors of [17].

Biometric Technique Security Cost Acquisition Major Advantage Disadvantage

Face Normal Low Contactless Remote capture Lighting conditions
Voice Normal Low Contactless Natural and convenient Noise

Fingerprint Good Low Contact Widely applied Skin damage
Iris Excellent High Contactless High accuracy Occlusions

Finger vein Excellent Low Contactless High security Disease bodies

The performance and quality of the results in the recognition of finger vein patterns have been
improved by several approaches in recent years [17,27,28]. During the image acquisition process, the
captured images present deformation effects due to the contactless capturing procedure, as is shown
in Figure 1. Commonly, most of the methods try to prevent the influence of these deformations in
recognition performance. On the contrary, the approach proposed by Meng et al. [27] is highlighted
because it proves that the displacement information between finger vein images can be used as
discriminatory information, achieving a high recognition performance. The principles introduced in the
work by the authors of [27] prove that the geometric structure of finger vein images remains invariant,
despite the affine transformations produced during the acquisition process. These considerations are
closely related to the most modern interpretation of symmetry phenomena introduced by Darvas [29].
Thus, the proposed approach applies the generalized symmetry concept [29] in order to establish
the correspondences between genuine and imposter samples. However, the main disadvantage of
their methodology is related to the high computation time of the matching process due to the dense
correspondence between images.
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Figure 1. Effects of deformations on finger vein images due to the contactless capturing procedure.
The first row corresponds to different samples of the same finger from PolyU database and the second
one from SDU-MLA dataset.

Among the real applications of finger vein recognition are those that verify the identity of
people. The biometric system compares the test sample and the previously stored template for
the individual, performing only a 1:1 matching. There are multiple examples and reports about
authentication applications in the field of physical security at banks, financial applications, hospitals,
and others [30–34]. However, to the best of our knowledge, no real applications of individuals
identification are known, where exhaustive comparisons are required within a database of millions of
people. Thus, to identify individuals in a massive database, a finger vein recognition system requires
performing a real-time-matching process. Hence, our work contributes to reduce the execution time of
the matching process between finger vein images.

In the literature, some techniques that interpolate the optical flow from sparse
correspondences [35–38], contrarily to dense correspondences proposed in Meng et al. [27].
These methods are known as sparse matching algorithms and they show great success in efficiency
and accuracy. In the present work, we address the limitations of dense correspondences by using an
efficient sparse matching algorithm. The proposed methodology achieves state-of-the-art accuracy and
highly outperforms the baseline method in time efficiency. Our proposal aims to develop a new method
for real-time individuals identification, able to use a large database. Thus, our method combines the
efficiency and accuracy of a sparse-matching technique with the speed-up of a multicore parallel,
platform for improving finger vein recognition for massive identification. Therefore, our approach has
three major contributions:

• First, in contrast to other authors that use global normalization and histogram equalization to
improve the image quality during the preprocessing step, we apply a block-local normalization
and a sharpening filtering aiming to enhance the local details of vein images. Section 3.1 explains
the preprocessing procedure implemented in our approach.

• Second, we propose to use the Coarse-to-fine PatchMatch (CPM) algorithm [38] as a
sparse-matching technique to reduce the number of comparisons of dense correspondences
during the matching process. This method achieves equivalent recognition performance in
comparison to the baseline approach proposed by Meng et al. [27] and highly outperforms its
results in terms of execution time, achieving a speed-up of 9×. Sections 3.2 and 3.3 present the
details of the feature extraction and matching processes.

• Third, to increase the number of queries per second and reduce the computation time of the
matching process, we implement a master-worker scheme in a round-robin fashion to compute
the similarity tests between finger vein images. To the best of our knowledge, our approach is
the first that incorporate parallel techniques for finger vein recognition. Section 3.5 describes the
implemented parallel scheme.



Symmetry 2019, 11, 1167 4 of 26

The structure of the paper is as follows. First, in Section 2, we review the related works regarding
finger vein recognition and image matching techniques based on optical flow. Section 3 describes the
proposed methodology. Finally, we discuss the experimental results in Section 4, and conclusions are
given in Section 5.

2. Related Works

2.1. Finger Vein Recognition

A finger vein recognition system includes four main processes: image acquisition, preprocessing,
feature extraction, and recognition, as it is depicted in Figure 2. The image acquisition is performed
by using a near-infrared (NIR) scanner device that captures the finger vein image. The preprocessing
procedures obtain the region of interest (ROI) from the captured image and apply enhancement
techniques to improve the details of vein patterns. The image representation is carried out during the
feature extraction process and later the obtained descriptor is used for matching purposes. Feature
extraction and matching processes are critical components for the performance of the system [39].
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Figure 2. Flowchart of a typical finger vein recognition system.

Several works propose multiple approaches for the extraction of traits and patterns from the finger
veins [26–28,40–47]. Methods based on local patterns extract characteristics at the pixel level, including
descriptors such as local binary patterns (LBP) [40,42] and their different variants [41,43,48,49].
The performance of these methods is affected by deformations because of the pixel-to-pixel processing.
Network-based methods start by extracting features from segmented blood vessels, and the recognition
is carried out according to the similarity of vein patterns. The work by the authors of [50] based on
mean curvature (MeanC), the method proposed by Miura et al. [51] that uses maximum curvature
points (MaxC), the work by the authors of [26] by using of repeated lines tracking (RLT), and the
proposal by the authors of [47], which projects the curvature of the valley into Radon space, are in this
category. However, the segmentation of blood vessels lacks precision, which is the major disadvantages
of these approaches. Other proposals use minutiae as identification features [40,45,52,53], however,
their extraction is limited in finger vein images, which reduces the accuracy of the results. On the other
hand, there are methods based on machine learning, mainly in the analysis of principal components
(PCA) [44,46,54,55], linear discriminant analysis (LDA) [56], and, recently, some authors [28,57–59]
have proposed finger vein recognition methods based on deep learning approaches, which have been
successfully applied and enhance finger vein recognition methods. In these cases, training images
are not enough available for the configuration of the transformation matrix, so its operation is not
satisfactory in this regard.

Despite the contributions made by the aforementioned works, the recognition results do not
show significant improvements, mainly due to problems with image quality and deformations [60,61].
The image quality is usually solved using restoration techniques [62] or visual improvement [61,63].
Regarding deformations, the finger vein images are severely affected by them, because fingers are
flexible and the capture is made without physical contact. In this regard, it should be highlighted
the work of Meng et al. [27]. They propose a new perspective by using displacement between finger
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vein images as discriminatory information, contrarily to others that try to reduce the influence of
deformations [40,45,50,63].

