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Abstract: Given a positive integer 1, a finite group G is called quasi-core-n if (x)/(x)s has order at
most # for any element x in G, where (x) is the normal core of (x) in G. In this paper, we investigate
the structure of finite quasi-core-p p-groups. We prove that if the nilpotency class of a quasi-core-p
p-group is p + m, then the exponent of its commutator subgroup cannot exceed p"*1, where p is an
odd prime and m is non-negative. If p = 3, we prove that every quasi-core-3 3-group has nilpotency
class at most 5 and its commutator subgroup is of exponent at most 9. We also show that the Frattini
subgroup of a quasi-core-2 2-group is abelian.
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1. Introduction

Let G be a group and H is a subgroup of G. Then H is the normal core of H in G, where Hg =
Ngec ¢ 'Hg is the largest normal subgroup of G contained in H. A group G is called core-n if
|H/Hg| < n for every subgroup H of G, where # is a positive integer. Buckley, Lennox, Neumaan,
Smith and Wiegold investigated the core-n groups in [1]. They show that every locally finite group
G with H/Hg finite for all subgroups H is core-n for some n. Moreover, G has an abelian normal
subgroup of index bounded in terms of # only. In [2], Lennox, Smith and Wiegold show that, for p # 2,
a core-p p-group is nilpotent of class at most 3 and has an abelian normal subgroup of index at most p°.
Furthermore, Cutolo, Khukhro, Lennox, Wiegold, Rinauro and Smith [3] prove that a core-p p-group G
has a normal abelian subgroup whose index in G is at most p? if p # 2. Furthermore, if p = 2, Cutolo,
Smith and Wiegold [4] prove that every core-2 2-group has an abelian subgroup of index at most 16.
As a deepening of research in this area, it is interesting to study the following question.

How about the structure of a p-group G in which |(x) /(x)g| < p, for any x € G?

In this paper we hope to investigate the structure of a p-group G in which [(x) /(x)g| < p, for any
x € G. For convenience, we call this kind of p-groups quasi-core-p p-groups.

2. Preliminaries

For convenience, we first recall some notations.

Let G be a p-group. We use d(G) and ¢(G) to denote the minimal number of generators and
the nilpotency class of G respectively. We use C,n to denote the cyclic group of order p™. Let G, =
([$1,82, - &n) | & € G).If H and K are groups, then H x K denotes a product of H and K. For other
notations the reader is referred to [5].

Lemma 1. ([6], Section Appendix 1, Theorem A.1.4) Let G be a p-group and x,y € G.

L (xy)?

= xPy? (mod U1(G')Gp).
2 W=

x,y]P (mod B1(N')N,), where N = (x, [x,y]).
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Lemma 2. ([7], Lemma 2.2) Suppose that G is a finite non-abelian p-group. Then the following conditions
are equivalent.

1. G is minimal non-abelian;
2. d(G)=2and |G'| = p;
3. d(G) =2and ®(G) = Z(G).

Lemma 3. ([8], Theorem) Let p be a prime and d, e positive integers. A regular d-generator metabelian
p-group G whose commutator subgroup has exponent p® has nilpotency class at most e(p — 2) + 1 unless
e=1,d > 2,p > 2 when the class can be p. These bounds are best possible.

Lemma 4. ([9], Theorem 2) Let G be a metacyclic 2-group. Then G has one presentation of the following
three kinds:

1. G has a cyclic maximal subgroup.
. . r+s+u r+s+t r+s r
2. Ordinary metacyclic 2-groups G = (a, b | a* T, e = a2 ab = aW2 where v, s, t, u are
non-negative integers with v > 2 and u <.

r+s+o+t +u rs+t r+s+o+t/ _ r4o
2 — 1,12 — 2 ab = g 1T,

3. Exceptional metacyclic 2-groups G = (a,b | a
where r,s,v,t,t',u are non-negative integers with r > 2,t' < r,u < 1,#t' = sv = tv = 0, and if
t' >r—1, thenu = 0.

Groups of different types or of the same type but with different values of parameters are not isomorphic to
each other.

Lemma 5. ([5], Theorem 10.3) Let G be a regular 3-group. Then G’ is abelian.

Lemma 6. Let G be a quasi-core-p p-group. If H is a subgroup of G and N is a normal subgroup of G, then H
and G/ N are quasi-core-p p-groups.

Proof. The proof of the lemma comes immediately from the definition of quasi-core-p p-groups. [
Lemma 7. Let G be a p-group. Then G is quasi-core-p if and only if (xP) < G, for any element x in G.

