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Abstract: Given a positive integer n, a finite group G is called quasi-core-n if 〈x〉/〈x〉G has order at
most n for any element x in G, where 〈x〉G is the normal core of 〈x〉 in G. In this paper, we investigate
the structure of finite quasi-core-p p-groups. We prove that if the nilpotency class of a quasi-core-p
p-group is p + m, then the exponent of its commutator subgroup cannot exceed pm+1, where p is an
odd prime and m is non-negative. If p = 3, we prove that every quasi-core-3 3-group has nilpotency
class at most 5 and its commutator subgroup is of exponent at most 9. We also show that the Frattini
subgroup of a quasi-core-2 2-group is abelian.
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1. Introduction

Let G be a group and H is a subgroup of G. Then HG is the normal core of H in G, where HG =⋂
g∈G g−1Hg is the largest normal subgroup of G contained in H. A group G is called core-n if
|H/HG| ≤ n for every subgroup H of G, where n is a positive integer. Buckley, Lennox, Neumaan,
Smith and Wiegold investigated the core-n groups in [1]. They show that every locally finite group
G with H/HG finite for all subgroups H is core-n for some n. Moreover, G has an abelian normal
subgroup of index bounded in terms of n only. In [2], Lennox, Smith and Wiegold show that, for p 6= 2,
a core-p p-group is nilpotent of class at most 3 and has an abelian normal subgroup of index at most p5.
Furthermore, Cutolo, Khukhro, Lennox, Wiegold, Rinauro and Smith [3] prove that a core-p p-group G
has a normal abelian subgroup whose index in G is at most p2 if p 6= 2. Furthermore, if p = 2, Cutolo,
Smith and Wiegold [4] prove that every core-2 2-group has an abelian subgroup of index at most 16.
As a deepening of research in this area, it is interesting to study the following question.

How about the structure of a p-group G in which |〈x〉/〈x〉G| ≤ p, for any x ∈ G?
In this paper we hope to investigate the structure of a p-group G in which |〈x〉/〈x〉G| ≤ p, for any

x ∈ G. For convenience, we call this kind of p-groups quasi-core-p p-groups.

2. Preliminaries

For convenience, we first recall some notations.
Let G be a p-group. We use d(G) and c(G) to denote the minimal number of generators and

the nilpotency class of G respectively. We use Cpm to denote the cyclic group of order pm. Let Gn =

〈[g1, g2, ..., gn]
∣∣ gi ∈ G〉. If H and K are groups, then H × K denotes a product of H and K. For other

notations the reader is referred to [5].

Lemma 1. ([6], Section Appendix 1, Theorem A.1.4) Let G be a p-group and x, y ∈ G.

1. (xy)p ≡ xpyp (mod f1(G′)Gp).
2. [xp, y] ≡ [x, y]p (mod f1(N′)Np), where N = 〈x, [x, y]〉.
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Lemma 2. ([7], Lemma 2.2) Suppose that G is a finite non-abelian p-group. Then the following conditions
are equivalent.

1. G is minimal non-abelian;
2. d(G) = 2 and |G′| = p;
3. d(G) = 2 and Φ(G) = Z(G).

Lemma 3. ([8], Theorem) Let p be a prime and d, e positive integers. A regular d-generator metabelian
p-group G whose commutator subgroup has exponent pe has nilpotency class at most e(p − 2) + 1 unless
e = 1, d > 2, p > 2 when the class can be p. These bounds are best possible.

Lemma 4. ([9], Theorem 2) Let G be a metacyclic 2-group. Then G has one presentation of the following
three kinds:

1. G has a cyclic maximal subgroup.
2. Ordinary metacyclic 2-groups G = 〈a, b

∣∣ a2r+s+u
= 1, b2r+s+t

= a2r+s
, ab = a1+2r 〉, where r, s, t, u are

non-negative integers with r ≥ 2 and u ≤ r.
3. Exceptional metacyclic 2-groups G = 〈a, b

∣∣ a2r+s+v+t′+u
= 1, b2r+s+t

= a2r+s+v+t′
, ab = a−1+2r+v〉,

where r, s, v, t, t′, u are non-negative integers with r ≥ 2, t′ ≤ r, u ≤ 1, tt′ = sv = tv = 0, and if
t′ ≥ r− 1, then u = 0.

Groups of different types or of the same type but with different values of parameters are not isomorphic to
each other.