The methodology proposed by Meng et al. [27] is on the basis of two key ideas that allow
distinguishing between genuine and imposter samples: (1) the displacement in a local region tends
to be similar in a genuine matching because the pixel and its neighbors are similar in deformations,
see Figure 3a, and (2) the displacement tends to be homogeneous in a genuine matching due to
two similar images share the same vein structure. Thus, the dense correspondences of the SIFT
descriptor [64] are used for obtaining the displacement matrices based on the proposal of Liu et al. [65].
From the displacement matrices, the feature of uniformity texture [66] is extracted, which is the final
similarity degree. This approach uses deformations as discriminatory information and it is much more
discriminative than traditional approaches.

(a)

(b)

Figure 3. Characteristics of displacements between finger vein images: (a) Genuine matching:
displacements tend to be similar for matched pixels. (b) Imposter matching: there are variations
on displacements for matched pixels. Images are from the work by the authors of [27].

As has been presented, the performance and quality of the results in the recognition of finger
vein patterns have been improved by several approaches. However, in general, the problem presented
by these techniques is their high complexity, which leads to temporary inefficiency, especially for
massive civil applications (applications for banks, access control, assistance control, among others), in
which the waiting time of the user is a very important factor. On the other hand, the reduction of the
matching time is interesting in forensic applications when a database of millions of records is involved,
where it is also critical to take into account the execution time.

Our proposed method aims the execution time of the matching process of finger vein recognition.
To the best of our knowledge, our work is the first approach for real-time individuals identification
based on finger vein patterns that is suitable for use in massive identification. The experimental results
discussed in Section 4 show that our methodology achieves a very high speed-up and its recognition
accuracy is comparable with the state-of-the-art techniques.

2.2. Image Matching Based on Optical Flow

Image correspondence or matching is an important problem in many computer vision applications.
There are different approaches aim to match or align two images, ranging those applied to
scene recognition to optical flow estimation [65]. The goal of image matching algorithms is to
establish as many as possible precise pointwise correspondences or matches between two images,
discovering shared visual content within them. Image matching techniques based on local features have
been extensively studied in the literature during the past decade [36,38,65,67]. Besides, some image
matching approaches are inspired by optical flow methods [35–38,65,68]. These techniques produce
dense correspondences, such as an estimation of a 2D flow field, to obtain the correspondence between
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two images. Furthermore, some proposed biometric techniques estimate the similarity of images based
on optical flow methods [27,65,69,70].

The image matching approaches can be divided into dense [65,68] and sparse [35–38] algorithms.
The dense algorithms match densely sampled pixel-wise local features by using the information of
every pixel of the image, contrary to sparse methods that take advantage of sparse feature points.
Although dense matching techniques achieve excellent accuracy, they require high computation costs.
On the other hand, sparse-matching approaches reduce the computation time of dense matching
finding correspondences for local image patches. In the present work, we propose to use a sparse
matching method to obtain the displacements between finger vein images. Our approach reduces the
computation time of the baseline method proposed in [27], which is based on dense correspondences.

Among the sparse-matching approaches, we study three recent algorithms, which are summarized
in the following. In the work by the authors of [35], the authors select correspondences between
patch pairs of images, where each patch is a sparse match in both ways. Their method is known as
SparseFlow. Revaud et al. [37] introduce the DeepMatching algorithm, which is inspired by deep
convolutional approaches. This technique breaks down patches into a hierarchy of sub-patches by
using a multi-layer architecture, handling nonrigid deformations and incorporating a multi-scale
scoring of the matches. Besides, the Coarse-to-fine PatchMatch algorithm is proposed by Li et al [38].
It computes correspondences between images by combining an efficient random search strategy
and a propagation procedure with constrained random search radius between adjacent levels on a
hierarchical architecture. Their method captures displacements of the tiny structures by using a fast
approximate structure for the matching process. It avoids finding instances of every pixel achieving a
significant speed-up with controllable accuracy, which is its main advantage.

Based on the characteristics of the studied techniques, we propose to use the CPM algorithm [38]
for the matching process of our approach. We think that the fast approximate structure proposed
in [38] is useful to reduce the high computation costs required by the dense matching of the baseline
method [27]. However, in Section 4.6, we compare the performance of our proposal and the other two
sparse matching methods.

3. Methodology

In this section, we present the different processes of the proposed finger vein recognition method,
which is depicted in Figure 4. In the following, we pay special attention to our main contributions
highlighted in bold text in the above figure. As a typical finger vein system, the presented methodology
is composed of four processes for enrollment and verification/identification stages. The flowchart starts
by capturing finger vein image samples. For this purpose, a scanner device with NIR illumination
(700–1000 nm) is often used. Later, a preprocessing step is required for segmentation of the ROI
and to improve the quality of the image. From the final enhanced image, we compute the DAISY
descriptor [71] for every pixel on all hierarchical levels, which represents stored finger vein samples in
the database. During the verification/identification stage, the matching process is performed by CPM
algorithm [38], resulting in the displacement matrices. Finally, the similarity score between finger vein
samples is calculated on the basis of the uniformity degree of the displacements matrices, which is
represented by the feature of the uniformity texture [66].
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Figure 4. General scheme of the proposed methodology for finger vein recognition. Our main
contributions are highlighted in bold text.

3.1. Preprocessing of Finger Vein Images

Generally, the NIR illumination used during the image acquisition process causes low contrast
and noise in the finger vein images. Therefore, the preprocessing step is very important to enhance
the quality of the images. Thus, our first contribution aims to improve the image quality during the
preprocessing step. After the ROI segmentation, we apply a block-local normalization and sharpening
filtering, in contrast to other authors that use global normalization and histogram equalization. These
procedures lead to enhance the local details of vein patterns while improving the accuracy results.
Figure 5 shows examples of images obtained during the preprocessing procedures.

(a) (b) (c)

(d) (e) (f)

Figure 5. The preprocessing procedure starts from the original image (a); finger edges and the middle
line are determined for skew correction and correction of the ROI region (b) y (c); a local intensity
normalization is performed over the ROI segmented image (d) y (e); and, finally, the normalized image
is enhanced with a sharpening filtering (f).

