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Abstract: Position error-compensation control in the servo system of computerized numerical control
(CNC) machine tools relies on accurate prediction of dynamic tracking errors of the machine tool
feed system. In this paper, in order to accurately predict dynamic tracking errors, a hybrid modeling
method is proposed and a dynamic model of the ball screw feed system is developed. Firstly,
according to the law of conservation of energy, a complete multi-domain system analytical model of a
ball screw feed system was established based on energy flow. In order to overcome the uncertainties
of the analytical model, then the data-driven model based on the back propagation (BP) neural
network was established and trained using experimental data. Finally, the data-driven model was
coupled with the multi-domain analytical model and the hybrid model was developed. The model
was verified by experiment at different velocities and the results show that the prediction accuracy
of the hybrid model reaches high levels. The hybrid modeling method combines the advantages
of analytical modeling and data-driven modeling methods, and can significantly improve the feed
system’s modeling accuracy. The research results of this paper are of great significance to improve
the compensation control accuracy of CNC machine tools.

Keywords: machine tool; feed system; hybrid modeling; multi-domain; analytical model;
data-driven model

1. Introduction

Feed systems are used to position the machine tool components carrying the cutting tool and
workpiece to the desired location [1]. They are one of the most important subsystems of computer
numerical controlled (CNC) machine tools, as their positioning accuracy and speed determine the
quality and productivity of machine tools [2]. Feed drive systems are either powered by linear motors
directly, or by rotary motors via a ball screw and nut. Among them, ball screw feed drive systems are
widely used in CNC machine tools for their high stiffness, reliable operation and ability to mitigate
the impact of inertial and cutting force variations [3,4]. Machining accuracy significantly depends on
the tracking performance of the feed systems for a given trajectory. Therefore, the ball screw should
exhibit good transient and steady tracking performance to meet the demands of high productivity and
high precision of machine tools [5,6].

To improve the tracking accuracy of the ball screw feed system, position error compensation
control is commonly used. If the tracking error can be estimated accurately in advance, the control
problem of the feed system can be eased. Therefore, a model of the ball screw feed system that can
accurately predicted tracking error is essential to improve tracking performance. There are many factors
affecting the tracking performance of the feed system, such as nonlinear friction, backlash, vibration,
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elastic deformation, thermal deformation and so on. These factors have attracted much attention
and extensive research, and numerous papers have been published. Various friction models were
researched in [7–11], such as stick-slip, static friction, Stribeck effects, and so on. Three kinds of backlash
models, which are the hysteresis model [12], dead zone model [13] and vibration-impact model [14],
can be found in previous studies. Another issue is the vibration; vibrations caused by the resonance of
the feed drive were discussed and suppressed by using either the simplified model [15] or the complex
model [16]. Some other studies have concentrated on the elastic deformation [17,18] and thermal
deformation [19] of the ball screw feed systems. Most studies have used lumped-parameters models to
analyze the ball screw feed systems. In order to overcome the shortcomings of lumped-parameters
models, the investigation of hybrid, distributed-lumped parameter modeling methods for ball screw
feed drive systems was conducted in earlier studies [20–22]. Besides, the finite element method (FEM)
is also a common approach to model the ball-screw system. In [23], the FEM model was integrated
with the servo dynamics to evaluate the dynamics response of the transmission system. The studies
mentioned above have made significant contributions to improving the performance of the ball screw
feed systems, but the theoretical analysis of the dynamic tracking performance of ball screw is very
complicated; the influencing factors are so many so that it is difficult to further improve the prediction
accuracy of tracking error based on theoretical analysis. What’s more, most studies have mainly
concentrated on the modeling of the mechanical part, the coupling effects between different domains
have not been considered.

The feed systems consist of multi-domain subsystems such as the mechanical transmission
subsystem, electrical subsystem, control subsystem, and so on. These subsystems belong to different
disciplines and there are complex coupling relationship among them. The performance of the feed
system depends not only on the performance of the subsystems in each domain, but also on the
interaction between them. In fact, the tracking errors of the ball screw feed system are mainly composed
of two parts: the error caused by the servo control subsystem and the error caused by the mechanical
subsystem. Therefore, a multi-domain integrated system model is essential to accurately predict the
tracking performance. Research on multi-domain integrated modeling of ball screw feed systems has
been rare so far. Some integrated modeling methods for feed systems in machine tools have been
proposed [24–28]. In the references, the multi-domain coupling characteristics of a feed system were
taken into account, but the modeling efficiency was low and it was hard to achieve real seamless
integration due to use of the modeling method based on signal flow. Some attempts have been made
to use the non-causal modeling method based on Modelica to establish the model of feed system,
but the model was not strictly in accordance with the actual system and the model was not validated by
experiment [29–31]. The deficiencies of existing research into integrated modeling of a feed system are
that the parameters of the integrated model are too many, so they are difficult to determine accurately,
meaning the accuracy of the model is limited.

According to previous research, the feed system model is usually derived from expert domain
knowledge (e.g., basic physical principles). This modeling approach is called analytical modeling,
also known as knowledge-driven, physics-based, or mechanism modeling. However, for complicated
multi-domain systems such as feed systems, it is often too complex to derive their analytical model
and to fully capture their dynamics. Additionally, the parameters may be time-varying or unknown,
which limit the feed system’s modeling accuracy. The feed system model can also be established by
machine learning techniques, which is called the data-driven modeling method. Machine learning is
one of today’s most rapidly growing technical fields [32]; there has been growing interest in applying
machine learning to draw insights gained from the data in engineering [33]. Data-driven analytics
techniques have been applied for prediction [34–37], detection and classification [38,39], forecasting [40],
control [41,42], and many problems of specific interest. For example, Zhe Li et al. [34] proposed a
data-driven method for backlash error predication through the deep belief network (DBN). John C.
Ziegert et al. [37] used an artificial neural network (ANN) to predict tool point positioning error in
machine tools. Ronay Ak et al. [38] proposed a prediction model based on a neural network for
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estimating the energy consumption of a milling machine, while Gaussian process (GP) has been
used to develop the data-driven energy prediction model with uncertainty for a milling machine [36].
Jinkyoo Park et al. [42] have discussed the data-driven modeling methods that are based on Bayesian
statistic inference and illustrate their potential applications for performance characterization, condition
diagnostic and control optimization of machine tool systems, for which analytical modeling of such
systems can be difficult. Data-driven models are widely used and have achieved good results, but do
not have interpretability and expressiveness. They need training data, but the data can hardly cover all
working conditions. So, the fully data-based models may suffer from inaccuracies as well when the
working condition of the feed system varies in a large range. In order to overcome the shortcomings of
purely data-driven modeling methods, a hybrid analytical and data-driven modeling method was
proposed. Relatively little related literature has appeared so far. René Felix Reinhart et al. [43,44] have
used the hybrid analytical and data-driven modeling method to establish the kinematics model for soft
robots and the inverse dynamic model for rigid robots. The authors only consider the hybrid modeling
of robots at the component level.