Lemma 5. ([5], Theorem 10.3) Let G be a regular 3-group. Then G′ is abelian.

Lemma 6. Let G be a quasi-core-p p-group. If H is a subgroup of G and N is a normal subgroup of G, then H
and G/N are quasi-core-p p-groups.

Proof. The proof of the lemma comes immediately from the definition of quasi-core-p p-groups.

Lemma 7. Let G be a p-group. Then G is quasi-core-p if and only if 〈xp〉 E G, for any element x in G.

Proof. Obviously, G is quasi-core-p if and only if |〈x〉G/〈xp〉| ≤ p, for any x ∈ G, and this holds if and
only if 〈xp〉 E G, for any element x in G.

Lemma 8. Let G be a quasi-core-p p-group. Then [G′,f1(G)] = 1.

Proof. For any x ∈ G, according to Lemma 7, we see 〈xp〉 E G. Thus G/CG(xp) is abelian and so
G′ ≤ CG(xp), which implies [G′,f1(G)] = 1.

3. Quasi-Core-ppp ppp-Groups with ppp > 2

In this section we investigate the quasi-core-p p-groups for p > 2.

Theorem 1. Let G be a quasi-core-p p-group and p > 2. If G′ is cyclic, then |G′| ≤ p.

Proof. Suppose the result is not true and G is a counterexample of minimal order. Then there exist
a, b ∈ G such that o([a, b]) ≥ p2. Thus we may assume G = 〈a, b〉, [a, b] = c and L = 〈a, c〉. Since G
is regular, we may assume 〈a〉 ∩ 〈b〉 = 1. By Lemma 1, we see [ap, b] = cpx, where x ∈ f1(L′)Lp.
Since L < G, f1(L′)Lp = 1. So x = 1 and [ap, b] = cp. Similarly, [a, bp] = cp. It follows from Lemma 7
that cp ∈ 〈a〉 ∩ 〈b〉 = 1, in contradiction to the hypothesis. Thus the theorem is true.

Corollary 1. Let G be a quasi-core-p p-group with p > 2. Then f1(G) is abelian and f2(G) ≤ Z(G).
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Proof. For any a, b ∈ G, we assume H = 〈ap, b〉. By the hypotheses, we see 〈ap〉 E G and so H is
metacyclic. By Theorem 1, |H′| ≤ p and so H is abelian or minimal non-abelian. Thus f1(H) ≤
Φ(H) ≤ Z(H) by Lemma 2. It follows that [ap2

, b] = [ap, bp] = 1, which implies f1(G) is abelian and
f2(G) ≤ Z(G).

Corollary 2. Let G be a quasi-core-p p-group with p > 2. Then G/CG(ap) . Cp, for any a ∈ G.

Proof. We may assume ap /∈ Z(G) and o(a) = pn. Then n ≥ 3 and there exists an element b ∈ G such
that b /∈ CG(ap). By Theorem 1, we may assume [ap, b] = apn−1

. Take x ∈ G \CG(ap). Assume [ap, x] =
aipn−1

, where (i, p) = 1. Then [ap, b−ix] = 1, which implies x ∈ CG(ap)〈b〉 and so G = CG(ap)〈b〉.
It follows from bp ∈ CG(ap) that G/CG(ap) . Cp.

Corollary 3. Let G be a quasi-core-p p-group with p > 2. If c(G/f1(G)) ≤ n, then c(G) ≤ n + 2.

Proof. Set G = G/f1(G). Then Gn+1 = 1̄ and so Gn+1 ≤ f1(G). It follows from Theorem 1 that
[Gn+1, G] ≤ [f1(G), G] ≤ Z(G), which implies c(G) ≤ n + 2.

According to Lemma 3 and Corollary 3, we get the following theorem.

Theorem 2. Suppose that G is a quasi-core-p p-group and G′ is abelian with p > 2. If d(G) = 2, then c(G) ≤
p + 1. If d(G) > 2, then c(G) ≤ p + 2.

If p = 3, then, according to Lemma 5 and Corollary 3, we get the theorem below.

Theorem 3. Let G be a quasi-core-3 3-group. If d(G) = 2, then c(G) ≤ 4. If d(G) > 2, then c(G) ≤ 5.

Theorem 4. Let G be a quasi-core-3 3-group with d(G) = 2. Then Φ(G) is abelian.