ROI segmentation should find the same region of a finger vein image with sufficient finger
vein patterns for feature extraction. Besides, a good accuracy of ROI extraction greatly improves
the recognition performance of the system while reduces the computation complexity of subsequent
processes. Further, we applied the ROI extraction algorithm proposed in the work by the authors
of [72]. The method proposed by Yang et al. [72] is robust to finger displacement and rotation.
First, we determine the boundaries of the finger by applying the Sobel edge detection algorithm [73].
We obtain the ROI candidate region by subtracting the binary finger edge image with the binarized
image. Besides, the resulting finger edges are used to determine whether the finger is skewed or
not, and the middle line between finger edges is used for skew correction of the image. Then,
the interphalangeal area of the finger is detected by using a sliding window and it is employed to
determine the height of ROI. Next, the left and right boundaries of the ROI are delimited by the internal
tangents of finger edges. Finally, we standardize the size of the ROI segmented image in order to
reduce the processing time during feature extraction and matching processes. For this purpose, we
rescale the image to 64 × 96 pixels with bicubic interpolation.

Later, the intensity of the ROI segmented image is normalized because of another problem related
to the illumination of the image acquisition procedure. The finger vein images present different
intensity ranges as the thin fingers are more illuminated than the thick fingers; tissues and bones
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absorb a small amount of light, causing different intensity distributions. Most approaches use a global
normalization technique to reduce the difference of intensities in the finger vein images [72,74,75].
Contrarily, we apply the block-local normalization proposed by Kočevar et al. [76]. This approach
considers small local patches and not the entire image in order to average the intensities of pixels,
which is more appropriate because of the varying of gray values in different areas of finger vein images.

Finally, the proposed preprocessing procedure focuses on highlighting or enhancing fine details
of veins patterns due to the blurring effect is introduced in the image by the NIR acquisition process.
In this regard, different approaches aim to enhance finger vein images by using complex techniques
to avoid the influence of the noise that affects the above traditional methods [63,77,78]. However,
typically most approaches use histogram equalization [74,79,80] or contrast limited adaptive histogram
equalization (CLAHE) [75,81,82]. HE-based methods increase the contrast of the finger vein region
and highlight the vein texture details. Contrarily to other authors, we propose to apply a sharpening
filter to increase the sharpness of finger vein images. Sharpening filtering increases the contrast
between bright and dark regions to bring out features. Moreover, the image sharpening process is an
edge-preserving filter that can remove noise completely and preserve the edge effectively.

In this paper, we use a kernel-based sharpening method,

I′ = k ∗ I (1)

where I′ is the filtered image, I is the original image, and k is the kernel as a 3× 3 convolution matrix:

k =

−1 −1 −1
−1 9 −1
−1 −1 −1


The sharpen kernel emphasizes differences in adjacent pixel values, thus blood vessel edges

become more prominent. Besides, sharpening filtering is very suitable for corner feature extraction,
and is also effective for block feature extraction. Furthermore, its major advantage is that can
obtain similar results comparing to state-of-the-art techniques with lower computational complexity.
This characteristic is very important in our proposal because we aim to develop an efficient finger
vein technique.

In Section 4.4, we evaluate the impact of the preprocessing procedures introduced in our proposal,
particularly block-local normalization and sharpening filtering.

3.2. Image Representation with DAISY Descriptor

In the work by the authors of [27], a SIFT descriptor is used to obtain dense correspondences based
on the DenseSIFT algorithm [65], which is very time-consuming. Regarding this, Tola et al. [71] found
that DAISY descriptor retains the robustness of SIFT while being more suitable for practical usage
because it can be computed efficiently at the pixel level. Therefore, our proposed feature extraction
process obtains an image representation with the DAISY descriptor.

The DAISY extraction process starts computing orientation maps, which each is convolved several
times with Gaussian kernels of different sizes. As a result, each pixel location is represented by a
vector of values from the convolved orientation maps for different sized regions. Formally, the DAISY
descriptor as defined by the authors of [71], for each pixel location (u0, v0) on a given image I, as the
concatenation of h vectors:
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D(u0, v0) = [h̃T
∑1
(u0, v0), h̃T

∑1
(l1(u0, v0, R1)), . . . , h̃T

∑1
(lT(u0, v0, R1)),

h̃T
∑2
(l1(u0, v0, R2)), . . . , h̃T

∑2
(lT(u0, v0, R2)),

. . .

h̃T
∑Q

(l1(u0, v0, RQ)), . . . , h̃T
∑Q

(lT(u0, v0, RQ))]
T

where h̃∑(u, v) is the normalized vector of the values at location (u, v) in the convolved orientation
maps by a Gaussian kernel of standard deviation ∑; lj(u, v, R) is the location with distance R from
(u, v) in the direction given by j when the directions are quantized into T values; and Q represents the
number of different circular layers.

It should be noted that the efficiency of DAISY is improved because convolutions operations are
separable and can be implemented by using separate Gaussian filters. Thus, the descriptor avoids the
computation of convolutions with a large Gaussian kernel by using several consecutive convolutions
with smaller kernels. Furthermore, according to the authors of [71], the algorithm can be parallelized
easily in both multicore and GPU parallel platforms.

Moreover, Tola et al. [71] studied the influence of the DAISY parameters on the performance and
the computation time. Their analysis suggests the descriptor is relatively insensitive to parameters
choice. Thus, the authors proposed the standard set of parameters in order to reduce the computation
time while improving accuracy. In our approach, we use the DAISY implementation in OpenCV
library [83] with the standard parameter settings fixed as Radius (R)= 15, Radius Quantization (Q) = 3,
Angular Quantization (T) = 8, and Histogram Quantization (H) = 8.

