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Abstract: In this paper we introduce a new distribution constructed on the basis of the quotient of
two independent random variables whose distributions are the half-normal distribution and a power
of the exponential distribution with parameter 2 respectively. The result is a distribution with greater
kurtosis than the well known half-normal and slashed half-normal distributions. We studied the
general density function of this distribution, with some of its properties, moments, and its coefficients
of asymmetry and kurtosis. We developed the expectation–maximization algorithm and present a
simulation study. We calculated the moment and maximum likelihood estimators and present three
illustrations in real data sets to show the flexibility of the new model.

Keywords: slashed half-normal distribution; kurtosis; likelihood; EM algorithm

1. Introduction

In recent years, for data with positive support, specifically, lifetime, or reliability, the half-normal
(HN) model has been widely used. The probability density function (pdf) is given by

f (x; σ) =
2
σ

φ
( x

σ

)
I{x > 0},

where σ > 0 is the scale parameter and φ(·) represents the standard normal pdf. We denote this by
writing X ∼ HN(σ).

Some generalizations for this model are proposed by Cooray and Ananda [1], Cordeiro et al. [2],
Bolfarine and Gómez [3] and Gómez and Vidal [4].

Olmos et al. [5] extended the HN distribution by incorporating a kurtosis parameter q, with the
purpose of obtaining heavier tails, i.e., it has greater kurtosis than the base model. They called this
model the slashed half-normal (SHN) distribution. Its construction is based on considering the quotient
of two independent random variables, with random variable X ∼ HN(σ) in the numerator and the
U ∼ U(0, 1) in the denominator (See Rogers and Tukey [6] and Mosteller and Tukey [7] for more
details). Thus a model is obtained that has more flexible coefficients of asymmetry and kurtosis than
the HN model. We say that a random variable T follows a SHN if its pdf is given by

fT(t; σ, q) = q

√
2q

π
σqΓ((q + 1)/2)t−(q+1)G

(
t2; (q + 1)/2,

1
2σ2

)
, t > 0, (1)
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where σ > 0 is a scale parameter, q > 0 is a kurtosis parameter, G(z; a, b) =
∫ 2

0 g(x; a, b)dx is the
cumulative distribution function (cdf) of the gamma distribution and g(·; a, b) is the pdf of the gamma
model with shape and rate parameters a and b, respectively.

Reyes et al. [8] introduced the modified slash (MS) distribution. We say that M has a MS
distribution if

M = Z/E
1
q , (2)

the construction of which is based on considering an exponential (Exp) distribution with parameter
2 in the denominator, i.e., they consider that E ∼ Exp(2). The motivation of the selection of the
Exp(2) distribution is given in Reyes et al. [8]. The result of this work shows that the MS model has a
greater coefficient of kurtosis and this characteristic is very important for modeling data sets when
they contain atypical observations.

The principal goal of this article is to use the idea published by Reyes et al. [8] to construct an
extension of the half-normal model with a greater range in the coefficient of kurtosis than the SHN
model, in order to use it to model atypical data. This will allow us obtain a new model generated on
the basis of a scale mixture between an HN and a Weibull (Wei) distribution.

The rest of the paper is organized as follows: Section 2 contains the representation of this model
and we generate the density of the new family, its basic properties and moments, and its coefficients of
asymmetry and kurtosis. In Section 3 we make inferences using the moments and maximum likelihood
(ML) methods. In Section 4 we implement the expectation–maximization (EM) algorithm. In Section 5
we carry out a simulation study for parameter recovery. We show three illustrations in real datasets in
Section 6 and finally in Section 7 we present our conclusions.

2. An Asymmetric Distribution

In this section we introduce the representation, its pdf, and some important properties and graphs
to show the flexibility of the new model.

2.1. New Distribution

The representation of this new distribution is

T =
X

Y1/q , (3)

where X ∼ HN(σ) and Y ∼ Exp(2) are independent, σ > 0, q > 0. We call the distribution of T the
modified slashed half-normal (MSHN) distribution. This is denoted by T ∼ MSHN(σ, q).

2.2. Density Function

The following Proposition shows the pdf of the MSHN distribution with scale parameter σ and
kurtosis parameter q, generated using the representation given in (3).