This paper argues that an analytical model of a feed system should be established as a whole,
incorporating mechanical, electrical, control, and other subsystems. Considered at system level,
this paper develops a hybrid multi-domain analytical and data-driven model for the ball screw feed
system to predict the tracking error. According to the law of conservation of energy, based on energy
flow and symmetry transformation, a complete multi-domain system analytical model of the ball
screw feed system is established. In order to compensate for the uncertainty of the model structure
and parameters, a data-driven model based on a neural network was coupled to the multi-domain
analytical model in parallel. The modeling method can implement seamless integration of complex
systems in multiple domains and improve modeling accuracy. The hybrid model of the ball screw feed
system was validated by experiment results.

The remainder of the paper is organized as follows. Section 2 introduces the multi-domain
analytical modeling process for the ball screw feed system. Section 3 introduces the data-driven model.
Section 4 introduces the hybrid modeling method for the ball screw feed system. Section 5 introduces
the experimental verification of the hybrid model. Section 6 summarizes the full text.

2. Multi-Domain Analytical Model of the Ball Screw Feed System

2.1. Multi-Domain Modeling Method for the Ball Screw Feed System

It is generally known that a ball screw feed system is a multi-domain integrated system
which incorporates mechanical, control, electrical and other subsystems. This paper argues that
the multi-domain coupling characteristics of the feed system should be taken into account when
establishing an analytical model. Therefore, a modular non-causal modeling method based on Modelica
language is used to establish the multi-domain analytical model of the feed system. Modelica is
an object-oriented physical system modeling language, which supports the modeling of component
models based on equations and the modeling of complex system based on component non-causal
connection. In Modelica, the interface of the component model is called the connector, and the coupling
relationship established on the component connector is called the connection. If the connection
expresses a causal coupling relationship, it is called a causal connection. If the connection expresses a
non-causal coupling relationship, it is called a non-causal connection. The component model connection
mechanism is shown in Figure 1.

The key to establishing a multi-domain knowledge-driven model of ball screw feed system is how
to divide the system and define the interfaces of component models in each domain. In this paper,
the ball screw feed system is divided according to its real physical structure, then component models
are established and its interfaces are defined, and finally the multi-domain integrated model of feed
system is established by connecting component models. The ball screw feed system studied in this
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paper was driven by permanent magnet synchronous motor, and the module division of the system is
shown in Figure 2. Each module can also be further divided into smaller modules.
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The multi-domain analytical model of the ball screw feed system was developed base on Modelica
language for its advantages and capabilities of component-based non-causal modeling. And the model
mainly included the mechanical subsystem model, servo control subsystem model, the permanent
magnet synchronous motor (PMSM) model, sensor models and other models. The structure of the
model is shown in Figure 3.
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2.2. Modeling and Analysis of the Mechanical Subsystem

The mechanical part of a ball screw feed system is usually composed of sub-components, such as
couplings, ball screws, supporting bearings at both ends, linear guide rails, screw nuts, the workbench,
and so on. When establishing the mechanical subsystem model, the mechanical connector interface
should be defined first, and then the component models are established based on the equation.
The modeling schematic diagram is shown in Figure 4. The output torque of servo motors is
represented as Te and the rotational and translational motion of mechanical parts are both driven by
servo motors. The torsional stiffness of the coupling, the torsional stiffness and axial stiffness of the
ball screw, the axial stiffness of the bearing and the screw nut, the backlash, and the nonlinear friction
are all considered in the model.
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For the servo motor, according to Euler’s law of motion, the torque balance equation on its output
shaft is

Te = Jm
..
θm + Bm

.
θm + TL (1)

where Jm is the rotor inertia of the motor, θm is the angular displacement of the output shaft of the
motor, Bm is the viscous damping coefficient and TL is the load torque on the motor shaft.

Considering the flexibility of each mechanical component, then

TL = KL(Θm −ΘL) (2)
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where ΘL is the angular displacement of the screw shaft. KL is the total torsional stiffness converted
from the stiffness of each component. KL can be calculated by the following equation, found in [27]:

1
KL

=

(
2π
p

)2

η
1

KZ
+

1
KT

(3)

where KT is the total equivalent torsional stiffness of the feed system, KZ is the total equivalent axial
tension compression stiffness of feed system, and η is efficiency of the driving mechanism. KT and KZ

can be calculated as follows [27]:
1

KT
=

1
Ktc

+
1

Kts
(4)

1
KZ

=
1

Kas
+

1
Kan

+
1

Kab1 + Kab2
(5)

In the above equation, Ktc is torsional stiffness of coupling, Kts is the torsional stiffness of the lead
screw, Kas is the axial stiffness of the lead screw, Kan is the axial stiffness of the nut, Kab1 and Kab2 are
the axial stiffness support bearing. The formulas for calculating the above stiffness parameters can be
found in previous studies [10,27]:

Kas =
EbsAsLsg

x
(
Lsg − x

) (6)

Kan = 0.8Kn0(
Fp

0.1Cn0
)

1
3

(7)

where Ebs is the elastic modulus of the lead screw material, As is the sectional area of the lead screw, Lsg

is the distance between two supporting bearings, x is the distance between the nut and one end of the
bearing, Fp is the nut preload level, Kn0 is the contact stiffness of nut, and Cn0 is double nut pre-loading
dynamic load rating.

