

Article On Finite Quasi-Core-*p p*-Groups

Jiao Wang ^{1,*} and Xiuyun Guo²

- ¹ Basic Course Department, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
- ² Department of Mathematics, Shanghai University, Shanghai 200444, China; xyguo@staff.shu.edu.cn
- * Correspondence: wangjiaomath@126.com

Received: 4 August 2019; Accepted: 5 September 2019; Published: 10 September 2019

Abstract: Given a positive integer *n*, a finite group *G* is called quasi-core-*n* if $\langle x \rangle / \langle x \rangle_G$ has order at most *n* for any element *x* in *G*, where $\langle x \rangle_G$ is the normal core of $\langle x \rangle$ in *G*. In this paper, we investigate the structure of finite quasi-core-*p p*-groups. We prove that if the nilpotency class of a quasi-core-*p p*-group is p + m, then the exponent of its commutator subgroup cannot exceed p^{m+1} , where *p* is an odd prime and *m* is non-negative. If p = 3, we prove that every quasi-core-3 3-group has nilpotency class at most 5 and its commutator subgroup is of exponent at most 9. We also show that the Frattini subgroup of a quasi-core-2 2-group is abelian.

Keywords: finite *p*-group; quasi-core-*p p*-group; commutator subgroup

1. Introduction

Let *G* be a group and *H* is a subgroup of *G*. Then H_G is the normal core of *H* in *G*, where $H_G = \bigcap_{g \in G} g^{-1}Hg$ is the largest normal subgroup of *G* contained in *H*. A group *G* is called core-*n* if $|H/H_G| \leq n$ for every subgroup *H* of *G*, where *n* is a positive integer. Buckley, Lennox, Neumaan, Smith and Wiegold investigated the core-*n* groups in [1]. They show that every locally finite group *G* with H/H_G finite for all subgroups *H* is core-*n* for some *n*. Moreover, *G* has an abelian normal subgroup of index bounded in terms of *n* only. In [2], Lennox, Smith and Wiegold show that, for $p \neq 2$, a core-*p p*-group is nilpotent of class at most 3 and has an abelian normal subgroup of index at most p^5 . Furthermore, Cutolo, Khukhro, Lennox, Wiegold, Rinauro and Smith [3] prove that a core-*p p*-group *G* has a normal abelian subgroup whose index in *G* is at most p^2 if $p \neq 2$. Furthermore, if p = 2, Cutolo, Smith and Wiegold [4] prove that every core-2 2-group has an abelian subgroup of index at most 16. As a deepening of research in this area, it is interesting to study the following question.

How about the structure of a *p*-group *G* in which $|\langle x \rangle / \langle x \rangle_G| \le p$, for any $x \in G$?

In this paper we hope to investigate the structure of a *p*-group *G* in which $|\langle x \rangle / \langle x \rangle_G| \le p$, for any $x \in G$. For convenience, we call this kind of *p*-groups quasi-core-*p p*-groups.

2. Preliminaries

For convenience, we first recall some notations.

Let *G* be a *p*-group. We use d(G) and c(G) to denote the minimal number of generators and the nilpotency class of *G* respectively. We use C_{p^m} to denote the cyclic group of order p^m . Let $G_n = \langle [g_1, g_2, ..., g_n] \mid g_i \in G \rangle$. If *H* and *K* are groups, then $H \times K$ denotes a product of *H* and *K*. For other notations the reader is referred to [5].

Lemma 1. ([6], Section Appendix 1, Theorem A.1.4) *Let G be a p*-*group and* $x, y \in G$.

1. $(xy)^p \equiv x^p y^p \pmod{\mho_1(G')G_p}$.

2. $[x^p, y] \equiv [x, y]^p \pmod{\mho_1(N')N_p}$, where $N = \langle x, [x, y] \rangle$.

Lemma 2. ([7], Lemma 2.2) *Suppose that G is a finite non-abelian p-group. Then the following conditions are equivalent.*

- 1. *G is minimal non-abelian;*
- 2. d(G) = 2 and |G'| = p;
- 3. d(G) = 2 and $\Phi(G) = Z(G)$.

Lemma 3. ([8], Theorem) Let p be a prime and d, e positive integers. A regular d-generator metabelian p-group G whose commutator subgroup has exponent p^e has nilpotency class at most e(p-2) + 1 unless e = 1, d > 2, p > 2 when the class can be p. These bounds are best possible.