Proof. Obviously, G is quasi-core-p if and only if |(x)5/(xP)| < p, for any x € G, and this holds if and
only if (x¥) < G, for any element xin G. [

Lemma 8. Let G be a quasi-core-p p-group. Then [G',U1(G)] = 1.

Proof. For any x € G, according to Lemma 7, we see (x¥) < G. Thus G/Cg(xF) is abelian and so
G’ < Cg(x?), which implies [G',U1(G)] =1. O
3. Quasi-Core-p p-Groups with p > 2

In this section we investigate the quasi-core-p p-groups for p > 2.
Theorem 1. Let G be a quasi-core-p p-group and p > 2. If G' is cyclic, then |G'| < p.

Proof. Suppose the result is not true and G is a counterexample of minimal order. Then there exist
a,b € G such that o([a,b]) > p?. Thus we may assume G = (a,b), [a,b] = cand L = (a,c). Since G
is regular, we may assume (a) N (b) = 1. By Lemma 1, we see [a?,b] = cPx, where x € U;(L')L,.
Since L < G, Uy(L')L, = 1. So x = 1 and [a”, b] = cP. Similarly, [a, b?] = c?. It follows from Lemma 7
that c? € (a) N (b) = 1, in contradiction to the hypothesis. Thus the theorem is true. [

Corollary 1. Let G be a quasi-core-p p-group with p > 2. Then U1(G) is abelian and U, (G) < Z(G).
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Proof. For any 4,b € G, we assume H = (a?,b). By the hypotheses, we see (a’) <4 G and so H is
metacyclic. By Theorem 1, |H'| < p and so H is abelian or minimal non-abelian. Thus U;(H) <
®(H) < Z(H) by Lemma 2. It follows that [a”*,b] = [a?, bP] = 1, which implies U1 (G) is abelian and
U,(G) <Z(G). O

Corollary 2. Let G be a quasi-core-p p-group with p > 2. Then G/Cg(aP) S Cp, forany a € G.

Proof. We may assume a” ¢ Z(G) and o(a) = p". Then n > 3 and there exists an element b € G such
that b ¢ Cg(a”). By Theorem 1, we may assume [a?, b] = a"""' Takex € G \ Cg(aP). Assume [a?, x] =
""", where (i,p) = 1. Then [a?,b~'x] = 1, which implies x € Cg(a?)(b) and so G = Cg(a?)(b).
It follows from b? € Cg(a?) that G/Cg(a?) S Cp. O

Corollary 3. Let G be a quasi-core-p p-group with p > 2. If c(G/U1(G)) < n, then c¢(G) < n+ 2.

Proof. Set G = G/U1(G). Then G, ;1 = 1and so G,1 < U1(G). It follows from Theorem 1 that
[Gyu+1,G] < [01(G), G] < Z(G), which implies ¢(G) < n+2. [

According to Lemma 3 and Corollary 3, we get the following theorem.

Theorem 2. Suppose that G is a quasi-core-p p-group and G' is abelian with p > 2. If d(G) = 2, then ¢(G) <
p+1Ifd(G) > 2, thenc(G) < p+2.

If p = 3, then, according to Lemma 5 and Corollary 3, we get the theorem below.
Theorem 3. Let G be a quasi-core-3 3-group. If d(G) = 2, then ¢(G) < 4. Ifd(G) > 2, then ¢(G) < 5.
Theorem 4. Let G be a quasi-core-3 3-group with d(G) = 2. Then ®(G) is abelian.

Proof. We may assume G = (x,y) and [x,y] = z. Then G’ = (z,[z,¢] | g € G). Forany g1,% € G,
it follows from Theorem 3 that [z, [z, ¢]] € |Gy, G3] = 1 and [[z, 1], [z, $2]] = 1, which implies G’ is
abelian. So, according to Lemma 8 and Corollary 1, ®(G) is abelian. [

Now, we investigate the exponent of commutator subgroups of the quasi-core-p p-groups.
Lemma 9. Let G be a quasi-core-p p-group with G,y = 1and p > 2. Then exp(G') < p.

Proof. Suppose the result is not true and G is a counterexample of minimal order. For any g1, 42 € G/,
let H = (g1,82). By Lemma 1, (§182)" = g/ 85, where x € U;(H')H,. Since c(H) < ¢(G), H, = 1.
By induction, exp(H’) < p and so exp(U1(H’)) = 1. Thus x = 1. It follows that there exist a,b € G
such that o([a,b]) > p and exp(G3) < p.