3.3. Matching Process Based on a Sparse Technique

The matching process of the proposed methodology is based on a sparse technique to obtain the
displacement matrices between finger vein samples. We use the CPM algorithm [38] to compute sparse
correspondences between patches of finger vein images to be compared. Contrary to the baseline
method [27], which finds dense correspondences for each pixel of the image, the CPM algorithm [38]
combines a random search strategy with a coarse-to-fine scheme for matching correspondences with
larger patch size. Thus, the matching process implements a fast approximate structure in order to
avoid finding correspondences of every pixel, which reaches a significant reduction of the computation
time. An overview of the CPM matching is given in Figure 6.

random

initialization

propagation

init
iali
za
tio
n

propagation

…

Final flowI1 I2

Figure 6. General overview of the Coarse-to-fine PatchMatch (CPM) matching process for obtaining
displacement flows.
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Given two images, I1 and I2 ⊂ R2, and a collection of seeds, S = {sm}, at position {p(sm)},
the CPM matching process to compute the flow of each seed is defined as in the work by the authors
of [38]:

f (sm) =M(p(sm))− p(sm) ∈ R (2)

whereM(p(sm)) is the matching position for the seed sm of I1 in I2.
The images are divided in d× d nonoverlapping blocks and the seeds are the cross points of this

regular grid, obtaining only one seed for each patch. Iteratively, the matching algorithm propagates
the results from the neighborhood to the current seed in an interleaved manner. The propagation is
performed in scan order on odd iterations and reversely on even iterations, only if the neighbor seeds
have already been examined in the current iteration, as in the following equation,

f (sm) = arg min
f (si)

(C( f (si))), si ∈ {sm} ∪Nm (3)

where C( f (·)) denotes the match cost between patch centered at p(sm) in I1 and the corresponding
patch in I2 with a displacement of f (·), and Nm is the set of neighbor seeds of sm. Next, a random
search is performed by exponentially decreasing a maximum search radius α = 1/2. Thus, for the
current seed sm, the algorithm tests candidate flows around the best flow f (sm).

CPM performs n iterations of the above matching process. Besides, in order to handle the
ambiguity of small patches, the algorithm constructs a k-levels pyramid with a downsampling factor
η = 0.5, for both I1 and I2. This coarse-to-fine scheme is depicted in Figure 6, where the number of
seeds is the same on each level and they preserve the same neighboring relation on each level. Thus,
the algorithm finds the correspondences for each seed and it propagates the flow from top to bottom.
The matching process randomly initializes the flow of the the top-level { f (sk−1)}, and for each level,
l < k− 1, the computed flow serves as initialization of the next level { f (sk−2)}.

According to the evaluation by the authors of [36,38], the parameter set {d, n, k, r} = {3, 6, 5, 4}
achieves the best accuracy performance while reduces the computation complexity. However, to find
the optimized parameter settings of CPM for finger vein recognition, in Section 4.7, we analyze the
impact of each parameter on the performance of the system.

3.4. Decision Based on Displacement Uniformity

The final step of the proposed methodology is deciding whether the sample is genuine or impostor.
Based on the key ideas proposed in the work by the authors of [27], this decision is determined by
analyzing the uniformity of displacement matrices. Thereby, the flow previously obtained by the CPM
matching process is represented as an image and the uniformity feature of the texture [66] is computed
from the intensity histogram of the flow image.

Let h be the normalized histogram of the flow image, where h(i) indicates the number of pixels
with a displacement i, the uniformity of the displacements is calculated as

f = ∑
i∈l

h(i)2 (4)

This measure is maximum when all intensity levels are equal (maximally uniform) and decreases
from there. Consequently, the final similarity degree between two finger vein samples to be compared
lies between 0 and 1. Figure 7 shows two examples of genuine and impostor finger vein samples. Note
that the number of matches is relatively large and uniform for genuine samples and, in contrast with the
impostor samples, present a large number of no matches and a poorly uniformity. Thus, the function f
is used as a similarity score to discriminate between genuine or impostor finger vein samples, which
tends to be relatively high for genuine and has a tendency to zero for impostor matching.
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I1 I2 Flow image

v

u

f = 0.2440

f = 0.0056

Figure 7. Examples of genuine (first row) and impostor (second row) finger vein samples with their
respective flow images and the value of uniformity feature by using the CPM algorithm. The reference
color pattern for displacement flow is shown; black color means no match.

3.5. Matching Process under Multicore Platform

Our proposed methodology introduces some improvements concerning the baseline method [27],
achieving a significant speed-up for the matching process, which is demonstrated in Section 4.5.
Moreover, our proposal aims to accelerate the matching process of finger vein images in order to
lead a real-time recognition. On this regard, we propose the implementation of a multithread parallel
algorithm by using OpenMP [84] to compute the matching process under a multicore platform. Thus,
in the proposed system, multiple similarity queries are executed by CPM under a multithread scheme,
which is represented with multiple arrows between storage and the matching process in Figure 4.

In our approach, we use a master-worker scheme aiming to avoid synchronization problems
between threads. As it is depicted in Figure 8, the proposed solution implements a task distribution
scheme in a round-robin fashion for the allocation of similarity tests among the worker processes.
Therefore, each worker process computes the similarity score between a tested sample and a subset of
the stored templates. On the other hand, the master process manages the results given by workers and
return the final result.

Process 0

Process 1

Process 2

Process 3

Figure 8. Scheme of the implemented parallel task distribution in round-robin fashion, where each row
represents a similarity test.

4. Performance Evaluation and Discussion

In this section, we evaluate the performance of the proposed methodology. For this purpose,
we analyze the performance of our approach on two publicly available datasets, which are used in
several works of the state-of-the-art. The details of both databases are described in the following.

The PolyU database [85] consists of finger vein images of 156 volunteers, both male and female.
Approximately 93% of the subjects are under 30 years old. The images were captured over a period of
eleven months in two sessions separated by an interval between one and six months. In each session,
the volunteers gave 6 samples of images of the index finger and middle finger of the left hand. As in
the baseline method [27], we only use finger vein images captured in the first session, consisting of
1872 images.
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The SDUMLA-HMT database [86] contains a subset of finger vein images, which is used as
the second database and we reference as SDU-MLA dataset. The dataset was captured from both
hands of 106 subjects. Each individual contributes 6 samples from the index, middle, and ring finger,
with 36 finger vein images per individual, for a total of 3816 images. This database is more challenging
because it was obtained in an uncontrolled way, and the reported recognition performances are lower
than those in the PolyU database.

In our experiments, we analyze the recognition performance of the proposed approach in
verification and identification modes. Aiming to make an equivalent comparison, we use the same
experimentation settings for interclass and intraclass matching reported in [27]. Besides, we use the
decimal format to report all the experimentation results, both in charts and tables, except in Section 4.1,
where equal error rates (EER) values are reported in percent in order to obtain a clear representation
of the charts. Furthermore, we compare different sparse matching methods in order to analyze their
performance for finger vein recognition.

All the experiments were executed on a dedicated server with the hardware characteristics
reported in Table 2. We use the original source codes provided by authors for DenseSIFT [65], CPM [38],
DeepMatching [37], and SparseFlow [35]. We implements sequential and multicore versions of the
system by using C++ with OpenCV [87] and OpenMP [84] libraries.