Lemma 4. ([9], Theorem 2) *Let G be a metacyclic* 2*-group. Then G has one presentation of the following three kinds:*

- 1. *G* has a cyclic maximal subgroup.
- 2. Ordinary metacyclic 2-groups $G = \langle a, b \mid a^{2^{r+s+u}} = 1, b^{2^{r+s+t}} = a^{2^{r+s}}, a^b = a^{1+2^r} \rangle$, where r, s, t, u are non-negative integers with $r \ge 2$ and $u \le r$.
- 3. Exceptional metacyclic 2-groups $G = \langle a, b \mid a^{2^{r+s+v+t'+u}} = 1, b^{2^{r+s+t}} = a^{2^{r+s+v+t'}}, a^b = a^{-1+2^{r+v}} \rangle$, where r, s, v, t, t', u are non-negative integers with $r \ge 2, t' \le r, u \le 1, tt' = sv = tv = 0$, and if $t' \ge r-1$, then u = 0.

Groups of different types or of the same type but with different values of parameters are not isomorphic to each other.

Lemma 5. ([5], Theorem 10.3) Let G be a regular 3-group. Then G' is abelian.

Lemma 6. Let G be a quasi-core-p p-group. If H is a subgroup of G and N is a normal subgroup of G, then H and G/N are quasi-core-p p-groups.

Proof. The proof of the lemma comes immediately from the definition of quasi-core-*p p*-groups. \Box

Lemma 7. Let G be a p-group. Then G is quasi-core-p if and only if $\langle x^p \rangle \leq G$, for any element x in G.

Proof. Obviously, *G* is quasi-core-*p* if and only if $|\langle x \rangle_G / \langle x^p \rangle| \le p$, for any $x \in G$, and this holds if and only if $\langle x^p \rangle \le G$, for any element *x* in *G*. \Box

Lemma 8. Let G be a quasi-core-p p-group. Then $[G', \mathfrak{V}_1(G)] = 1$.

Proof. For any $x \in G$, according to Lemma 7, we see $\langle x^p \rangle \leq G$. Thus $G/C_G(x^p)$ is abelian and so $G' \leq C_G(x^p)$, which implies $[G', \mathcal{O}_1(G)] = 1$. \Box

3. Quasi-Core-*p p*-Groups with p > 2

In this section we investigate the quasi-core-*p p*-groups for p > 2.

Theorem 1. Let G be a quasi-core-p p-group and p > 2. If G' is cyclic, then $|G'| \le p$.

Proof. Suppose the result is not true and *G* is a counterexample of minimal order. Then there exist $a, b \in G$ such that $o([a, b]) \ge p^2$. Thus we may assume $G = \langle a, b \rangle$, [a, b] = c and $L = \langle a, c \rangle$. Since *G* is regular, we may assume $\langle a \rangle \cap \langle b \rangle = 1$. By Lemma 1, we see $[a^p, b] = c^p x$, where $x \in \mathcal{O}_1(L')L_p$. Since L < G, $\mathcal{O}_1(L')L_p = 1$. So x = 1 and $[a^p, b] = c^p$. Similarly, $[a, b^p] = c^p$. It follows from Lemma 7 that $c^p \in \langle a \rangle \cap \langle b \rangle = 1$, in contradiction to the hypothesis. Thus the theorem is true. \Box

Corollary 1. Let G be a quasi-core-p p-group with p > 2. Then $\mathcal{O}_1(G)$ is abelian and $\mathcal{O}_2(G) \leq Z(G)$.

Proof. For any $a, b \in G$, we assume $H = \langle a^p, b \rangle$. By the hypotheses, we see $\langle a^p \rangle \leq G$ and so H is metacyclic. By Theorem 1, $|H'| \leq p$ and so H is abelian or minimal non-abelian. Thus $\mathcal{O}_1(H) \leq \Phi(H) \leq Z(H)$ by Lemma 2. It follows that $[a^{p^2}, b] = [a^p, b^p] = 1$, which implies $\mathcal{O}_1(G)$ is abelian and $\mathcal{O}_2(G) \leq Z(G)$. \Box

Corollary 2. Let G be a quasi-core-p p-group with p > 2. Then $G/C_G(a^p) \leq C_p$, for any $a \in G$.