By induction, we may assume G = (a,b), [4,b] = cand L = (4, c). Then, according to Lemma 1,
we see [af,b] = cPy, where y € Uq(L’)Lp. Since ¢(L) < ¢(G), L, = 1and exp(L’) < p. Thusy = 1.
Since G is a quasi-core-p p-group, (a”) < G. So ¢? € (a). It follows from Theorem 1 that o(c) = p>.
Similarly, we see c? € (b).

Without loss of generality, we may assume (a) N (b) = (a”") = (b*'), a¥" = b ands > t > 2.
If s > t, then, by letting b; = a‘PHb, we see [g, bf ] = c?and ¢f ¢ <b1p ), in contradiction to the
hypothesis. So s = t. Let b, = ab~!. Then, by Lemma 1, we see bé’ = aPb~Pz, where z € U1(G')G,.
Since G’ = (¢, [c, 8] | § € G), we see U1(G') = (c”). Then U1 (G')G, < Z(G) and exp(U1(G')Gp) < p.
Thus o(z) < p and o(by) = p°. Noticing that [a,b5] = c?, we see c” € (b}). If s = 2, then (c?) = (b)),
which implies b} = aPb~Pz € Z(G), a contradiction. If s > 2, then (c?) = (b ) = (a?" b7 ).
It follows that (a) N (b) = <117’571>, another contradiction. [J
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Corollary 4. Let G be a quasi-core-p p-group and exp(G,11) = p" with p > 2 and n > 0.
Then exp(G') < p"*1.

Proof. If n = 0, then the conclusion holds by Lemma 9. Thus we may assume n > 1. Set G =
G/Gpy1. Then Gpp1 = Gpiq = 1. It follows from Lemma 9 that exp(G') < p, which implies
exp(G') < p"tl. O

Corollary 5. Let G be a quasi-core-p p-group and ¢(G) = p+n with p > 2 and n > 0.
Then exp(G') < p"*+1.

Proof. If n = 0, then the conclusion holds by Lemma 9. Thus we assume n > 1. Set G =G/ Gp+n-
Then ¢(G) = p +n — 1. By induction, we see exp(é/) < p". Since Gpyyn = [Gpin-1,G] < Z(G),
by Lemma 9, we see exp(Gp+n) < p. It follows that exp(G') < p"1. O

Theorem 5. Let G be a quasi-core-p p-group with p > 2. If G’ is abelian, then exp(G') < p? and
exp(Gsz) < p.

Proof. Suppose that the result is not true and G is a counterexample of minimal order. Then there exist
a,b € G such that o([a,b]) > p3. We may assume G = (a,b), [a,b] = cand L = (a,c). By Lemma 1,
[aP,b] = cPx, where x € Uy (L')Ly. By induction, exp(L’) < p? and so exp(U; (L)) < p. On the other
hand, since [a,c]? € Z(G), it is easy to see that exp(L3) < p. So o(x) < p. According to Theorem 1,
we see 0(cPx) = p, which implies o(c) < p?, in contradiction to the hypothesis. So exp(G’) < p?. Thus,
forany ¢ € G/, we see g¥ € Z(G). It follows thatexp(G3) < p. [

Theorem 6. Let G be a quasi-core-3 3-group. Then exp(G') < 9 and exp(G3) < 3.

Proof. Take a,b € G’ with o(a) < 9 and o(b) < 9. Let K = (a,b). Then, by Lemma 1, (ab)® = a%b3c,
where ¢ € U1 (K')K3. Since K’ < G4, we see ¢(K) < 3 by Theorem 3. Thus exp(K’) < 3 by Corollary 5,
which implies o(c) < 3. It follows that (ab)? = a’b = 1. So, we may assume d(G) = 2. According to
Corollary 5 and Theorem 3, we see exp(G’) < 9.

Take x € G’ and y € G. Then o(x) < 9 and so (x%) < Z(G). Assume [x,y] = zand L = (x,z).
Then, by Lemma 1, 1 = [x3,y] = z%w, where w € U;(L')L3. Since L’ < Gs < Z(G), by Lemma 9,
we see U1 (L')Ls = 1. It follows that z> = 1. For any g,h € G3 with o(g) < 3 and o(h) < 3, then,
by Theorem 3, we see [g,h] € Gg = 1. So 0(gh) < 3, which implies exp(G3) < 3. O

4. Quasi-Core-2 2-Groups

In this section, we investigate the quasi-core-2 2-groups.