Table 2. Characteristics of the server used for the experiments.

Processor 2 x Intel Xeon Gold 6140 CPU @ 2.30 GHz
Total physical cores: 36

24.75 MB L3 Cache

Memory 126 GB

Operative System GNU Debian System Linux
kernel 4.9.0-8-amd64

Compiler gcc version 6.3.0, flags: -03

4.1. Analysis of Parameter Settings of CPM

In the works by the authors of [36,38], the authors of CPM analyzed the parameter sensitivity of
the algorithm. They found the parameter settings {d, n, k, r} = {3, 6, 5, 4} achieved the best accuracy
results while also reducing computation complexity. However, to get better performance and to
decrease the execution time of CPM for finger vein recognition, we optimize the parameter set for this
task. For this purpose, we empirically vary the parameter setting each by one and maintaining the rest
as proposed by the authors of [36,38]. Figure 9 summarizes the results for each parameter, we report
the EER on a training set of finger vein images from both databases. The training set was randomly
selected using 20% of each database. We did not use each dataset separately because both do not have
a large number of subjects. Thus, the obtained parameter settings have been optimized for finger vein
recognition tasks in general. Different from the rest of the experiments, EER (equal error rate) values
are reported in percent (%), in order to obtain a clear representation of the charts.

As it is depicted in Figure 9, the results are equivalent to the evaluation made by the authors
of [36,38]. The use of a small grid spacing improves the performance, resulting in d = 3 the best.
It should be noted that as r increases, the values of EER become progressively worse, whereas for
small values of r, the results also lie to deteriorate. Thus, we find the best results for r = 3, which is
smaller than proposed by authors of CPM due to finger vein images are also smaller. On the other
hand, the effect of varying the number of hierarchical levels, k, increases the quality because the
propagation is more discriminative on higher levels. In this sense, a value of k = 3 obtains the smallest
results of EER. Regarding the number of iterations n, a larger n leads to more accurate matching
but a higher computation time. Hence, we set n = 6, which is equal to default parameter settings,
because it is optimal for converging of the matching process. Concerning the influence in computation
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time, parameters d and n affect the complexity of the matching methods, for small and large values,
respectively. However, the optimal values obtained in this experiment for both parameter present a
balance between accuracy and time-consuming. As a result of the evaluation in this section, we found
the optimal parameter set, {d, n, k, r} = {3, 6, 3, 3}, for both vascular databases, which is the parameter
setting that we use in the following experiments.
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Figure 9. Results of the evaluation of the influence of different parameters setting of CPM for finger
vein recognition.

4.2. Experimentation in Verification Mode

The accuracy results of our method are contrasted with the baseline algorithm [27] in verification
mode. To evaluate the biometric performance of our system a considerable high number of genuine
and impostor test were performed with the proposed method and all similarity scores were saved.
Then, by varying a score threshold for the similarity scores, we calculated FAR (false acceptance rate)
and FRR (false rejection rate) as the proportion of times the system grants access to an unauthorized
person, and the proportion of times it denied access to an authorized person, respectively. Besides,
EER is used to determine the threshold for its FAR and FRR are equal. These three metrics are widely
used in the literature and they are very important when comparing two systems because the more
accurate one would show lower FRR at the same level of FAR.

For this experiment, we compute a set of matching scores in order to establish the threshold for
intraclass and interclass matching. For PolyU database, there are 4680 (156 persons× 2 f ingers× C2

6)
intraclass and 3,493,152 (156 persons × 2 f ingers × 6 samples × 311 di f f erent f ingers × 6 samples)
interclass matching pairs. For SDU-MLA dataset, there are 9540 (106 persons× 2 hands× 3 f ingers×
C2

6) intraclass and 14,538,960 (106 persons× 2 hands× 3 f ingers× 6 samples× 635 di f f erent f ingers×
6 samples) interclass matching pairs.

Figures 10 and 11 show the frequency of the obtained matching scores for genuine and imposter
matching by the proposed method and the baseline algorithm for PolyU database and SDU-MLA
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dataset, respectively. It is noticeable that the overlap between genuine and imposter matching scores
is larger for our method than the baseline on both databases. However, the matching scores of the
proposed method are more dense, obtaining scores closer to 0 for imposter matching and being smaller
than scores of the baseline. In spite of this, it is appreciable that there are not important differences
between the distributions of scores of the methods. These results suggest that our approach accurately
recognizes genuine finger vein samples while distinguishing impostor samples.

The accuracy results of our method are contrasted with the baseline algorithm [27]. Figure 12
depicts ROC curves obtained for FAR (false acceptance rate) and FRR (false rejection rate) results
on both databases. Besides, Table 3 compares the results of EER (equal error rate), FRR at-zero-FAR,
and FAR at-zero-FRR.
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Figure 10. Distribution of matching scores on the PolyU database: (a) proposed method and
(b) baseline method.
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Figure 11. Distribution of matching scores on the SDU-MLA dataset: (a) proposed method and
(b) baseline method.
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Figure 12. Receiver operating characteristic (ROC) curves obtained from false acceptance rate (FAR)
and false rejection rate (FRR) of both methods on (a) PolyU database and (b) SDU-MLA dataset.

Table 3. Comparison of verification results on the databases.

Results on PolyU Database

Method EER FRR at-zero-FAR FAR at-zero-FRR

Baseline 0.0038 0.1726 0.5175
Proposed method 0.0049 0.2549 0.9998

Results on SDU-MLA Dataset

Method EER FRR at-zero-FAR FAR at-zero-FRR

Baseline 0.0238 0.3517 0.7640
Proposed method 0.0185 0.3569 0.9996

The results of FAR and FRR show the high accuracy of the proposed method. The EERs
of the proposed method are 0.0049 and 0.0185 on the PolyU database and SDU-MLA dataset,
respectively. Although the previous values are not better than those of the baseline, they demonstrate
the effectiveness of our proposal that even obtains a slightly lower EER on SDU-MLA dataset. Besides,
the results of FRR at-zero-FAR and FAR at-zero-FRR of the proposed method are both slightly higher
on both databases, with the FAR at-zero-FRR being very close to 1.

Even though the experimental results show that CPM achieves high accuracy for finger vein
recognition, the discriminability of the baseline algorithm is not improved, but similar results are
obtained. Thus, these results in verification mode task indicate that CPM is a good alternative to the
time-consuming dense matching proposed by Meng et al. [27], which is our main motivation and
contribution.