For the lead screw, it is obvious that the moment balance equation on the shaft is

TL = (Jc + Js)
..
θL + BL

.
θL + Tt (8)

where Jc and Js are the moment of inertia of the coupling and the screw shaft respectively, Tt is the load
torque of the screw shaft.

There is backlash between the ball screw and the nut. The backlash has non-linear characteristics,
which has a great influence on the positioning accuracy of the feed drive system. In this paper,
a nonlinear elastic method [13] is used to establish the backlash model. The characteristics of the
backlash are described by an abstract spring in the method. When the screw is in the gap zone, the
spring stiffness is zero, and when the screw passes through the gap zone, the spring becomes stiff.
The torque-angular displacement curve is shown in Figure 5.
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For the ball screw feed system, when the backlash is considered, the load torque on the screw
shaft can be calculated as follows:

Tt =


Kc

(
∆θ+ b

2

)
+ d

.
∆θ ∆θ < − b

2
0 −

b
2 < ∆θ < b

2
Kc

(
∆θ− b

2

)
+ d

.
∆θ ∆θ > b

2

(9)

In Equation (9), Kc and d are the equivalent spring constant and equivalent damping of backlash
respectively, b is the total backlash, and ∆θ = θL −θt. θt is related to the displacement of the workbench.
Regardless of vibration, it can be seen in [18] that the displacement of the workbench S is:

S =
( p

2π

)
θt − S′ (10)

S′ is the additional displacement of the worktable caused by the axial and torsional deformation of the
lead screw, and

S′ =
F

KZ
+

( p
2π

)2 1
η

F
KT

(11)

where F is the driving force of the workbench, which is generated by the torque Tt,

F = η
2π
p

Tt (12)

For the workbench, according to Newton’s theorem, the force equilibrium equation is

F = M
..
S + Fx + F f (13)

where Fx is the axis component of cutting force. According to Stribeck model [10], the friction force F f
can be calculated as follows:

F f =
[
µ(Mg + Fz) + µv

∣∣∣∣ .
S
∣∣∣∣+ fse−b0

.
S
]
sgn(

.
S) (14)

where the µ is the Coulomb friction coefficient, M is load mass, µv viscous friction coefficient, fs is the
Stribeck effect, b0 represents the exponential decay.

By synthesizing the above formulas, the dynamic model of the mechanical part of the ball screw
feed system can be established. The model is encapsulated and the interface for data exchange with
other models is set up. The encapsulated model of the mechanical part can be seen in Figure 4.

2.3. Modeling of the Servo Drive System

The feed system studied in this paper was powered by a permanent magnet synchronous motor,
and the space vector control is used in servo drive system, which includes position control loop,
speed control loop and current control loop. The motor was fed by a pulse width modulation
(PWM) voltage source thyristor inverter, and the voltage modulation mode was space vector pulse
width modulation (SVPWM) [45]. The servo drive system mainly included proportional integral (PI)
controllers, coordinate transformation modules, the SVPWM module and inverter. In this paper, based
on the analysis of the theory of space vector control, the modular modeling method described above is
applied to establish the servo drive system model. First of all, the module models containing input
and output interfaces are established.
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Digital PI controllers are usually used in actual servo control systems. In order to keep the model
consistent with reality, the model of digital PI controllers is established based on discrete control theory.
The theory of digital PI control algorithm is as follows:

u(k) = kpe(k) +
kp

Ti

k∑
j=0

e( j)T (15)

The coordinate transformation module includes Park transformation, Clark transformation
and corresponding inverse transformation. These module models are established according to the
transformation equation. The details of the Park and Clark transformation can be seen in [21].

The implementation of the SVPWM algorithm in vector control can be summarized as consisting of
three steps: determination of the sector, calculation of the basic space vectors duration and calculation
of the PWM comparison threshold, as shown in Figure 6.
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According to the above analysis process, each module model was established based on the
Modelica language, and then the SVPWM module model was obtained by connection. The outputs
of the SVPWM model are the control signal of the inverter switch tube. The topology circuit of the
inverter is shown in Figure 6: VT1~VT6 are power switch tubes, and the on-off of each switch is
controlled by the drive signal S1~S6, UA, UB and UC is the output voltage of the inverter. In this paper,
the electrical interface model, power switch transistor and diode model are established first, and then
the inverter model is established by connecting the component models according to the topology
circuit structure of the inverter. Similar to the model of mechanical parts, the servo control subsystem
model was encapsulated and several interfaces set up, as shown in Figure 6.

2.4. Modeling of the Permanent Magnet Synchronous Motor

The electromagnetic relations of the PMSM are very complicated. In order to simplify the analysis,
some assumptions are made as follows:

(1) The conductivity of permanent magnet material is zero;
(2) There is no damping winding on the rotor;
(3) Stator winding current produces only sine distribution of magnetic potential in the air gap,

ignoring the high-order harmonic of magnetic field;
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(4) During the steady-state operation, the waveform of induction electromotive force in phase
winding is sinusoidal.

The physical quantities of AC motor windings, such as voltage, current and flux, vary with
time, and time phasors are often used to represent them in analysis. However, they can also be
defined as spatial vectors if considering the space position of the windings. The synthetic vector
formed by the same physical quantity in three-phase windings is the synthetic space vector of this
physical quantity. The symmetrical three-phase current, voltage and flux linkage in three-phase
symmetrical stator windings of permanent magnet synchronous motor can be regarded as the space
vector. Through coordinate transformation of the space vector, the mathematical equation of permanent
magnet synchronous motor in a two-phase rotating coordinate system can be derived [45].

The voltage equation of d and q axis is shown as follows:

ud = Rsid +
dψd

dt
−ωψq (16)

uq = Rsiq +
dψq

dt
+ωψd (17)

where ω is the electrical rotor angular speed, Rs is equivalent stator resistance, ud and uq are the
d-and-q-axis voltage, id and iq are the d-and-q-axis current, ψd and ψq are the d-and-q-axis flux linkage.