Proof. We may assume G = 〈x, y〉 and [x, y] = z. Then G′ = 〈z, [z, g]
∣∣ g ∈ G〉. For any g1, g2 ∈ G,

it follows from Theorem 3 that [z, [z, g]] ∈ [G2, G3] = 1 and [[z, g1], [z, g2]] = 1, which implies G′ is
abelian. So, according to Lemma 8 and Corollary 1, Φ(G) is abelian.

Now, we investigate the exponent of commutator subgroups of the quasi-core-p p-groups.

Lemma 9. Let G be a quasi-core-p p-group with Gp+1 = 1 and p > 2. Then exp(G′) ≤ p.

Proof. Suppose the result is not true and G is a counterexample of minimal order. For any g1, g2 ∈ G′,
let H = 〈g1, g2〉. By Lemma 1, (g1g2)

p = gp
1 gp

2 x, where x ∈ f1(H′)Hp. Since c(H) < c(G), Hp = 1.
By induction, exp(H′) ≤ p and so exp(f1(H′)) = 1. Thus x = 1. It follows that there exist a, b ∈ G
such that o([a, b]) > p and exp(G3) ≤ p.

By induction, we may assume G = 〈a, b〉, [a, b] = c and L = 〈a, c〉. Then, according to Lemma 1,
we see [ap, b] = cpy, where y ∈ f1(L′)Lp. Since c(L) < c(G), Lp = 1 and exp(L′) ≤ p. Thus y = 1.
Since G is a quasi-core-p p-group, 〈ap〉 E G. So cp ∈ 〈a〉. It follows from Theorem 1 that o(c) = p2.
Similarly, we see cp ∈ 〈b〉.

Without loss of generality, we may assume 〈a〉 ∩ 〈b〉 = 〈aps〉 = 〈bpt〉, aps
= bpt

and s ≥ t ≥ 2.
If s > t, then, by letting b1 = a−ps−t

b, we see [a, bp
1 ] = cp and cp /∈ 〈bp

1 〉, in contradiction to the
hypothesis. So s = t. Let b2 = ab−1. Then, by Lemma 1, we see bp

2 = apb−pz, where z ∈ f1(G′)Gp.
Since G′ = 〈c, [c, g]

∣∣ g ∈ G〉, we see f1(G′) = 〈cp〉. Then f1(G′)Gp ≤ Z(G) and exp(f1(G′)Gp) ≤ p.
Thus o(z) ≤ p and o(b2) = ps. Noticing that [a, bp

2 ] = cp, we see cp ∈ 〈bp
2 〉. If s = 2, then 〈cp〉 = 〈bp

2 〉,
which implies bp

2 = apb−pz ∈ Z(G), a contradiction. If s > 2, then 〈cp〉 = 〈bps−1

2 〉 = 〈aps−1
bps−1〉.

It follows that 〈a〉 ∩ 〈b〉 = 〈aps−1〉, another contradiction.
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Corollary 4. Let G be a quasi-core-p p-group and exp(Gp+1) = pn with p > 2 and n ≥ 0.
Then exp(G′) ≤ pn+1.

Proof. If n = 0, then the conclusion holds by Lemma 9. Thus we may assume n ≥ 1. Set G =

G/Gp+1. Then Gp+1 = Gp+1 = 1̄. It follows from Lemma 9 that exp(G′) ≤ p, which implies
exp(G′) ≤ pn+1.

Corollary 5. Let G be a quasi-core-p p-group and c(G) = p + n with p > 2 and n ≥ 0.
Then exp(G′) ≤ pn+1.

Proof. If n = 0, then the conclusion holds by Lemma 9. Thus we assume n ≥ 1. Set G = G/Gp+n.
Then c(G) = p + n − 1. By induction, we see exp(G′) ≤ pn. Since Gp+n = [Gp+n−1, G] ≤ Z(G),
by Lemma 9, we see exp(Gp+n) ≤ p. It follows that exp(G′) ≤ pn+1.

Theorem 5. Let G be a quasi-core-p p-group with p > 2. If G′ is abelian, then exp(G′) ≤ p2 and
exp(G3) ≤ p.