4.3. Experimentation in Identification Mode

In this section, the recognition performance of our approach is evaluated in the identification
mode. In the identification mode, a biometric system computes a similarity score for each pair of
a testing sample and every known template in the database. For this purpose, we implement the
same experimentation settings proposed in the work by the authors of [27]. The first three finger
vein images of each person are used as testing samples and randomly selected one finger vein image
from the remaining three images of each person as a template of the database. Therefore, there are
312 (156 persons× 2 f ingers) templates and 292,032 (156 persons× 2 f ingers × 3 testing samples×
312 templates) tests of similarity on the PolyU database, while on SDU-MLA dataset, there are 636
(106 persons × 2 hands × 3 f ingers) templates and 1,213,488 (106 persons × 2 hands × 3 f ingers ×
3 testing samples× 636 templates) tests of similarity.



Symmetry 2019, 11, 1167 16 of 26

Figure 13 depicts the cumulative match curves of the method and the baseline. We compute the
ranking of each testing sample by descending sorting of the similarity scores. Besides, we compare the
identification accuracy of both methods in Table 4. As it can be seen, the proposed approach improves
baseline results, achieving average recognition rates of 99.43% and 96.64% on PolyU database and
SDU-MLA dataset, respectively. Besides, the performance comparison shows that modifying the
baseline method, by using CPM instead of DenseSIFT, we can obtain similar values of accuracy for the
recognition task. Moreover, taking into account the results reported in Section 4.5, we consider that the
small differences of accuracy are almost negligible compared to the improvement in time efficiency.
All reported results were obtained by averaging 10 repetitions of the experiments in order to obtain an
unbiased result.
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Figure 13. Cumulative match curves obtained for identification task by both methods on (a) PolyU
database and (b) SDU-MLA dataset.

Table 4. Comparison of identification results on the databases.

Results on PolyU Database

Method Rank-One Lowest Rank of
Recognition Rate Perfect Recognition

Baseline 0.9947 (±0.0035) 25
Proposed method 0.9943 (±0.0027) 39

Results on SDU-MLA Dataset

Method Rank-One Lowest Rank of
Recognition Rate Perfect Recognition

Baseline 0.9651 (±0.0047) 167
Proposed method 0.9664 (±0.0079) 156

As our main motivation is to develop a finger vein recognition method for real-time individual
identification, it should be discussed the difficulties and limitations faced in the identification mode.
In our humble opinion, there are different factors that limit more extensive use of this technology for
massive individual identification, from simple to more technical reasons. These factors also preclude
researchers to collect databases with high quality containing a high number of individuals in order
to be used for identification tasks. Currently, the publicly available databases are only in the order
of hundreds of subjects. Besides, there are not a robust synthetic generator of vein images contrarily
to other traits such as fingerprint. Moreover, it should be mentioned that its major disadvantage
regarding being widely used for individuals identification is because vein images must be caught in
a living body. Although it avoids some fraud techniques, this issue does not allow identify a dead
person for example in case of a disaster differently to fingerprint. All the aforementioned reasons make
the wider use of vein-based biometrics for massive identification of people difficult.
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In the identification mode, a biometric system requires to calculate a matching or similarity score
for each 1:N pair (unknown sample:every stored sample) by performing an exhaustive search in the
database. Then, the identity of the most similar template is used as the identity of the unknown sample.
Therefore, the security and convenience of the system are important requiring high accuracy and fast
response times. Regarding that, we compute a considerable number of similarity tests satisfying both
requirements with a recognition rate above to 99% and an average processing time of 70.89 ms.

In our experimentation scheme, we used three finger vein images per person as testing samples
and only one finger vein image per person as a template sample. In general, this is, practically, a rather
challenging experimental environment, which simulates practical application configurations because,
in many real applications, there are usually not many samples available per subject. However, the main
difficulty in the evaluation was the number of subjects of the databases to evaluate the scalability of the
system. Theoretically, on the basis of the algorithm implemented in our methodology, our approach
should be suitable for GPU parallel programming. Then, we have proposed as future work in the
conclusions, performing further studies in order to evaluate the scalability of our method for massive
identification of people. Nevertheless, on the basis of obtained results, our work contributes to
obtaining a fast and effective finger vein recognition technique for real-time individuals identification,
able to use a large database.

4.4. Impact of Preprocessing Procedures on the Accuracy

The proposed preprocessing procedure in our methodology includes techniques as
ROI segmentation, a block-local intensity normalization, and a sharpening filtering process.
These techniques aim to enhance the quality of finger vein samples in order to improve the
accuracy of the matching process. In this experiment, we evaluate the impact of the preprocessing
procedures introduced in our proposal, particularly block-local normalization and sharpening
filtering. Table 5 compares the accuracy results of the proposed method with and without each
preprocessing procedures, but keeping the others. Also, we evaluate our method by varying
normalization and enhancement processes by using global normalization and CLAHE equalization
for each process, respectively, instead of the proposed techniques and leaving the others as default.
The accuracy results are presented as EER on both databases with the same evaluation protocol of our
verification experiment.

Table 5. Comparison of the impact of preprocessing procedures on the accuracy of the proposed
methodology. The second column (without any (ROI)) means that we use only the ROI images without
any extra preprocessing technique.

Database Without Any Without Local With Global Without With Full
(ROI) Normalization Normalization Sharpening CLAHE Preprocessing

PolyU 0.0326 0.0122 0.0168 0.0149 0.0061 0.0049
SDU-MLA 0.0751 0.0518 0.0570 0.0395 0.0198 0.0185

The obtained results clearly show that preprocessing procedures are very important for improving
recognition accuracy. Regarding the normalization step, it is noticeable that global normalization is
worse than local normalization. It proves that considering the entire image with global normalization
is less appropriate than taking a local variation of intensities values as in local normalization. Besides,
although there are not large differences between sharpening filtering and CLAHE equalization, the
sharpening procedure obtains better results preserving the fine details of finger vein patterns.

4.5. Evaluation of the Impact of the CPM Algorithm on the Time Efficiency

Our method uses CPM as a sparse matching algorithm, contrarily to the baseline [27] that uses
DenseSIFT as a dense matching technique. In this section, we evaluate the impact of CPM on the time
efficiency of the system pipeline. We examine how much faster is our approach than the baseline
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method in Table 6, comparing the execution time of each process. Besides, in Figure 14 we represent
the effect of our multicore implementation on the computed queries per second by varying the number
of processing cores. For this purpose, we average the results of 10 repetitions of the test on a set of
1296 images from PolyU database and SDU-MLA dataset.