Proposition 1. Let T ∼ MSHN(σ, q). Then, the pdf of T is given by

fT(t; σ, q) =
2q√

2πσ2tq+1
N
(

q + 1
2

,
2
tq ,

q
2

,
1

2σ2

)
, (4)

where t > 0, σ > 0, q > 0, and N(·, ·, ·, ·) is defined in Lemma 1 in the Appendix A.

Proof. Using the stochastic representation given in (3) and the Jacobian method, we obtain that the
density function associated with T is given by

fT(t; σ, q) = 4q√
2πσ2

∫ ∞

0
wq exp

{
−
(

t2w2

2σ2 + 2wq
)}

dw.
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Making the change of variable u = t2w2 we have,

fT(t; σ, q) = 2q√
2πσ2tq+1

∫ ∞

0
u

q−1
2 exp

{
−
(

u
2σ2 +

2uq/2

tq

)}
du.

Hence, applying the Lemma 1 as set forth in the Appendix A, we obtain the result.

Figure 1 depicts plots of the density of the MSHN distribution for different values of parameter q.
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Figure 1. The density function for different values of parameter q and σ = 1 in the MSHN distribution.

We perform a brief comparison illustrating that the tails of the MSHN distribution are heavier
than those of the SHN distribution.

Table 1 shows the tail probability for different values in the SHN and MSHN models.
It is immediately apparent that the MSHN tails are heavier than those of the SHN distribution.

Table 1. Tails comparison for different slashed half-normal (SHN) and modified slashed half-normal
(MSHN) distributions.

Distribution P(T > 3) P(T > 4) P(T > 5) P(T > 6) P(T > 7)

SHN(1, 0.5) 0.3781 0.3497 0.3239 0.3009 0.2805
MSHN(1, 0.5) 0.5304 0.48289 0.4466 0.4176 0.3936

SHN(1, 1) 0.1777 0.1570 0.1385 0.1224 0.1086
MSHN(1, 1) 0.3678 0.2992 0.2519 0.2173 0.19102
SHN(1, 3) 0.0350 0.0205 0.0120 0.0044 0.0034

MSHN(1, 3) 0.0901 0.0438 0.0238 0.0142 0.0091

2.3. Properties

In this sub-section we study some properties of the MSHN distribution.

Proposition 2. Let T ∼ MSHN(σ, q), then when σ = q = 1 the density is

fT(t) =
4
t2

(
1√
2π
− 2

t
exp(2/t2)Φ

(
−2

t

))
, t > 0, (5)
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where Φ(·) is the cdf of the standard normal.

Proof. Using Proposition 1 for σ = q = 1, we have,

fT(t) =
2√

2πt2
N
(

1,
2
z

,
1
2

,
1
2

)
=

2√
2πt2

∫ ∞

0
exp

(
−2

z
x1/2 − 1

2σ2 x
)

dx, t > 0. (6)

Changing the variable x = u2 we obtain the result.

Proposition 3. If T|W = w ∼ HN
(

σ
w
)

and Y1/q = W ∼Wei(q, 1/2) then T ∼ MSHN(σ, q).

Proof. Since the marginal pdf of T is given by

fT(t; σ, q) =
∫ ∞

0
fT|W(t|w) fW(w) dw =

4q
σ
√

2π

∫ ∞

0
wqe−

w2t2

2σ2 −2wq
dw,

and using the Lemma 1 in the Appendix A, the result is obtained.

Proposition 4. Let T ∼ MSHN(σ, q). If q→ ∞ then T converges in law to a random variable T ∼ HN(σ).

Proof. Let T ∼ MSHN(σ, q) and T = X
Y1/q , where X ∼ HN(σ) and Y ∼ Exp(2).

We study the convergence in law of T, since Y ∼ Exp(2) then W = Y1/q ∼ Wei(q, 1/2), we have
that E (W − 1)2 = 1

22/q Γ(1 + 2/q)− 2
21/q Γ(1 + 1/q) + 1. If q → ∞ then E (W − 1)2 → 0, i.e., we have

W P−→ 1 (see Lehmann [9]).
Since T ∼ MSHN(σ, q), by applying Slutsky’s Lemma (see Lehmann [9]) to T = X

W , we have

T L−→ X ∼ HN(σ), q→ ∞, (7)

that is, for increasing values of q, T converges in law to a HN(σ) distribution.