Proof. Suppose that the result is not true and G is a counterexample of minimal order. Then there exist
a, b ∈ G such that o([a, b]) ≥ p3. We may assume G = 〈a, b〉, [a, b] = c and L = 〈a, c〉. By Lemma 1,
[ap, b] = cpx, where x ∈ f1(L′)Lp. By induction, exp(L′) ≤ p2 and so exp(f1(L′)) ≤ p. On the other
hand, since [a, c]p ∈ Z(G), it is easy to see that exp(L3) ≤ p. So o(x) ≤ p. According to Theorem 1,
we see o(cpx) = p, which implies o(c) ≤ p2, in contradiction to the hypothesis. So exp(G′) ≤ p2. Thus,
for any g ∈ G′, we see gp ∈ Z(G). It follows that exp(G3) ≤ p.

Theorem 6. Let G be a quasi-core-3 3-group. Then exp(G′) ≤ 9 and exp(G3) ≤ 3.

Proof. Take a, b ∈ G′ with o(a) ≤ 9 and o(b) ≤ 9. Let K = 〈a, b〉. Then, by Lemma 1, (ab)3 = a3b3c,
where c ∈ f1(K′)K3. Since K′ ≤ G4, we see c(K) ≤ 3 by Theorem 3. Thus exp(K′) ≤ 3 by Corollary 5,
which implies o(c) ≤ 3. It follows that (ab)9 = a9b9 = 1. So, we may assume d(G) = 2. According to
Corollary 5 and Theorem 3, we see exp(G′) ≤ 9.

Take x ∈ G′ and y ∈ G. Then o(x) ≤ 9 and so 〈x3〉 ≤ Z(G). Assume [x, y] = z and L = 〈x, z〉.
Then, by Lemma 1, 1 = [x3, y] = z3w, where w ∈ f1(L′)L3. Since L′ ≤ G5 ≤ Z(G), by Lemma 9,
we see f1(L′)L3 = 1. It follows that z3 = 1. For any g, h ∈ G3 with o(g) ≤ 3 and o(h) ≤ 3, then,
by Theorem 3, we see [g, h] ∈ G6 = 1. So o(gh) ≤ 3, which implies exp(G3) ≤ 3.

4. Quasi-Core-2 2-Groups

In this section, we investigate the quasi-core-2 2-groups.

Lemma 10. Let G = 〈a, b〉 be a non-abelian metacyclic quasi-core-2 2-group with 〈a〉 E G and o(a) = 2n.
Then [a, b] = a2n−1

, a−2 or a−2+2n−1
.

Proof. Since G is a non-abelian metacyclic 2-group , we see n ≥ 2 and G is one of the groups listed in
Lemma 4.

If G is a group listed in (1) in Lemma 4, then the conclusion holds by the classification of p-groups
with a cyclic maximal subgroup.

If G is a group listed in (2) in Lemma 4, then G = 〈a, b
∣∣ a2r+s+u

= 1, b2r+s+t
= a2r+s

, [a, b] = a2r 〉
with r ≥ 2 and u ≤ r. We may assume s + u ≥ 2. By calculation, it is easy to see 〈[a, b2]〉 = 〈a2r+1〉.
Since G is a quasi-core-2 2-group, we see a2r+1 ∈ 〈b2〉, which implies s ≤ 1. Let a1 = ab−2t

. If s = 0,
then 〈a1〉 ∩ 〈a〉=1. It follows from G is quasi-core-2 that a2

1 ∈ Z(G), which implies a2 ∈ Z(G). However,
it is impossible. If s = 1, then o(a1) = 2r+1 and 〈[a2

1, b]〉 = 〈a2r+1〉 ≤ 〈a2
1〉. It follows that 〈a2r+u〉 = 〈a2r

1 〉,
which implies b2r+t ∈ 〈a〉. It is also impossible. So s + u = 1 and therefore [a, b] = a2n−1

.
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If G is of type (3) in Lemma 4, then G = 〈a, b
∣∣ a2r+s+v+t′+u

= 1, b2r+s+t
= a2r+s+v+t′

, [a, b] =

a−2+2r+v〉 with r ≥ 2 and u ≤ 1. It follows from [a, b2] ∈ 〈b〉 that s + t′ ≤ 1 and so s + t′ + u ≤ 2.
We may assume s + t′ + u = 2 and so u = s + t′ = 1. Then b2r+s+t

= a2n−1
and [a, b] = a−2+2n−2

.
We assume o(b) = 2m. If r + s + t = 2, then, since (ba)2 = b2a2n−2

, we see o(ba) = 4. On the other
hand, [a, (ba)2] = a2n−1

. So, by the hypotheses, we see a2n−1 ∈ 〈(ba)2〉 = 〈b2a2n−2〉, a contradiction.
If r + s + t ≥ 3, then o(b2m−3

a2n−3
) = 4 and [b, (b2m−3

a2n−3
)2] = a2n−1

. Thus a2n−1 ∈ 〈(b2m−3
a2n−3

)2〉 =
〈b2m−2

a2n−2〉, another contradiction. So the conclusion holds.