Proof. We may assume $a^p \notin Z(G)$ and $o(a) = p^n$. Then $n \ge 3$ and there exists an element $b \in G$ such that $b \notin C_G(a^p)$. By Theorem 1, we may assume $[a^p, b] = a^{p^{n-1}}$. Take $x \in G \setminus C_G(a^p)$. Assume $[a^p, x] = a^{ip^{n-1}}$, where (i, p) = 1. Then $[a^p, b^{-i}x] = 1$, which implies $x \in C_G(a^p) \langle b \rangle$ and so $G = C_G(a^p) \langle b \rangle$. It follows from $b^p \in C_G(a^p)$ that $G/C_G(a^p) \lesssim C_p$. \Box

Corollary 3. Let G be a quasi-core-p p-group with p > 2. If $c(G/\mathcal{O}_1(G)) \le n$, then $c(G) \le n + 2$.

Proof. Set $\overline{G} = G/\mathfrak{V}_1(G)$. Then $\overline{G}_{n+1} = \overline{1}$ and so $G_{n+1} \leq \mathfrak{V}_1(G)$. It follows from Theorem 1 that $[G_{n+1}, G] \leq [\mathfrak{V}_1(G), G] \leq Z(G)$, which implies $c(G) \leq n+2$. \Box

According to Lemma 3 and Corollary 3, we get the following theorem.

Theorem 2. Suppose that G is a quasi-core-p p-group and G' is abelian with p > 2. If d(G) = 2, then $c(G) \le p + 1$. If d(G) > 2, then $c(G) \le p + 2$.

If p = 3, then, according to Lemma 5 and Corollary 3, we get the theorem below.

Theorem 3. Let G be a quasi-core-3 3-group. If d(G) = 2, then $c(G) \le 4$. If d(G) > 2, then $c(G) \le 5$.

Theorem 4. Let G be a quasi-core-3 3-group with d(G) = 2. Then $\Phi(G)$ is abelian.

Proof. We may assume $G = \langle x, y \rangle$ and [x, y] = z. Then $G' = \langle z, [z, g] | g \in G \rangle$. For any $g_1, g_2 \in G$, it follows from Theorem 3 that $[z, [z, g]] \in [G_2, G_3] = 1$ and $[[z, g_1], [z, g_2]] = 1$, which implies G' is abelian. So, according to Lemma 8 and Corollary 1, $\Phi(G)$ is abelian. \Box

Now, we investigate the exponent of commutator subgroups of the quasi-core-*p p*-groups.

Lemma 9. Let G be a quasi-core-p p-group with $G_{p+1} = 1$ and p > 2. Then $\exp(G') \le p$.

Proof. Suppose the result is not true and *G* is a counterexample of minimal order. For any $g_1, g_2 \in G'$, let $H = \langle g_1, g_2 \rangle$. By Lemma 1, $(g_1g_2)^p = g_1^p g_2^p x$, where $x \in \mathcal{O}_1(H')H_p$. Since c(H) < c(G), $H_p = 1$. By induction, $\exp(H') \leq p$ and so $\exp(\mathcal{O}_1(H')) = 1$. Thus x = 1. It follows that there exist $a, b \in G$ such that o([a, b]) > p and $\exp(G_3) \leq p$.

By induction, we may assume $G = \langle a, b \rangle$, [a, b] = c and $L = \langle a, c \rangle$. Then, according to Lemma 1, we see $[a^p, b] = c^p y$, where $y \in \mathcal{O}_1(L')L_p$. Since c(L) < c(G), $L_p = 1$ and $\exp(L') \le p$. Thus y = 1. Since *G* is a quasi-core-*p p*-group, $\langle a^p \rangle \le G$. So $c^p \in \langle a \rangle$. It follows from Theorem 1 that $o(c) = p^2$. Similarly, we see $c^p \in \langle b \rangle$.

Without loss of generality, we may assume $\langle a \rangle \cap \langle b \rangle = \langle a^{p^s} \rangle = \langle b^{p^t} \rangle$, $a^{p^s} = b^{p^t}$ and $s \ge t \ge 2$. If s > t, then, by letting $b_1 = a^{-p^{s^{-t}}b}$, we see $[a, b_1^p] = c^p$ and $c^p \notin \langle b_1^p \rangle$, in contradiction to the hypothesis. So s = t. Let $b_2 = ab^{-1}$. Then, by Lemma 1, we see $b_2^p = a^p b^{-p} z$, where $z \in \mathcal{O}_1(G')G_p$. Since $G' = \langle c, [c, g] \mid g \in G \rangle$, we see $\mathcal{O}_1(G') = \langle c^p \rangle$. Then $\mathcal{O}_1(G')G_p \le Z(G)$ and $\exp(\mathcal{O}_1(G')G_p) \le p$. Thus $o(z) \le p$ and $o(b_2) = p^s$. Noticing that $[a, b_2^p] = c^p$, we see $c^p \in \langle b_2^p \rangle$. If s = 2, then $\langle c^p \rangle = \langle b_2^{p^{s-1}} \rangle$, which implies $b_2^p = a^p b^{-p} z \in Z(G)$, a contradiction. If s > 2, then $\langle c^p \rangle = \langle b_2^{p^{s-1}} \rangle = \langle a^{p^{s-1}} b^{p^{s-1}} \rangle$. It follows that $\langle a \rangle \cap \langle b \rangle = \langle a^{p^{s-1}} \rangle$, another contradiction. \Box **Corollary 4.** Let G be a quasi-core-p p-group and $\exp(G_{p+1}) = p^n$ with p > 2 and $n \ge 0$. Then $\exp(G') \le p^{n+1}$.