The flux linkage equations of d and q axes are as follows:

ψd = Lsσid + Lmdid + Lmdi f (18)

ψq = Lsσiq + Lmqiq (19)

where Lsσ is the damper stray inductance, Lmd is the stator main field inductance per phase in d-axis,
Lmq is stator main field inductance per phase in q-axis, i f is the equivalent excitation current of the rotor
permanent magnet. i f is a parameter and the calculation of it can be seen in [46]. The electromagnetic
moment equation acting on the motor shaft is as follows:

Tem =
3
2

p
(
ψdiq −ψqid

)
=

3
2

pLmdi f iq (20)

where Tem is the electromagnetic torque and p is the number of pole pairs.
Based on the above PMSM mathematical model, the equivalent circuit of PMSM in d and q axis

coordinates can be obtained, as shown in Figure 7:
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Based on the analysis and the equivalent circuit mentioned above, and considering the loss models
of copper, iron and friction, a permanent magnet synchronous motor model is established in this paper.
The encapsulated model of the PMSM can be seen in Figure 7. Completely accurate PMSM modelling
is difficult to obtain because that PMSM is a high-order, non-linear, strong coupling system. So, some
assumptions have been made to analyze the PMSM model. The error produced by these assumptions
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is hard to avoid, but the error can be reduced by modifying the model parameters through experiments.
What’s more, the error can be compensated for to a certain extent by the data-driven model.

3. The Learned Data-Driven Model

The accuracy of the analytical model can hardly reach a high level because the model can hardly
capture all aspects of the feed system’s intrinsic properties, and there remain unmodeled dynamics.
Therefore, a data-driven model was developed as a supplement to the analytical model.

In this thesis, the data-driven model was used to fit the deviation between the output of the
analytical model and the measured value. A back propagation neural network (BPNN) was chosen to
build the data-driven model because the data-driven model is small in scale and the BPNN structure
is simple, the local extremum points are few, the fitting accuracy is high, and it is easy to transplant.
The structure of BPNNs can be divided into input layer, hidden layer and output layer. In the hybrid
model, the data-driven model was used to predict the deviation between theoretical model output
and measured value. The scale of the data-driven model was relatively small, so a three-layer BPNN
was chosen in which the position command signal and the working table displacement output from
analytical model were the input layer neurons. There was only one output neuron which was the
deviation between the working table displacement measured by experiment and that simulated by the
analytical model. The relevant theory of BPNN can be referred to [47]. Combining with the empirical
formula, the number of neurons in the hidden layer was determined by the trial and error method.
The number of neurons in the hidden layer is 10 and the empirical formula is shown as follows

l <
√

m + n + a (21)

In Equation (21), m, n and l are the number of nodes in the input layer, output layer and hidden
layer respectively, and a is a constant between 0 and 10.

BP neural network represents the mapping relationship between n independent variables and
m dependent variables. Before making a prediction, network training is needed to give it the ability
to perform association and decision-making. If ωi j represents the connection weights between input
layer i and hidden layer j, v jk represents connection weights between hidden layer j and output layer
k, a j and bk represent the thresholds of hidden layer j and output layer k, respectively, then the output
of the hidden layer is:

H j = f1(
n∑

i=1

ωi jxi − a j), j = 1, 2, . . . , 10, n = 2 (22)

In Equation (22), f1 is the activation function of the hidden layer. The sigmoid function shown in
Equation (23) was chosen in this paper.

f1(x) =
1

1 + e−x (23)

The output of the BP network is shown as follows:

Ok = f2

 l∑
j=1

H jv jk − bk

, k = 1, l = 10 (24)

In Equation (24), f2 is the activation function of the output layer and that the function f2(x) = x
was chosen in this paper.
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If Y1 represents the actual value of the deviation between measured working table displacement
and that simulated from the analytical model, then the error function of the BP network is shown
as follows.

E =
1
2
(Y1 − (

10∑
j=1

( f1

 2∑
i=1

ωi j − a j

 · v j1 − b1)))
2 (25)

The weights and thresholds of the BPNN are updated by gradient descent method of error function.
In order to train the BPNN, some input and output label data are collected by experiment, as shown

in Figure 8.Symmetry 2019, 11, x FOR PEER REVIEW 11 of 20 
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Figure 8. Training data for the back propagation neural network (BPNN). (a) Input data of position
command; (b) Input data of analytical simulated position; (c) Output data of deviation.

The input working table command displacement shown in Figure 8a is the sinusoidal signals with
periods of 12π seconds in the first 30 s and periods of 2π seconds in the rest of the 30 s, and that the
amplitude of the signal is 0.1 m. The second input of the BPNN shown in Figure 8b is the simulation
working table displacement of the analytical model. The output label of the BPNN shown in Figure 8c
is the deviation between measured working table displacement and that simulated from analytical
model. Use of the steepest gradient descent method to train the BPNN data-driven model and the
results are shown in Figure 9.
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Figure 9. Training results of the BPNN.

In Figure 9, the Loss is the variance of the deviation between the label value and the output of the
BP network model. It can be seen that after about 2000 training sessions, the loss value tended to be
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stable. The data-driven model can be established by using the DBN [34], ANN [37], GP [36] and so
on. In this paper, the simple BP network was chosen to avoid over-fitting because of the data-driven
model is small in scale. After a great quantity of training, the weights and thresholds of the data-driven
model can be learned.

4. Hybrid Model of the Ball Screw Feed System

The multi-domain hybrid modeling method proposed in this paper combines the advantages of
analytical and data-driven modeling methods. The principle of this hybrid modeling method is shown
in Figure 10.Symmetry 2019, 11, x FOR PEER REVIEW 12 of 20 
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The hybrid model consists of two parts, which are the multi-domain analytical model and
data-driven model. The model can be expressed by the following mathematical formula.

ŷ = f(x, p) = fk

(
x, pk

)
⊕ fd

(
x, pd

)
(26)

In the formula, x ∈ Rm and ŷ ∈ Rn are input and output vectors, f is a function for the hybrid
model relation between x and ŷ, and fk and fd are the functions associated with analytical model and
data-driven model. p ∈ Rp is the parameter vector of the function f, and pk and pd are the parameter
vectors associated with the function fk and fd, respectively. The symbol “⊕” represents a coupling
operation between the analytical model and data-driven model. Based on experimental and simulation
data and parameter identification algorithm, the parameters pk can be identified. The parameters pd
can be obtained by the training algorithm.