Remark 1. Proposition 2 shows us that the MSHN(1, 1) distribution has a closed-form expression.
Proposition 3 shows that an MSHN(σ, q) distribution can also be obtained as a scale mixture of an HN
and a Wei distribution. This property is very important since it makes it possible to generate random numbers
and implement the EM algorithm. Proposition 4 implies that, if q→ ∞ then the cdf of an MSHN(σ, q) model
approaches to the cdf of a HN(σ) distribution.

2.4. Moments

In this sub-section, the following proposition shows the computation of the moments of a random
variable T ∼ MSHN(σ, q). Hence, it also displays the coefficients of asymmetry and kurtosis.

Proposition 5. Let T ∼ MSHN(σ, q). Then the r-th moment of T is given by

µr = E(Tr) =
2r
(

1
q +

1
2

)
√

π
σrΓ

(
r + 1

2

)
Γ
(

q− r
q

)
, q > r, (8)

where Γ(·) denotes the gamma function.

Proof. Let W ∼Wei(q, 1/2) and using Proposition 3, we have

µr = E(Tr) = E (E(Xr|Wr)) = E

(√
2r

π
Γ
(

r + 1
2

)
σrW−r

)
=

√
2r

π
Γ
(

r + 1
2

)
σrE

(
W−r) ,
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where E(W−r) = 2r/qΓ ((q− r)/q), q > r is the r-th moment of the inverse Weibull distribution .

Corollary 1. Let T ∼ MSHN(σ, q). Then the expectation and variance of T are given respectively by

E(T) =
2

1
q +

1
2

√
π

σΓ
(

q− 1
q

)
, q > 1, and

Var(T) = 2
(

2
q +1

)
σ2
[

1
2

Γ
(

q− 2
q

)
− 1

π
Γ2
(

q− 1
q

)]
, q > 2.

Corollary 2. Let T ∼ MSHN(σ, q). Then the coefficients of asymmetry (β1) and kurtosis (β2) are given by

β1 =

1√
π

Γ
(

q−3
q

)
− 3

2
√

π
Γ
(

q−1
q

)
Γ
(

q−2
q

)
+ 2√

π3 Γ3
(

q−1
q

)
[

1
2 Γ
(

q−2
q

)
− 1

π Γ2
(

q−1
q

)]3/2 , q > 3, and

β2 =

3
4 Γ
(

q−4
q

)
− 4

π Γ
(

q−1
q

)
Γ
(

q−3
q

)
+ 3

π Γ2
(

q−1
q

)
Γ
(

q−2
q

)
− 3

π2 Γ4
(

q−1
q

)
[

1
2 Γ
(

q−2
q

)
− 1

π Γ2
(

q−1
q

)]2 , q > 4.

Remark 2. Figure 2 shows graphs of the coefficients of the MSHN distribution compared with those of the
SHN distribution. Note that the MSHN distribution presents higher asymmetry and kurtosis values than the
SHN distribution. Furthermore, in both distributions when q→ ∞ the coefficients of asymmetry and kurtosis
converge to

√
2(4− π)(π − 2)−3/2 and (3π2 − 4π − 12)(π − 2)−2, respectively; they coincide with the

coefficients of the HN distribution.
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Figure 2. Graph of the coefficients of asymmetry and kurtosis for the MSHN and SHN distributions.

3. Inference

Proposition 6. Let T1, . . . , Tn be a random sample of size n of the T ∼ MSHN(σ, q) distribution. Then for
q > 2, the moment estimators of σ and q are given by

σ̂M =

√
π T

2
1
q +

1
2 Γ
(

q̂M−1
q̂M

) , (9)

πT2Γ
(

q̂M − 2
q̂M

)
− 2T2Γ2

(
q̂M − 1

q̂M

)
= 0, (10)
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where T is the mean of the sample and T2 is the mean of the sample for the square of the observations.

Proof. From Proposition 5, and considering the first two equations in the moments method, we have

T =
2

1
q +

1
2

√
π

σΓ
(

q− 1
q

)
and T2 = 2

2
q σ2Γ

(
q− 2

q

)
.

Solving the first equation above for σ we obtain σ̂M given in (9). Substituting σ̂M in the second equation
above, we obtain the result given in (10).

4. Em Algorithm

The EM algorithm (Dempster et al. [10]) is a useful method for ML estimation in the presence of
latent variables.

To facilitate the estimation process, we introduce latent variables W1, . . . , Wn through the following
hierarchical representation of the MSHN model:

Ti |Wi = wi ∼ HN
( σ

w

)
and Wi ∼Wei(q, 1/2).