Lemma 10. Let G = (a, b) be a non-abelian metacyclic quasi-core-2 2-group with (a) < G and o(a) = 2".
Then [a,b] = a2, a2 or a=2+2""".

Proof. Since G is a non-abelian metacyclic 2-group , we see n > 2 and G is one of the groups listed in
Lemma 4.

If G is a group listed in (1) in Lemma 4, then the conclusion holds by the classification of p-groups
with a cyclic maximal subgroup.

If G is a group listed in (2) in Lemma 4, then G = (a,b | a2 =, = g2 [a,b] = a2r>
with 7 > 2 and u < r. We may assume s + u > 2. By calculation, it is easy to see ([a, b?]) = (aer).
Since G is a quasi-core-2 2-group, we see 2" e (b*), which implies s < 1. Leta; = ab=2 . Tf s = 0,
then (a1) N (a)=1. It follows from G is quasi-core-2 that a3 € Z(G), which implies > € Z(G). However,
it is impossible. If s = 1, then o(a1) = 2"*1 and ([a2,b]) = (> < (a?). It follows that (a>™") = (a?'),

which implies b2 € (a). Ttis also impossible. So s + u = 1 and therefore [a,b] = a2
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rst+o+t +u r4s+t r+s+o+t/
2 — 1,12 — 2 [a,b] =

If G is of type (3) in Lemma 4, then G = (a,b | a
a~2t2"") with r > 2and u < 1. It follows from [a,b?] € (b) thats++ < landsos+t +u < 2.
We may assume s+ +u = 2andsou = s++ = 1. Then b* " = ¢*'" and [a,b] = a=2+2"".
We assume o(b) = 2. If r + s+t = 2, then, since (ba)?> = = 222", we see o(ba) = 4. On the other
hand, [a, (ba)?] = a®" ' So, by the hypotheses, we see a2 B € {(ba)?) = <b2a2n72>, a contradiction.
Ifr+s+t > 3, then o(bzm ") =4and [b, (b¥" a2 7)2) = aznfl. Thus a2~ € ((1*"a2")2) =
(b*" 42", another contradiction. So the conclusion holds. [

Corollary 6. Let G be a quasi-core-2 2-group. Then ®(G) is abelian and U,(G) < G'Z(G).

Proof. For any a,b € G, we may assume H = (a2, b) is not abelian and o(a
we see (a?) < G and so H is metacyclic. It follows from Lemma 10 that [a?,
Then, it is easy to see that [a%, b?] = 1, which implies ®(G) is abelian.

Take g € G with ¢* ¢ G'. Then [¢?,h] € O4((g)) for any h € G, which implies [¢*, 4] = 1 and
therefore ¢* € Z(G). So U,(G) < G'Z(G). O

) = 2". By the hypotheses,
b] = nil, ~4or g 42",

Corollary 7. Let G be a quasi-core-2 2-group. Then, forany a € G, G/Cg(a?) S Cy x Ca, G/Cg(a*) S G
and if G/ Cg(a*) = Cy, then a* € G' and (a) N Z(G) = Oy ({a)).

Proof. Without loss of generality, we may assume a*> ¢ Z(G), o(a) = 2" and n > 3. By Corollary 6,
we see ®(G) < Cg(a?), which implies G/Cg(a?) is elementary abelian. For any ¢ € G\ Cg(a?),
according to Lemma 10, we see [a?,g] = a4, a2 or a2 Ttis easy to see that G/Cg(a?) <

Co x Cpand G/Cg(a*) < Cy. If G/Cg(a*) < Cy, then, there exists an element b € G \ Cg(a*) such
that {[a%,b]) = (a*). Soa* € G"and (a) N Z(G) = O1((a)). O

Lemma 11. Let G be a quasi-core-2 2-group with ¢(G) = 2. Then exp(G') < 4.

Proof. If not, then there exist a,b € G such that o([a, b]) > 8. We may assume [a,b] = c. Then [4?,b] =
c?. By induction, 0(c?) < 4 and so o(c) = 8. It follows from Lemma 10 that (c?) = (a*), which implies
a* € Z(G). However, [a*,b] = c* # 1, a contradiction. So the conclusion holds. [

Theorem 7. Let G be a quasi-core-2 2-group with ¢(G) = nand n > 2. Then exp(G') < 22(n—1),

7

Proof. If n = 2, then the conclusion holds by Lemma 11 Thus we may assume n > 3. Set G =
G/Gy. Then ¢(G) = n — 1. By induction, we see exp(G ) < 22(=2) Since G, = [G,_1,G] < Z(G
by Lemma 11, we see exp(G,) < 4. It follows that exp(G’) < 22("-1), [

Theorem 8. Let G be a non-abelian quasi-core-2 2-group with d(G) = 2. Then U1(G’), Gy are cyclic,
and either G'NZ(G) S Ca x Ca x Coor G = (a,b | a® =1,a* =b* =%, [a,b] =, [c,a] = [, b] = 1).