Table 6. Results of the execution time of each process of the system. All times are given in
milliseconds (ms).

Method Pre- Feature Matching Similarity Total Overall
Processing Extraction Process Score Time Speed-Up

Baseline 45.10 13.74 578.96 0.38 638.18 -
Proposed method 45.10 25.41 0.08 0.30 70.89 9×

From results, it is highlighted that our method reaches an overall speed-up of up to 9×. On this
regard, it should be noticed that the execution time of our sparse matching process is equal to 0.08 ms,
whereas the dense matching of the baseline method is 7237 times higher. However, the computation
time of our feature extraction is slightly higher than the baseline. It can be explained due to we
use the OpenCV [87] implementations for computing both descriptors, which are not the same used
by Tola et al. [71], whose results found the DAISY descriptor can be computed faster than SIFT.
Nevertheless, this aspect is not a matter because the impact on the total time is small. Besides, it should
be noted the DAISY algorithm is suitable to be parallelized, which we will study in the future.

As it can be seen in Figure 14, the proposed parallel scheme linearly increases the
computed queries per second computed with increasing of processing cores. On the contrary,
the baseline algorithm presents a smaller improvement considering the increasing of processing
cores. This behavior is explained by the fact that the algorithm enables very efficient memory access
by combining CPM and DAISY descriptor. Besides, CPM implements a coarse-to-fine scheme with a
random search on a sparse grid structure, instead of dense correspondences in the baseline method.
The aforementioned advantages suggest that our proposal is also quite suitable for GPU parallel
programming, which will be explored in future work to take advantage of the GPU computation for
massive individuals identification.
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Figure 14. Comparison of computed queries per seconds by varying the number of processing cores.
Number 1 represents the sequential version.

4.6. Evaluation of Different Sparse Matching Methods

Following, we evaluate the performance results of our proposal by using CPM against two
different sparse matching algorithms: DeepMatching [37] and SparseFlow [35]. For this purpose,



Symmetry 2019, 11, 1167 19 of 26

we executed our proposed approach by modifying feature extraction and matching processes with
these algorithms. Table 7 compares the results of each variation against our proposal, given by EER,
Rank-one recognition rate, and the computation time of the matching process, which are measured as
in the previous experiment.

Table 7. Performance results of the proposed approach by modifying the sparse matching algorithm.
The first column represents methods as: CPM [38], DeepMatching [37], and SparseFlow [35].

Method
PolyU Database SDU-MLA Dataset Average

EER Rank-One EER Rank-One Computation
Recognition Rate Recognition Rate Time (ms)

CPM 0.0049 0.9943 0.0185 0.9664 0.08
DeepMatching 0.0198 0.9549 0.0423 0.9168 27.10

SparseFlow 0.0311 0.9267 0.0738 0.8895 50.52

The comparison of results shows that CPM obtains the best performance on both databases.
The main reason why CPM outperforms DeepMatching and SparseFlow is that it can produce
more matches than them by default. Besides, it should be highlighted that computation times of
sparse matching methods are lower than the dense matching used in the work by the authors of [27].
Furthermore, recognition accuracy of DeepMatching [37] and SparseFlow [35] are higher than some
state-of-the-art approaches, see Table 7. The above results demonstrate that sparse matching methods
are a good alternative for finger vein recognition based on displacement information, being the CPM
algorithm the best of the studied methods.

4.7. Comparison with State-of-the-Art Approaches

In this section, we compare the recognition performance obtained by our approach against
state-of-the-art approaches. Table 8 summarizes the results of EER and Rank-one recognition rate
achieved by methods based on different techniques and with experimentation on the same databases.
Five types of approaches for finger vein recognition are compared, and they are identified as follows.

• LBP-based approaches as local binary pattern (LBP) [42] and local linear binary pattern
(LLBP) [43];

• network-based methods such as mean curvature (MeanC) [50], maximum curvature (MaxC) [51],
repeated lines tracking (RLT) [26], and Even Gabor filtering with morphological processing
(EGM) [85];

• minutiae-based techniques include scale-invariant feature transform (SIFT) [53] and minutiae
matching based on singular value decomposition (SVDMM) [45];

• CNN-based approaches such as fully connected network (FCN) [57], CNN with Supervised
Discrete Hashing (CNN+SDH) [58], two-stream CNN (two-CNN) [59], and the very deep CNN
(deeper-CNN) proposed in the work by the authors of [28]; and

• deformation-based methods as the detection and correction method (DFVR) proposed by the
authors of [61] and the baseline method [27].



Symmetry 2019, 11, 1167 20 of 26

Table 8. Comparison of our approach against other methods of the state-of-the-art.

PolyU Database SDU-MLA Dataset

Type of Method EER Rank-One EER Rank-One
Approach Recognition Rate Recognition Rate

LBP-based LBP 0.0234 0.9620 0.0384 0.9112
LLBP 0.0256 0.9615 0.0386 0.9107

Network-based

MeanC 0.0177 0.9648 – –
MaxC 0.0160 0.9781 0.0244 0.9678
RLT 0.0177 0.9722 0.0273 0.9607

EGM 0.0139 0.9829 0.0432 0.9507

Minutiae-based SIFT 0.0355 0.9022 0.0564 0.8006
SVDMM 0.0501 0.9571 – –

CNN-based

FCN 0.0270 – – –
CNN+SDH 0.0977 – – –
two-CNN – – 0.0047 –

deeper-CNN – 0.9532 – –

Deformation-based
DFVR 0.0070 0.9941 0.0318 0.9649

Baseline 0.0038 0.9947 0.0238 0.9651
Proposed method 0.0049 0.9943 0.0185 0.9664

– means the value is not provided in the reference paper.

From the results in Table 7, it can be seen that the recognition performance of deformation-based
methods is significantly more accurate than the rest on both databases. The results of the proposed
approach are only outperformed by the baseline on PolyU database, which as it has seen previously,
the results are slightly similar while our method improves the time efficiency of the baseline with a
speed-up of 9×. Besides, the EER of the two-CNN approach proposed in the work by the authors
of [59] is better than our method on SDU-MLA dataset, but its average matching time is 171 ms. It
should be noticed that deep learning approaches have been successfully applied and enhance finger
vein recognition methods in recent years with remarkable results. Despite that, the performance
of CNN-based finger vein recognition methods should be enhanced by employing large datasets.
Also, these techniques require a time-consuming training process, which is not needed in the
proposed methodology.