In this setting, we have that

fc(w|t) ∝ wq exp
{
−
(

w2t2

2σ2 + 2wq
)}

.

Therefore, the complete log-likelihood function can be expressed as

lc(θ|tc) ∝ −n log(σ)−
n

∑
i=1

w2
i t2

i
2σ2 + lc(q|wc),

where lc(q|wc) = n log(q) + q
n

∑
i=1

log(wi)− 2
n

∑
i=1

wq
i .

Letting ŵi = E[Wi|ti, θ = θ̂], it follows that the conditional expectation of the complete
log-likelihood function has the form

Q(θ|θ̂) ∝ −n log(σ)−
n

∑
i=1

ŵ2
i t2

i
2σ2 + Q(q|θ̂), (11)

where Q(q|θ̂) = n log(q) + qS1n − 2S2n,q, with S1n =
n

∑
i=1

E[log(Wi)|ti] and S2n,q =
n

∑
i=1

E[Wq
i |ti].

As both quantities S1n and S2n,q have no explicit forms in the context of the MSHN model, they
have to be computed numerically. Thus to compute Q(q|θ̂) we use an approach similar to that of Lee
and Xu ([11], Section 3.1), i.e., considering {wr; r = 1, ..., R} to be a random sample from the conditional
distribution W|(T = t, θ = θ̂), then Q(q|θ̂) can be approximated as

Q(q|θ̂) ≈ 1
R

R

∑
r=1

`c(q|wr).

Therefore, the EM algorithm for the MSHN model is given by

E-step: Given θ = θ̂
(k)

= (σ̂(k), q̂(k))>, calculate ŵi
(k), for i = 1, . . . , n.

CM-step I: Update σ̂(k)

σ̂2(k+1) =
S(k)

u
2

,
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CM-step II: Fix α = σ̂(k+1), update q(k) by optimizing q̂(k+1) = arg max qQ(σ̂(k+1), q| θ̂(k)),

where S(k)
u = 1

n

n

∑
i=1

ŵ(k)
i ti.

The E, CM-I and CM-II steps are repeated until a convergence rule is satisfied, say |l(θ̂(k+1)
)−

l(θ̂
(k)

)| is sufficiently small. Finally, standard errors (SE) can be estimated using the inverse of the
observed information matrix.

Remark 3.

i. For q→ ∞, σ̂ in M-step reduces to those obtained when the HN distribution is used;

ii. An alternative to the CM-Steps II is obtained considering the idea in Lin et al. ([12], Section 3), by using
the following estimation:
CML-step: Update q(k) by maximizing the constrained actual log-likelihood function, i.e.

q̂(k+1) = arg max q ` (σ̂(k+1), q).

5. Simulation

We present a simulation study to assess the performance of the EM algorithm for the parameters
σ and q in the MSHN model. We consider 1000 samples of three sample sizes generated from the
MSHN model: n = 30, 50 and 100. To generate T ∼ MSHN(σ; q) the following algorithm was used:

1. Simulate X ∼ N(0, σ2) and Y ∼ Exp(2).
2. Compute T = |X|

Y1/q .

For each sample generated, the ML estimates were computed using the EM algorithm.
Table 2 shows the mean of the bias estimated for each parameter (bias), its SE and the estimated
root of the mean squared error (RMSE). From Table 2, we conclude that the ML estimates are quite
stable. The bias is reasonable and diminishes as the sample size is increased. As expected, the terms
SE and RMSE are closer when the sample size is increased, suggesting that the SE of the estimators is
well estimated.

Table 2. Maximum likelihood (ML) estimations for parameters σ and q of the MSHN distribution.
Standard error (SE), root of the mean squared error (RMSE).

True Value n = 30 n = 50 n = 100

σ q Estimator Bias SE RMSE Bias SE RMSE Bias SE RMSE

1

1 σ 0.178 0.430 0.528 0.122 0.320 0.378 0.089 0.206 0.279
q 0.199 0.422 0.668 0.097 0.219 0.263 0.059 0.138 0.163

2 σ 0.111 0.355 0.407 0.078 0.258 0.295 0.042 0.172 0.186
q 1.006 2.500 2.603 0.480 1.105 1.519 0.182 0.458 0.562

5 σ 0.026 0.277 0.239 0.033 0.222 0.189 0.023 0.159 0.149
q 2.227 8.833 3.871 2.012 6.743 3.550 1.333 4.092 2.905