Proof. If G is metacyclic, then the conclusion holds by Lemma 10. So we may assume G = (a, b) is
non-metacyclic, [a,b] = ¢, 0(a) = 2",0(b) = 2" and o(c) = 2" withn > m. Thus G’ = (¢, [c, 8] | g € G).
By Corollary 6, ®(G) is abelian. So [c, g]* = [c?,g] € (c?), which implies U1 (G’) < (c?) and therefore
U1(G’) is cyclic. Now we consider the following two cases: ¢(G) = 2 and ¢(G) > 2.

Casel. ¢(G)=2.

By Lemma 11, we see exp(G’) < 4. We may assume exp(G’') = 4. Then o(c) = 4 and
[a%,b] = [a,b*] = ¢ Thusn > m > 3 and ¢? € (a) N (b). Without loss of generality,
we may assume (a) N (b) = (a®') = (b*'), a® = b* andu > v > 2. Letb; = a2 'b.
Then [a,b3] = 2. Ifu > vorv > 3, theno(by) = 2°. Thus (¢?) = <b%vil>, which implies
a2 € (b), a contradiction. So u = v = 2 and a* = b* Noticing that G = (a,b;) and
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[a,b1] = ¢, we see a* = b} by the above. It follows from o(b;) = 8 that 0(a) = 8. So, we see
G={(ab|a®=1a*=b*=c2[a,b] =cca] =[cb] =1).
Case2. ¢(G)>2.

In this case, we consider the following two subcases: G’ is cyclic and G’ is not cyclic.

Subcase 1. G’ is cyclic.

If o(c) < 4, then ¢> € Z(G) and G' N Z(G) < Cp. So we may assume t > 3.
By Lemma 10, we see [c,a] = 1,¢72,¢ 227" or 7", If ([c,a]) = (c?), then
exp(G' N Z(G)) = 2. Thus we may assume [c,a] = ¢ and |c, b] = 1. It follows
that [a%,b] = "2, According to Lemma 10, it is easy to see (c2) = (a*). So

[a*,b] = 1 and therefore o(c) < 4, in contradiction to the hypothesis.
Subcase 2. G’ is not cyclic.

Since [a,b] = ¢, [a%,b] = c?[c,al. By Lemma 10, we see [c,a] =

204, c 242" 2 or ¢ 242", Similarly, [c,b] = ¢~ 2b~4,c2p~4+2" 2
or c 202" It follows that G' < (c,a*b%), [({[c,a]),G] < ©1({[c,a])) and

[{[c,b]), G] < U1({[c,b])). Then [Gs, G] < U1(G3) < U1(G'). So Gy is cyclic.

Now we prove exp(G' N Z(G)) = 2. Assume [c,a] = c2a% or c 2242 and n > 4.

If [c,b] = ¢ 2, then G’ = {c,a*). Since G is not cyclic, we see [c,a] # 1. Take g € G’ N Z(G) and
assume g = c*a¥. Tt follows from [g,b] = 1 that o(g) < 2. So exp(G' N Z(G)) = 2.

If [c,b] = ¢ 262", then G' = (c,a*,b®" ). If [c,a] = 1, then a* € (c) and G’ = (¢, b*" ). Itis
easy to see that exp(G' N Z(G)) = 2. Assume [c,a] # 1. Take h € G' N Z(G) and assume h = c?a?.
It follows from [h,b] = 1 that o(h) < 2 and so exp(G' N Z(G)) = 2.

If [¢,b] = ¢ 2h~% or c‘zb_4+2m71, we may assume m > 4 by the above. It is easy to see that
(a8,b8) < (c). Thus [b8,a] = 1, which implies o(b) = 16 and b® = 2", On the other hand, we see
[(a2"°b%)2,a] = b® and therefore b8 = a®"b*. It follows that [a, b*] = 1. However, it is impossible.

Assume [c,a] = ¢2 or c~2a®""'. Without loss of generality, we may assume [c,b] = ¢2 or
¢ 2" Then G’ < (c,a®"",b*" ). Itis clear that exp(G' N Z(G)) =2. O
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