Corollary 6. Let G be a quasi-core-2 2-group. Then Φ(G) is abelian and f2(G) ≤ G′Z(G).

Proof. For any a, b ∈ G, we may assume H = 〈a2, b〉 is not abelian and o(a) = 2n. By the hypotheses,
we see 〈a2〉 E G and so H is metacyclic. It follows from Lemma 10 that [a2, b] = a2n−1

, a−4 or a−4+2n−1
.

Then, it is easy to see that [a2, b2] = 1, which implies Φ(G) is abelian.
Take g ∈ G with g4 /∈ G′. Then [g2, h] ∈ Ω1(〈g〉) for any h ∈ G, which implies [g4, h] = 1 and

therefore g4 ∈ Z(G). So f2(G) ≤ G′Z(G).

Corollary 7. Let G be a quasi-core-2 2-group. Then, for any a ∈ G, G/CG(a2) . C2 × C2, G/CG(a4) . C2

and if G/CG(a4) ∼= C2, then a4 ∈ G′ and 〈a〉 ∩ Z(G) = Ω1(〈a〉).

Proof. Without loss of generality, we may assume a2 /∈ Z(G), o(a) = 2n and n ≥ 3. By Corollary 6,
we see Φ(G) ≤ CG(a2), which implies G/CG(a2) is elementary abelian. For any g ∈ G \ CG(a2),
according to Lemma 10, we see [a2, g] = a−4, a2n−1

or a−4+2n−1
. It is easy to see that G/CG(a2) .

C2 × C2 and G/CG(a4) . C2. If G/CG(a4) . C2, then, there exists an element b ∈ G \ CG(a4) such
that 〈[a2, b]〉 = 〈a4〉. So a4 ∈ G′ and 〈a〉 ∩ Z(G) = Ω1(〈a〉).

Lemma 11. Let G be a quasi-core-2 2-group with c(G) = 2. Then exp(G′) ≤ 4.

Proof. If not, then there exist a, b ∈ G such that o([a, b]) ≥ 8. We may assume [a, b] = c. Then [a2, b] =
c2. By induction, o(c2) ≤ 4 and so o(c) = 8. It follows from Lemma 10 that 〈c2〉 = 〈a4〉, which implies
a4 ∈ Z(G). However, [a4, b] = c4 6= 1, a contradiction. So the conclusion holds.

Theorem 7. Let G be a quasi-core-2 2-group with c(G) = n and n ≥ 2. Then exp(G′) ≤ 22(n−1).

Proof. If n = 2, then the conclusion holds by Lemma 11. Thus we may assume n ≥ 3. Set G =

G/Gn. Then c(G) = n− 1. By induction, we see exp(G′) ≤ 22(n−2). Since Gn = [Gn−1, G] ≤ Z(G),
by Lemma 11, we see exp(Gn) ≤ 4. It follows that exp(G′) ≤ 22(n−1).

Theorem 8. Let G be a non-abelian quasi-core-2 2-group with d(G) = 2. Then f1(G′), G4 are cyclic,
and either G′ ∩ Z(G) . C2 × C2 × C2 or G = 〈a, b

∣∣ a8 = 1, a4 = b4 = c2, [a, b] = c, [c, a] = [c, b] = 1〉.

Proof. If G is metacyclic, then the conclusion holds by Lemma 10. So we may assume G = 〈a, b〉 is
non-metacyclic, [a, b] = c, o(a) = 2n, o(b) = 2m and o(c) = 2t with n ≥ m. Thus G′ = 〈c, [c, g]

∣∣ g ∈ G〉.
By Corollary 6, Φ(G) is abelian. So [c, g]2 = [c2, g] ∈ 〈c2〉, which implies f1(G′) ≤ 〈c2〉 and therefore
f1(G′) is cyclic. Now we consider the following two cases: c(G) = 2 and c(G) > 2.