2

1 σ 0.284 0.835 0.973 0.192 0.617 0.665 0.104 0.414 0.481
q 0.168 0.356 0.571 0.094 0.215 0.263 0.058 0.141 0.166

2 σ 0.294 0.727 0.815 0.122 0.507 0.572 0.074 0.343 0.383
q 1.210 2.821 2.835 0.465 1.067 1.534 0.174 0.454 0.623

5 σ 0.057 0.544 0.454 0.066 0.441 0.371 0.044 0.305 0.290
q 2.456 8.991 3.934 2.089 6.712 3.615 1.545 4.150 3.075

5

1 σ 0.834 2.111 2.548 0.494 1.527 1.826 0.386 1.038 1.233
q 0.217 0.414 0.740 0.119 0.225 0.287 0.083 0.144 0.174

2 σ 0.658 1.782 2.065 0.293 1.285 1.475 0.209 0.872 0.966
q 1.218 2.872 2.836 0.413 1.018 1.414 0.188 0.489 0.694

5 σ 0.094 1.379 1.160 0.146 1.096 0.950 0.123 0.779 0.731
q 2.266 8.894 3.880 1.952 6.526 3.557 1.370 4.118 2.948
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6. Aplications

In this section we provide three applications to real datasets that illustrate the flexibility of the
proposed model.

6.1. Application 1

Lyu [13] presents a data set related 104 times with programming in the Centre for Software
Reliability (CSR). Some descriptive statistics are: mean = 147.8, variance = 60, 071.7, skewness = 3,
and kurtosis = 14.6. The moment estimators for the MSHN model were σ̂M = 74.085 and q̂M = 2.402,
which were used as initial values to compute the ML estimator in Table 3.

For each distribution we report the estimated log-likelihood. To compare the competing models,
we consider the Akaike information criterion (AIC) (Akaike [14]) and the Bayesian information
criterion (BIC) (Schwarz [15]), which are defined as AIC = 2k− 2 log lik and BIC = k log(n)− 2 log lik,
respectively, where k is the number of parameters in the model, n is the sample size and log lik is the
maximum value for the log-likelihood function. Table 4 displays the AIC and BIC for each model
fitted. Figure 3 presents the histogram of the data fitted with the HN, SHN and MSHN distributions,
provided with the ML estimations. The QQ-plot for the MSHN and SHN distributions are presented
in Figure 4.

Table 3. ML estimations with the corresponding SE for the models fitted. Half-normal (HN).

Parameters HN (SE) SHN (SE) MSHN (SE)

σ̂ 285.191 (19.774) 20.977 (5.674) 19.874 (4.867)
q̂ - 0.687 (0.118) 0.872 (0.115)

Log-likelihood −663.411 −605.102 −600.876

Table 4. The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for each
model fitted.

Criterion HN SHN MSHN

AIC 1328.822 1214.204 1205.752
BIC 1331.466 1219.493 1211.041
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Figure 3. Histogram fitted with the HN, SHN and MSHN distributions provided with the
ML estimations.
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Figure 4. QQ plots: (a) MSHN distribution and (b) SHN distribution.

6.2. Application 2

The second dataset is taken from Von Alven [16], and represents 46 instances of active repairs
(in hours) for an airborne communication transceiver. Some descriptive statistics are: mean = 3.607,
variance = 24.445, skewness = 2.888, and kurtosis = 11.802.

Initially we computed the moment estimators for the MSHN distribution, obtaining the following
estimations: σ̂M = 2.407 and q̂M = 2.635. We used these estimations as initial values in computing the
ML estimators presented in Table 5. For each distribution we report the estimated log-likelihood.

Table 5. ML estimations with the corresponding SE for the models fitted.

Parameters HN (SE) SHN (SE) MSHN (SE)

σ̂ 6.07 (0.6335) 1.6251 (0.4777) 1.5108 (0.3179)
q̂ - 1.3539 (0.4347) 1.6365 (0.3425)

Log-likelihood −116.3881 −103.1834 −102.65

Table 6 displays the AIC and BIC for each model fitted. Figure 5 presents the histogram of the
data fitted with the HN, SHN and MSHN distributions, provided with the ML estimations.

Table 6. AIC and BIC for each model fitted.