In general, a model that can learn from data without using any domain knowledge is called a
data-driven model, for example, artificial neural networks, support vector machines, fuzzy methods,
generalized linear models, and so on. In this thesis, the data-driven model is used to fit the deviation
between the output of the analytical model and the measured value. The mathematical expressions of
the coupling between knowledge-driven model and the data-driven model are given by the following:

ŷ = f(x, p) = fk

(
x, pk

)
+ fd

(
x, fk

(
x, pk

)
, pd

)
(27)

The data-driven model can be learned after training and then the data-driven model is coupled
with the analytical model and the hybrid model of the ball screw feed system is established as shown
in Figure 11.
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5. Simulation and Experiments

In order to validate the multi-domain hybrid system model, a ball screw feed system test platform
was set up as shown in Figure 12. The position command signal of the working table was generated by
the numerical control device. The angular displacement of the servo motor could be measured by the
photoelectric encoder and the position of the workbench could be measured by the linear encoder.
Given the different types of position command signals, the actual position, velocity and acceleration of
the working table, and the output torque of the servo motor, and so on, could be measured by the
corresponding experimental instruments.
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The main parameters of the ball screw feed system are listed in Table 2. When these parameters
were imported into the multi-domain hybrid model of feed system, the tracking error could be predicted
by the model and the comparison between the measured results and the simulation results could
be performed.
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Table 2. The parameters of the ball screw feed system.

Name of Parameters Value

Nominal torque of the motor 18 N m
Nominal speed of the motor 2000 rpm

Nominal current of the motor 12.5 A
Nominal power of the power 3.6 Kw

Inertia of the motor rotor 5.3 × 10−3 Kg ·m2

Pole-pair number of the motor 4
Equivalent resistance of phase winding 0.184 Ω

d axis inductance of the motor Ld 2.3 × 10−3 H
q axis inductance of the motor Lq 2.3 × 10−3 H

Control cycle of position loop 0.001 s
Position loop gain 120 Hz

Control cycle of velocity loop 0.125 ms
Velocity loop gain 800 Hz

Integral time constant of velocity loop 40 ms
Control cycle of current loop 31.25 us

Current loop gain 5000 Hz
Integral time constant of current loop 9.8 ms

DC-side voltage of inverter 560 V
Pitch of the ball screw 16 mm

backlash 17 um

5.1. Single Axis Ball Screw Feed System Hybrid Model

First, the single-axis ball screw feed system hybrid model was verified under the sinusoidal
position command signal (the given position command signal varies with time according to the
sinusoidal law). The G code was loaded to make the displacement of the working table change with
time according to sinusoidal law. The maximum feed speed was set to 1000 mm/min, 2000 mm/min,
3000 mm/min, 4000 mm/min, 5000 mm/min, and 6000 mm/min respectively, and the stroke was set to
100 mm. The given position command signals of the working table are shown in Figure 13.
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The sinusoidal position command signal with the maximum feed speed of 1000mm/min and
6000 mm/min were used to train the data-driven model, and the rest of the signals were used to verify
the hybrid model. The same G code was imported into the hybrid model and then the simulation
results were compared with the measured results.

If Sm represents the displacement of the workbench measured by the experiment, SAp represents
the displacement predicted by the pure analytical model, SHp represents the displacement predicted
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by the hybrid model, and S is the command displacement, then the dynamic tracking errors can be
defined as follows: 

Em = Sm − S
EAp = SAp − S
EHp = SHp − S

(28)

where Em is the tracking error measured by the experiment, EAp is the tracking error predicted by
the pure analytical model and EHp is the tracking error predicted by the hybrid model. The hybrid
model prediction error (EHp −Em) and the analytical model prediction error (EAp −Em) were compared,
as shown in Figure 14.
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Figure 14. Comparison of the pure analytical model simulation results and the hybrid model simulation
results at different feed speed.

It can be clearly seen in Table 3 that the prediction accuracy of the hybrid model was higher
than that of the pure analytical model. To evaluate the difference between the simulation results
and experiment results quantitatively, the maximum absolute error (MAE), root mean square error
(RMSE) and relative error (RE, refers to the ratio of absolute error to measured true value, expressed
as percentage) were evaluated. The simulation accuracy of the hybrid model and the analytical
model can be seen in Table 3. The results show that the maximum deviation of the tracking error
between the measured and predicted by the hybrid model were all under 6.79 µm. The RMSE of the
prediction errors were all under 2.63 µm and the RE decreased gradually as the feed rate increased.
The comparison of results showed that, compared with the pure analytical model, the hybrid model
can improve the accuracy of tracking error prediction, and the accuracy of the hybrid model proposed
in this paper can reach a relatively high level.
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Table 3. Simulation accuracy of the hybrid model at different feeding rate.

Feed Rate (mm/min) F1000 F2000 F3000 F4000 F5000 F6000

Hybrid model
(MAE)/µm 5.22 5.16 5.98 5.27 4.55 6.79
(RMSE)/µm 1.87 2.33 1.72 1.41 1.64 2.63

(RE) 2.7% 2.0% 1.1% 0.7% 0.5% 0.6%

Analytical model
(MAE)/µm 7.99 7.52 7.70 8.51 10.2 12.38
(RMSE)/µm 2.91 2.83 3.15 3.84 4.89 6.21

(RE) 4.2% 4.0% 1.4% 1.1% 1.1% 1.2%

5.2. Double Axis Ball Screw Feed System Hybrid Model

The double axis ball screw feed system consisted of the x-axis feeding system and the y-axis
feeding system. The system model was established with the use of the hybrid multi-domain analytical
and data-driven modeling method proposed in this paper, and it can be used to predict contour
error. The accuracy of the model was verified by experiment under different speeds of circle
drawing. The experimental velocities included 60 rad/min, 80 rad/min, 100 rad/min and 120 rad/min.
The simulation and experiment results are shown in Figure 15. (The circle contour error is magnified
500 times in the figure).