Proof. If n = 0, then the conclusion holds by Lemma 9. Thus we may assume $n \ge 1$. Set $\overline{G} = G/G_{p+1}$. Then $\overline{G}_{p+1} = \overline{G}_{p+1} = \overline{1}$. It follows from Lemma 9 that $\exp(\overline{G}') \le p$, which implies $\exp(G') \le p^{n+1}$. \Box

Corollary 5. Let G be a quasi-core-p p-group and c(G) = p + n with p > 2 and $n \ge 0$. Then $\exp(G') \le p^{n+1}$.

Proof. If n = 0, then the conclusion holds by Lemma 9. Thus we assume $n \ge 1$. Set $\overline{G} = G/G_{p+n}$. Then $c(\overline{G}) = p + n - 1$. By induction, we see $\exp(\overline{G}') \le p^n$. Since $G_{p+n} = [G_{p+n-1}, G] \le Z(G)$, by Lemma 9, we see $\exp(G_{p+n}) \le p$. It follows that $\exp(G') \le p^{n+1}$. \Box

Theorem 5. Let G be a quasi-core-p p-group with p > 2. If G' is abelian, then $\exp(G') \le p^2$ and $\exp(G_3) \le p$.

Proof. Suppose that the result is not true and *G* is a counterexample of minimal order. Then there exist $a, b \in G$ such that $o([a, b]) \ge p^3$. We may assume $G = \langle a, b \rangle$, [a, b] = c and $L = \langle a, c \rangle$. By Lemma 1, $[a^p, b] = c^p x$, where $x \in \mathcal{O}_1(L')L_p$. By induction, $\exp(L') \le p^2$ and so $\exp(\mathcal{O}_1(L')) \le p$. On the other hand, since $[a, c]^p \in Z(G)$, it is easy to see that $\exp(L_3) \le p$. So $o(x) \le p$. According to Theorem 1, we see $o(c^p x) = p$, which implies $o(c) \le p^2$, in contradiction to the hypothesis. So $\exp(G') \le p^2$. Thus, for any $g \in G'$, we see $g^p \in Z(G)$. It follows that $\exp(G_3) \le p$. \Box

Theorem 6. Let G be a quasi-core-3 3-group. Then $\exp(G') \le 9$ and $\exp(G_3) \le 3$.

Proof. Take $a, b \in G'$ with $o(a) \leq 9$ and $o(b) \leq 9$. Let $K = \langle a, b \rangle$. Then, by Lemma 1, $(ab)^3 = a^3b^3c$, where $c \in \mathcal{O}_1(K')K_3$. Since $K' \leq G_4$, we see $c(K) \leq 3$ by Theorem 3. Thus $\exp(K') \leq 3$ by Corollary 5, which implies $o(c) \leq 3$. It follows that $(ab)^9 = a^9b^9 = 1$. So, we may assume d(G) = 2. According to Corollary 5 and Theorem 3, we see $\exp(G') \leq 9$.

Take $x \in G'$ and $y \in G$. Then $o(x) \leq 9$ and so $\langle x^3 \rangle \leq Z(G)$. Assume [x, y] = z and $L = \langle x, z \rangle$. Then, by Lemma 1, $1 = [x^3, y] = z^3 w$, where $w \in \mathcal{O}_1(L')L_3$. Since $L' \leq G_5 \leq Z(G)$, by Lemma 9, we see $\mathcal{O}_1(L')L_3 = 1$. It follows that $z^3 = 1$. For any $g, h \in G_3$ with $o(g) \leq 3$ and $o(h) \leq 3$, then, by Theorem 3, we see $[g, h] \in G_6 = 1$. So $o(gh) \leq 3$, which implies $\exp(G_3) \leq 3$. \Box

4. Quasi-Core-2 2-Groups

In this section, we investigate the quasi-core-2 2-groups.