Case 1. c(G) = 2.

By Lemma 11, we see exp(G′) ≤ 4. We may assume exp(G′) = 4. Then o(c) = 4 and
[a2, b] = [a, b2] = c2. Thus n ≥ m ≥ 3 and c2 ∈ 〈a〉 ∩ 〈b〉. Without loss of generality,
we may assume 〈a〉 ∩ 〈b〉 = 〈a2u〉 = 〈b2v〉, a2u

= b2v
and u ≥ v ≥ 2. Let b1 = a−2u−v

b.
Then [a, b2

1] = c2. If u > v or v ≥ 3, then o(b1) = 2v. Thus 〈c2〉 = 〈b2v−1

1 〉, which implies
a2u−1 ∈ 〈b〉, a contradiction. So u = v = 2 and a4 = b4. Noticing that G = 〈a, b1〉 and
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[a, b1] = c, we see a4 = b4
1 by the above. It follows from o(b1) = 8 that o(a) = 8. So, we see

G = 〈a, b
∣∣ a8 = 1, a4 = b4 = c2, [a, b] = c, [c, a] = [c, b] = 1〉.

Case 2. c(G) > 2.

In this case, we consider the following two subcases: G′ is cyclic and G′ is not cyclic.

Subcase 1. G′ is cyclic.

If o(c) ≤ 4, then c2 ∈ Z(G) and G′ ∩ Z(G) . C2. So we may assume t ≥ 3.
By Lemma 10, we see [c, a] = 1, c−2, c−2+2t−1

or c2t−1
. If 〈[c, a]〉 = 〈c2〉, then

exp(G′ ∩ Z(G)) = 2. Thus we may assume [c, a] = c2t−1
and [c, b] = 1. It follows

that [a2, b] = c2+2t−1
. According to Lemma 10, it is easy to see 〈c2〉 = 〈a4〉. So

[a4, b] = 1 and therefore o(c) ≤ 4, in contradiction to the hypothesis.
Subcase 2. G′ is not cyclic.

Since [a, b] = c, [a2, b] = c2[c, a]. By Lemma 10, we see [c, a] =

c−2a−4, c−2a−4+2n−1
, c−2 or c−2a2n−1

. Similarly, [c, b] = c−2b−4, c−2b−4+2m−1
, c−2

or c−2b2m−1
. It follows that G′ ≤ 〈c, a4, b4〉, [〈[c, a]〉, G] ≤ f1(〈[c, a]〉) and

[〈[c, b]〉, G] ≤ f1(〈[c, b]〉). Then [G3, G] ≤ f1(G3) ≤ f1(G′). So G4 is cyclic.

Now we prove exp(G′ ∩ Z(G)) = 2. Assume [c, a] = c−2a−4 or c−2a−4+2n−1
, and n ≥ 4.

If [c, b] = c−2, then G′ = 〈c, a4〉. Since G′ is not cyclic, we see [c, a] 6= 1. Take g ∈ G′ ∩ Z(G) and
assume g = c2ia4j. It follows from [g, b] = 1 that o(g) ≤ 2. So exp(G′ ∩ Z(G)) = 2.

If [c, b] = c−2b2m−1
, then G′ = 〈c, a4, b2m−1〉. If [c, a] = 1, then a4 ∈ 〈c〉 and G′ = 〈c, b2m−1〉. It is

easy to see that exp(G′ ∩ Z(G)) = 2. Assume [c, a] 6= 1. Take h ∈ G′ ∩ Z(G) and assume h = c2ka4l .
It follows from [h, b] = 1 that o(h) ≤ 2 and so exp(G′ ∩ Z(G)) = 2.

If [c, b] = c−2b−4 or c−2b−4+2m−1
, we may assume m ≥ 4 by the above. It is easy to see that

〈a8, b8〉 ≤ 〈c〉. Thus [b8, a] = 1, which implies o(b) = 16 and b8 = a2n−1
. On the other hand, we see

[(a2n−3
b2)2, a] = b8 and therefore b8 = a2n−2

b4. It follows that [a, b4] = 1. However, it is impossible.
Assume [c, a] = c−2 or c−2a2n−1

. Without loss of generality, we may assume [c, b] = c−2 or
c−2b2m−1

. Then G′ ≤ 〈c, a2n−1
, b2m−1〉. It is clear that exp(G′ ∩ Z(G)) = 2.
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