Symmetry 2019, 11, x FOR PEER REVIEW 16 of 20 

 

5.2. Double Axis Ball Screw Feed System Hybrid Model 

The double axis ball screw feed system consisted of the x-axis feeding system and the y-axis 
feeding system. The system model was established with the use of the hybrid multi-domain analytical 
and data-driven modeling method proposed in this paper, and it can be used to predict contour error. 
The accuracy of the model was verified by experiment under different speeds of circle drawing. The 
experimental velocities included 60 rad/min, 80 rad/min, 100 rad/min and 120 rad/min. The 
simulation and experiment results are shown in Figure 15. (The circle contour error is magnified 500 
times in the figure). 

 
Figure 15. Comparisons between simulation results and experimental results of circular trajectory 
tracking at different velocity. 

There are four circles in Figure 15, they are the standard circle, experiment circle, analytical 
model-predicted circle and the hybrid model-predicted circle. The standard circle is the trajectory 
command given by the numerical control device and the experiment circle is the trajectory measured 
by the linear encoder. The predicted circles of the pure analytical and the hybrid model are compared 
in the figure. As can be seen in the figure, the circle predicted by the hybrid model was much closer 
to the experimental circle than the circle predicted by the pure analytical model. Especially at high 
speed, the advantage of the hybrid model was more obvious. As the angular velocity increased, the 
prediction effect of the pure analytical model was getting worse. The contour error curves predicted 
by the pure analytical model and the hybrid model are show in Figure 16. It can be seen in the figure 
that the contour error predicted by the hybrid model was much smaller than that the analytical model 
predicted. Also, the contour error predicted by the analytical model increased as the angular velocity 
increased, whereas the contour error predicted by the hybrid model did not change much.  
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There are four circles in Figure 15, they are the standard circle, experiment circle, analytical
model-predicted circle and the hybrid model-predicted circle. The standard circle is the trajectory
command given by the numerical control device and the experiment circle is the trajectory measured
by the linear encoder. The predicted circles of the pure analytical and the hybrid model are compared
in the figure. As can be seen in the figure, the circle predicted by the hybrid model was much closer to
the experimental circle than the circle predicted by the pure analytical model. Especially at high speed,
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the advantage of the hybrid model was more obvious. As the angular velocity increased, the prediction
effect of the pure analytical model was getting worse. The contour error curves predicted by the
pure analytical model and the hybrid model are show in Figure 16. It can be seen in the figure that
the contour error predicted by the hybrid model was much smaller than that the analytical model
predicted. Also, the contour error predicted by the analytical model increased as the angular velocity
increased, whereas the contour error predicted by the hybrid model did not change much.Symmetry 2019, 11, x FOR PEER REVIEW 17 of 20 
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Comparison of the maximum contour error predicted by the hybrid model and the pure analytical
model are shown in Table 4. The results show that the maximum contour error predicted by the hybrid
model can reach 6.96 µm and the prediction ability is better than the pure analytical model.

Table 4. Comparison of maximum contour error predicted by analytical model and hybrid model at
different velocity.

ω (rad/min) 60 80 100 120

Max Error (Analytical model predicted)/µm 7.19 8.62 10.26 12.54
Max Error (Hybrid model predicted)/µm 6.57 5.34 4.10 6.95

6. Conclusions

This paper proposed a multi-domain hybrid analytical and data-driven modeling method for
the ball screw feed system in machine tools, and a hybrid model of a single-axis and double-axis ball
screw feed system were developed by the proposed modeling method. The hybrid model comprised
an approximate multi-domain analytical model and a learned, data-driven error model. Experiments
were performed to validate the accuracy of the hybrid model and the results show that the model can
significantly improve the feed system’s modeling accuracy. The main conclusions of this article are
as follows:
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1. A hybrid multi-domain analytical and data-driven modeling method was proposed in this paper
and a hybrid model of a ball screw feed drive system was established accurately using the hybrid
modeling method.

2. In contrast to the traditional causal modeling method based on signal flow, the multi-domain
integrated analytical model of the ball screw feed system was established using the non-causal
modeling method based on energy flow. The analytical model of a feed system developed in this
paper realized seamless integrated modeling of a complicated multi-domain system.

3. A data-driven error model based on a BP neural network was established and the model was
trained using experimental data. Then the learned data-driven error model was coupled with the
analytical model of the ball screw feed system and the hybrid model was obtained.

4. The hybrid model was validated using experimental data at different speeds, and the results
show that, whether for the tracking error of a single-axis feeding system or the contour error of a
double-axis feeding system, the prediction effect of the hybrid model is better than that of a pure
analytical model, and the prediction accuracy of the hybrid model reaches a higher level.

The hybrid modeling method combined the advantages of the analytical modeling and the
data-driven modeling methods. Complex system models often have numerous parameters, and
some parameters are difficult to determine accurately. In addition, pure analytical models generally
have assumptions, so pure analytical models inevitably have uncertainties and unmodeled dynamics.
Coupling a data-driven model to the multi-domain integrated analytical model of feed systems,
the uncertainty of the model can be reduced to a certain extent, and the accuracy of the model can be
improved. The research results of this paper could be applied to error compensation control of CNC
machine tools to improve their control accuracy.

Author Contributions: Conceptualization, Z.M. and L.C.; methodology, J.D.; validation, T.P. and Z.M.; data
curation, J.D.; writing—original draft preparation, Z.M.; writing—review and editing, J.D.; visualization, Z.M.
and Z.M.; supervision, L.C.

Funding: This research was funded by [National Key R&D Program of China] grant number [2018YFB1700905].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Altintas, Y. Machine tool feed drives. CIRP Ann. 2011, 60, 779–796. [CrossRef]
2. Zhang, H.; Zhang, J.; Liu, H.; Liang, T.; Zhao, W. Dynamic modeling and analysis of the high-speed ball

screw feed system. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 229, 870–877. [CrossRef]
3. Erkorkmaz, K.; Kamalzadeh, A. High bandwidth control of ball screw drives. CIRP Ann. 2006, 55, 393–398.

[CrossRef]
4. Tsai, P.C.; Cheng, C.C.; Hwang, Y.C. Ball screw preload loss detection using ball pass frequency. Mech. Syst.