The proposed approach has two main advantages against state-of-the-art competitors,
which improve their limitations regarding deformations and time efficiency. First, our proposal
considers the displacement produced by deformations as discriminative information, and, contrary
to other methods, their recognition performances are affected by deformations trying to reduce
its influence. Secondly, our method uses an accurate and efficient matching process based on the
CPM algorithm, which improves other image matching techniques in time efficiency with equivalent
accuracy of the correspondences. CPM implements a fast approximate structure in order to avoid
finding correspondences of every pixel, which reaches a significant reduction of the computation
time. Besides, the foundation of CPM is closely related to the two key ideas that allow distinguishing
between genuine and imposter samples based on the generalized symmetry concept [29] and the
ideas proposed by Meng et al. [27]. Since the geometric structure of finger vein images remains
invariant under the affine transformations produced during the acquisition process, particularly in
the neighborhood of pixels, it is not required to find the correspondences of every pixel of the images.
The aforementioned characteristics allow that the proposed approach outperforms other methods of
the state-of-the-art.

Aiming to provide a statistical analysis of the results regarding the state-of-the-art, we followed
the recommendations of Demšar [88] and the extensions presented in the work by the authors of [89]
for the computations of adjusted p-values. Note that some works show their experimental results on
self-generated datasets, which do not allow to make an equivalent comparison. Thus, for this purpose,
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we only consider those works with reported results on both studied databases. Unfortunately, this issue
made impossible for us to consider CNN-based approaches in our statistical analysis. In spite of that
our results are slightly similar to CNN-based approaches. Thus, there should not have significant
differences between our method and them, while our approach outperforms them in time efficiency.

First, we used the Friedman test to prove the null hypothesis that all the methods obtained
the same results on average. When the Friedman test rejected the null hypothesis, we used
the Bonferroni–Dunn test to know if our method considerably outperforms the next ranked
method. Finally, we use Holm’s step-down procedure to complement the above multicomparison
statistical analysis.

Table 9 shows the ranking of each approach based on EER results for both databases. In this
scenario, we analyze the results to observe and detect considerable differences among compared
methods. The Friedman test rejected the null hypothesis with p = 0.0853. After that, we applied the
post hoc Bonferroni–Dunn test at α = 0.10 to recognize which approach performed equivalently to our
method, which is the best ranked. Taking account the work by the authors of [88], the performance
of two approaches is considerable different if their corresponding ranks differ by at least the critical
difference, calculated as

CD = qα

√
k(k + 1)

6N
= 2.498×

√
9× 10
6× 2

= 6.84 (5)

where qα is the critical value based on the Studentized range statistic, N is the number of studied
datasets, and k is the number of algorithms to compare. Based on the CD criteria, the Bonferroni–Dunn
test finds significant differences between our approach and SIFT method [53], whereas others,
such as LLBP [43], LBP [42], and EGM [85], are near to the boundary of the critical difference.
Aiming to contrast the above results, we report the results of the Holm’s step-down procedure
in Table 10. The Holm’s procedure at α = 0.05 rejects those hypotheses that have a p-value ≤ 0.0071,
finding significant differences with SIFT and LLBP. Also, it confirms that the proposed approach
is slightly better than the other studied methods, but it is not statistically superior. It should be
highlighted that the same tests based on recognition rate produced the same results.

From the previous results, we can conclude that our methodology achieves better results regarding
the state-of-the-art methods on the evaluated databases, finding statistical differences respect to
non-deformation-based approaches, which is significant in some cases. Thus, the results provide
evidence that the sparse-matching approach introduced in this paper is suitable for finger vein
recognition. Moreover, it also improves the time efficiency of the baseline algorithm with a considerable
speed-up of greater than 9×.

Table 9. Average rankings of analyzed methods based on equal error rates (EER) results for
both databases.

Method Ranking

LBP 6.5
LLBP 7.5
MaxC 4.0
RLT 5.0

EGM 6.0
SIFT 9.0

DFVR 4.0
Baseline 1.5

Proposed method 1.5
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Table 10. Methods sorted by p-value and adjusting of α coming from Holm algorithm at α = 0.05.

i Method z = (R0 − Ri)/SE p Holm

8 SIFT 2.74 0.0062 0.0063
7 LLBP 2.19 0.0285 0.0071
6 LBP 1.83 0.0679 0.0083
5 EGM 1.64 0.10 0.01
4 RLT 1.29 0.20 0.0125
3 MaxC 0.91 0.3613 0.01667
2 DFVR 0.91 0.3613 0.025
1 Baseline 0.0 1.0 0.05

5. Conclusions

In this paper, we introduce an optimized sparse matching algorithm as an effective and
efficient alternative for finger vein recognition based on deformation information. Our methodology
proposes preprocessing techniques that are used for robust ROI selection with a block-local intensity
normalization and a sharpening filtering process, aiming to improve and preserve the local details in
the vein patterns. For the feature extraction and matching processes, we combine the DAISY descriptor
and the CPM algorithm (an optimized for a finger vein database) under a multicore platform, aiming
to reduce the computation time and to increase the number of processed queries per second of the
recognition pipeline. For this purpose, we implemented a master-worker parallel scheme based on a
task distribution algorithm in a round-robin manner for the execution of similarity tests.

The main contribution of our proposal is reducing the execution time of the matching process
on finger vein images keeping high efficiency. We present a fast finger vein recognition method
for real-time individuals identification that can be used for individual massive identification
using a large database. Experimental results on well-known databases show that our proposed
approach achieves the state-of-the-art results of deformation-based techniques, finding statistical
differences respect to non-deformation-based approaches. Moreover, the presented technique does not
require a time-consuming training process with a large number of training images like CNN-based
approaches. In terms of time efficiency, our method overcomes the limitations of the baseline method,
achieving real-time recognition in only 70.89 ms with a significant speed-up of greater than 9×. Besides,
the experiments show that our method is highly suitable for being executed under a multicore platform.

As future work, we propose to evaluate the scalability of our method under hybrid parallel
platforms. Thus, we will explore different implementations of the DAISY descriptor and the CPM
algorithm under a GPU parallel platform, in order to use multiples cores of a GPU on a real-world
application for massive individuals identification.
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