Criterion HN SHN MSHN

AIC 234.7762 210.3668 209.302
BIC 236.6048 214.0241 212.9573
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Figure 5. Histogram fitted with the HN, SHN and MSHN distributions provided with the
ML estimations.

6.3. Application 3

The third data set (Linhart and Zucchini [17]) represents 31 times of air conditioning system
failure of an aeroplane. Some descriptive statistics are: mean = 55.35, variance = 5132.503, skewness =
1.805, and kurtosis = 5.293.

Initially we computed the moment estimators for the MSHN distribution, and obtained the
following estimations: σ̂M = 38.125 and q̂M = 2.743. We used these estimations as initial
values in computing the ML estimators presented in Table 7. For each distribution we report the
estimated log-likelihood.

Table 7. ML estimations with the corresponding SE for the models fitted.

Parameters HN (SE) SHN (SE) MSHN (SE)

σ̂ 89.616 (11.381) 13.785 (6.047) 16.148(5.128)
q̂ - 0.859 (0.285) 1.233 (0.251)

Log-likelihood -161.861 -154.857 -153.954

Table 8 displays the AIC and BIC for each model fitted. Figure 6 presents the histogram of the
data fitted with the HN, SHN and MSHN distributions, provided with the ML estimations.

Table 8. AIC and BIC for each model fitted.

Criterion HN SHN MSHN

AIC 325.7224 313.715 311.908
BIC 327.1564 316.583 314.776
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Figure 6. Histogram fitted with the HN, SHN and MSHN distributions provided with the ML
estimations.

7. Conclusions

In this paper, we have introduced a new and more flexible model, as it increases kurtosis and
contains, as a particular case, the HN distribution. The EM algorithm is implemented, obtaining
acceptable results for the maximum likelihood estimators. In applications using real data it performs
very well, better than competing models. Some further characteristics of the MSHN distribution are:

• The MSHN distribution has a greater kurtosis than the SHN distribution, as is clearly reflected in
Table 1.

• The proposed model has a closed-form expression and presents more flexible asymmetry and
kurtosis coefficients than that of the HN model.

• Two stochastic representations for the MSHN model are presented. One is defined as the
quotient between two independent random variables: An HN in the numerator and Exp(2)
in the denominator. The other shows that the MSHN distribution is a scale mixture of an HN and
a Wei distribution.

• Using the mixed scale representation, the EM algorithm was implemented to calculate the
ML estimators.

• Results from a simulation study indicate that with a reasonable sample size, an acceptable bias
is obtained.

• Three illustrations using real data show that the MSHN model achieves a better fit in terms of the
AIC and BIC criteria.
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Appendix A

Density function of the gamma, exponential and Weibull distributions, respectively, are given by
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Gamma distribution:
f (x; α, β) =

βα

Γ(α)
xα−1e−βx,

with, x > 0, α > 0 and β > 0.
Exponential distribution:

f (x; β) =
1
β

e−x/β,

with, x > 0 and β > 0.
Weibull distribution:

f (x; γ, β) =
γ

β
xγ−1e−xγ/β,

with, x > 0, γ > 0 and β > 0.

In the following, Lemma presents an important result used in the derivation of the pdf for the MSHN
distribution.

Lemma A1. Prudnikov et al. [18], Equation (2.3.1.13) For γ > 0 , a > 0, r > 0 and s > 0. Then∫ ∞

0
xγ−1 exp (−axr − sx)dx = N(γ, a, r, s), (A1)

where

N =



q−1

∑
j=0

(−a)j

j!sγ+rj Γ(γ + rj)p+1Fq(1, ∆(p, γ + rj); ∆(q, 1 + j); (−1)qz), if 0 < r < 1

p−1

∑
h=0

(−s)h

rh!a(γ+h)/r
Γ(

γ + h
r

)q+1Fp(1, ∆(q,
γ + h

r
); ∆(p, 1 + h);

(−1)p

z
), if r > 1

Γ(γ)
(a+s)γ , if r = 1,

considering γ = p/q, p ≥ 1 and q ≥ 1 are coprime integers, where z = (
p
s
)p(

a
q
)q, ∆(k, a) =

a
k , (a+1)

k , . . . , (a+k−1)
k and pFq(., ., .) is the generalized hypergeometric function defined by

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞

∑
k=0

(a1)k(a2)k . . . (ap)kxk

(b1)k(b2)k . . . (bp)kk!

where (c)k = c(c + 1) . . . (c + k− 1).
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