Signal Process. 2014, 48, 77–91. [CrossRef]
5. Zhang, C.Y.; Chen, Y.L. Tracking control of ball screw drives using ADRC and equivalent-error-model-based

feedforward control. IEEE Trans. Ind. Electron. 2016, 63, 7682–7692. [CrossRef]
6. Sepasi, D.; Nagamune, R. Tracking control of flexible ball screw drives with runout effect and mass variation.

IEEE Trans. Ind. Electron. 2012, 59, 1248–1256. [CrossRef]
7. Armstrong-Hélouvry, B.; Dupont, P.; DeWit, C.C. A survey of models, analysis tools and compensation

methods for the control of machines with friction. Automatica 1994, 30, 1083–1138. [CrossRef]
8. Jeong, H.Y.; Min, B.K.; Cho, D.W.; Lee, S.J. Motor current prediction of a machine tool feed drive using a

component-based simulation model. Int. J. Precis. Eng. Manuf. 2010, 11, 597–606. [CrossRef]
9. Karnopp, D. Computer simulation of stick-slip friction in mechanical dynamic systems. ASME J. Dyn. Syst.

Meas. Control 1985, 107, 100–103. [CrossRef]
10. Duan, M. Dynamic Modeling and Experiment Research on Twin Ball Screw Feed System Considering the

Joint Stiffness. Symmetry 2018, 10, 686. [CrossRef]
11. Johanastrom, K.; Canudas-de-Wit, C. Revisiting the LuGre friction model. IEEE Control Syst. Mag. 2008,

28, 101–114. [CrossRef]

http://dx.doi.org/10.1016/j.cirp.2011.05.010
http://dx.doi.org/10.1177/0954405414534641
http://dx.doi.org/10.1016/S0007-8506(07)60443-0
http://dx.doi.org/10.1016/j.ymssp.2014.02.017
http://dx.doi.org/10.1109/TIE.2016.2590992
http://dx.doi.org/10.1109/TIE.2011.2158042
http://dx.doi.org/10.1016/0005-1098(94)90209-7
http://dx.doi.org/10.1007/s12541-010-0069-1
http://dx.doi.org/10.1115/1.3140698
http://dx.doi.org/10.3390/sym10120686
http://dx.doi.org/10.1109/MCS.2008.929425


Symmetry 2019, 11, 1156 19 of 20

12. Grundelius, M.; Angeli, D. Adaptive control of systems with back-lash acting on the input. In Proceedings of
the 35th IEEE Conference on Decision and Control, Kobe, Japan, 13 December 1996; pp. 4689–4694.

13. Tao, G.; Ma, X.; Ling, Y. Optimal and nonlinear decoupling control of systems with sandwiched backlash.
Automatica 2001, 37, 165–176. [CrossRef]

14. Mata-Jimenez, M.T.; Brogliato, B.; Goswami, A. On the control of mechanical systems with dynamic backlash.
In Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA, USA, 12 December
1997; pp. 1990–1995.

15. Kamalzadeh, A.; Erkorkmaz, K. Compensation of axial vibrations in ball screw. CIRP Ann. Manuf. Technol.
2007, 56, 373–378. [CrossRef]

16. Tsai, M.S.; Huang, Y.C.; Lin, M.T.; Wu, S.K. Integration of input shaping technique with interpolation for
vibration suppression of servo-feed drive system. J. Chin. Inst. Eng. 2017, 40, 284–295. [CrossRef]

17. Huang, H.W.; Tsai, M.S.; Huang, Y.C. Modeling and elastic deformation compensation of flexural feed drive
system. Int. J. Mach. Tools Manuf. 2018, 132, 96–112. [CrossRef]

18. Li, F.; Jiang, Y.; Li, T. An improved dynamic model of preloaded ball screw drives considering torque
transmission and its application to frequency analysis. Adv. Mech. Eng. 2017, 9, 1687814017710580. [CrossRef]

19. Xu, Z.Z.; Choi, C.; Liang, L. Study on a novel thermal error compensation system for high-precision ball
screw feed drive (2 nd report: Experimental verification). Int. J. Precis. Eng. Manuf. 2015, 16, 2139–2145.
[CrossRef]

20. Pislaru, C.; Derek, G.F.; Holroyd, G. Hybrid modelling and simulation of a computer numerical control
machine tool feed drive. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2004, 218, 111–120. [CrossRef]

21. Whalley, R.; Ebrahimi, M.; Abdul-Ameer, A.A. Hybrid modelling of machine tool axis drives. Int. J. Mach.
Tools Manuf. 2005, 45, 1560–1576. [CrossRef]

22. Whalley, R.; Abdul-Ameer, A.A.; Ebrahimi, M. Machine tool modelling and profile following performance.
Appl. Math. Model. 2008, 32, 2290–2311. [CrossRef]

23. Zaeh, M.F.; Oertli, T.; Milberg, J. Finite element modelling of ball screw feed drive systems. CIRP Ann.
Manuf. Technol. 2004, 53, 289–292. [CrossRef]

24. Yang, X. Electromechanical integrated modeling and analysis for the direct-driven feed system in machine
tools. Int. J. Adv. Manuf. Technol. 2018, 98, 1591–1604. [CrossRef]

25. Zhang, X. Integrated modeling and analysis of ball screw feed system and milling process with consideration
of multi-excitation effect. Mech. Syst. Signal Process. 2018, 98, 484–505. [CrossRef]

26. Maj, R.; Bianchi, G. Mechatronic analysis of machine tools. In Proceedings of the 9th SAMTECH Users
Conference, Paris, France, 2–3 February 2005; pp. 2–3.

27. Ansoategui, I.; Campa, F.J. Mechatronics of a ball screw drive using an N degrees of freedom dynamic model.
Int. J. Adv. Manuf. Technol. 2017, 93, 1307–1318. [CrossRef]

28. Kim, M.S.; Chung, S.C. A systematic approach to design high-performance feed drive systems. Int. J. Mach.
Tools Manuf. 2005, 45, 1421–1435. [CrossRef]

29. Herfs, W. Design of Feed Drives with Object-Oriented Behavior Models. IFAC-PapersOnLine 2015, 48, 268–273.
[CrossRef]

30. Luo, W. Digital twin for CNC machine tool: modeling and using strategy. J. Ambient Intell. Humaniz. Comput.
2019, 10, 1129–1140. [CrossRef]

31. Özdemir, D. Modelica Library for Feed Drive Systems. In Proceedings of the 11th International Modelica
Conference, Versailles, France, 21–23 September 2015; Linköping University Electronic Press: Linköping,
Sweden, 2015; pp. 117–125.

32. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260.
[CrossRef]

33. Wuest, T.; Weimer, D.; Irgens, C. Machine learning in manufacturing: advantages, challenges, and applications.
Prod. Manuf. Res. 2016, 4, 23–45. [CrossRef]

34. Li, Z.; Wang, Y.; Wang, K. A data-driven method based on deep belief networks for backlash error prediction
in machining centers. J. Intell. Manuf. 2017, 1–13. [CrossRef]

35. Chiu, H.W.; Lee, C.H. Prediction of machining accuracy and surface quality for CNC machine tools using
data driven approach. Adv. Eng. Softw. 2017, 114, 246–257. [CrossRef]

http://dx.doi.org/10.1016/S0005-1098(00)00153-9
http://dx.doi.org/10.1016/j.cirp.2007.05.087
http://dx.doi.org/10.1080/02533839.2017.1314197
http://dx.doi.org/10.1016/j.ijmachtools.2018.05.002
http://dx.doi.org/10.1177/1687814017710580
http://dx.doi.org/10.1007/s12541-015-0276-x
http://dx.doi.org/10.1177/095965180421800205
http://dx.doi.org/10.1016/j.ijmachtools.2005.03.002
http://dx.doi.org/10.1016/j.apm.2007.07.017
http://dx.doi.org/10.1016/S0007-8506(07)60700-8
http://dx.doi.org/10.1007/s00170-018-2186-4
http://dx.doi.org/10.1016/j.ymssp.2017.05.011
http://dx.doi.org/10.1007/s00170-017-0597-2
http://dx.doi.org/10.1016/j.ijmachtools.2005.01.032
http://dx.doi.org/10.1016/j.ifacol.2015.05.022
http://dx.doi.org/10.1007/s12652-018-0946-5
http://dx.doi.org/10.1126/science.aaa8415
http://dx.doi.org/10.1080/21693277.2016.1192517
http://dx.doi.org/10.1007/s10845-017-1380-9
http://dx.doi.org/10.1016/j.advengsoft.2017.07.008


Symmetry 2019, 11, 1156 20 of 20

36. Park, J.; Law, K.H.; Bhinge, R. A generalized data-driven energy prediction model with uncertainty for a
milling machine tool using Gaussian Process. In Proceedings of the ASME 2015 International Manufacturing
Science and Engineering Conference, Charlotte, NC, USA, 8–12 June 2015.

37. Ziegert, J.C.; Kalle, P. Error compensation in machine tools: a neural network approach. J. Intell. Manuf.
1994, 5, 143–151. [CrossRef]

38. Ak, R.; Helu, M.M.; Rachuri, S. Ensemble neural network model for predicting the energy consumption of a
milling machine. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015.

39. Yan, J.; Lee, J. Degradation assessment and fault modes classification using logistic regression. J. Manuf.
Sci. Eng. 2005, 127, 912–914. [CrossRef]

40. Carbonneau, R.; Laframboise, K.; Vahidov, R. Application of machine learning techniques for supply chain
demand forecasting. Eur. J. Oper. Res. 2008, 184, 1140–1154. [CrossRef]

41. Hou, Z.; Gao, H.; Lewis, F.L. Data-Driven Control and Learning Systems. IEEE Trans. Ind. Electron. 2017,
64, 4070–4075. [CrossRef]

42. Park, J.; Ferguson, M.; Law, K.H. Data Driven Analytics (Machine Learning) for System Characterization,
Diagnostics and Control Optimization//Workshop of the European Group for Intelligent Computing in Engineering;
Springer: Cham, Switzerland, 2018; pp. 16–36.

43. Reinhart, R.; Shareef, Z.; Steil, J. Hybrid analytical and data-driven modeling for feed-forward robot control.
Sensors 2017, 17, 311. [CrossRef]

44. Reinhart, R.F.; Steil, J.J. Hybrid mechanical and data-driven modeling improves inverse kinematic control of
a soft robot. Procedia Technol. 2016, 26, 12–19. [CrossRef]

45. Chikh, K.; Saad, A.; Khafallah, M. PMSM vector control performance improvement by using pulse with
modulation and anti-windup PI controller. In Proceedings of the 2011 International Conference on Multimedia
Computing and Systems, Ouarzazate, Morocco, 7–9 April 2011; pp. 1–7.

46. Sebastian, T.; Slemon, G.R. Transient modeling and performance of variable-speed permanent-magnet
motors. IEEE Trans. Ind. Appl. 1989, 25, 101–106. [CrossRef]

47. Tu, X.; Zhou, Y.F.; Zhao, P. Modeling the static friction in a robot joint by genetically optimized BP neural
network. J. Intell. Robot. Syst. 2019, 94, 29–41. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF00123919
http://dx.doi.org/10.1115/1.1962019
http://dx.doi.org/10.1016/j.ejor.2006.12.004
http://dx.doi.org/10.1109/TIE.2017.2653767
http://dx.doi.org/10.3390/s17020311
http://dx.doi.org/10.1016/j.protcy.2016.08.003
http://dx.doi.org/10.1109/28.18878
http://dx.doi.org/10.1007/s10846-018-0796-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Multi-Domain Analytical Model of the Ball Screw Feed System 
	Multi-Domain Modeling Method for the Ball Screw Feed System 
	Modeling and Analysis of the Mechanical Subsystem 
	Modeling of the Servo Drive System 
	Modeling of the Permanent Magnet Synchronous Motor 

	The Learned Data-Driven Model 
	Hybrid Model of the Ball Screw Feed System 
	Simulation and Experiments 
	Single Axis Ball Screw Feed System Hybrid Model 
	Double Axis Ball Screw Feed System Hybrid Model 

	Conclusions 
	References