Lemma 10. Let $G = \langle a, b \rangle$ be a non-abelian metacyclic quasi-core-2 2-group with $\langle a \rangle \leq G$ and $o(a) = 2^n$. Then $[a,b] = a^{2^{n-1}}$, a^{-2} or $a^{-2+2^{n-1}}$.

Proof. Since *G* is a non-abelian metacyclic 2-group , we see $n \ge 2$ and *G* is one of the groups listed in Lemma 4.

If *G* is a group listed in (1) in Lemma 4, then the conclusion holds by the classification of *p*-groups with a cyclic maximal subgroup.

If *G* is a group listed in (2) in Lemma 4, then $G = \langle a, b \mid a^{2^{r+s+u}} = 1, b^{2^{r+s+t}} = a^{2^{r+s}}, [a, b] = a^{2^r} \rangle$ with $r \ge 2$ and $u \le r$. We may assume $s + u \ge 2$. By calculation, it is easy to see $\langle [a, b^2] \rangle = \langle a^{2^{r+1}} \rangle$. Since *G* is a quasi-core-2 2-group, we see $a^{2^{r+1}} \in \langle b^2 \rangle$, which implies $s \le 1$. Let $a_1 = ab^{-2^t}$. If s = 0, then $\langle a_1 \rangle \cap \langle a \rangle = 1$. It follows from *G* is quasi-core-2 that $a_1^2 \in Z(G)$, which implies $a^2 \in Z(G)$. However, it is impossible. If s = 1, then $o(a_1) = 2^{r+1}$ and $\langle [a_1^2, b] \rangle = \langle a^{2^{r+1}} \rangle \le \langle a_1^2 \rangle$. It follows that $\langle a^{2^{r+u}} \rangle = \langle a_1^{2^r} \rangle$, which implies $b^{2^{r+t}} \in \langle a \rangle$. It is also impossible. So s + u = 1 and therefore $[a, b] = a^{2^{n-1}}$. If *G* is of type (3) in Lemma 4, then $G = \langle a, b \mid a^{2^{r+s+v+t'+u}} = 1, b^{2^{r+s+t}} = a^{2^{r+s+v+t'}}, [a, b] = a^{-2+2^{r+v}}$ with $r \ge 2$ and $u \le 1$. It follows from $[a, b^2] \in \langle b \rangle$ that $s + t' \le 1$ and so $s + t' + u \le 2$. We may assume s + t' + u = 2 and so u = s + t' = 1. Then $b^{2^{r+s+t}} = a^{2^{n-1}}$ and $[a, b] = a^{-2+2^{n-2}}$. We assume $o(b) = 2^m$. If r + s + t = 2, then, since $(ba)^2 = b^2 a^{2^{n-2}}$, we see o(ba) = 4. On the other hand, $[a, (ba)^2] = a^{2^{n-1}}$. So, by the hypotheses, we see $a^{2^{n-1}} \in \langle (ba)^2 \rangle = \langle b^2 a^{2^{n-2}} \rangle$, a contradiction. If $r + s + t \ge 3$, then $o(b^{2^{m-3}}a^{2^{n-3}}) = 4$ and $[b, (b^{2^{m-3}}a^{2^{n-3}})^2] = a^{2^{n-1}}$. Thus $a^{2^{n-1}} \in \langle (b^{2^{m-3}}a^{2^{n-3}})^2 \rangle = \langle b^{2^{m-2}}a^{2^{n-2}} \rangle$, another contradiction. So the conclusion holds. \Box

Corollary 6. Let G be a quasi-core-2 2-group. Then $\Phi(G)$ is abelian and $\mathcal{V}_2(G) \leq G'Z(G)$.

Proof. For any $a, b \in G$, we may assume $H = \langle a^2, b \rangle$ is not abelian and $o(a) = 2^n$. By the hypotheses, we see $\langle a^2 \rangle \leq G$ and so H is metacyclic. It follows from Lemma 10 that $[a^2, b] = a^{2^{n-1}}, a^{-4}$ or $a^{-4+2^{n-1}}$. Then, it is easy to see that $[a^2, b^2] = 1$, which implies $\Phi(G)$ is abelian.

Take $g \in G$ with $g^4 \notin G'$. Then $[g^2, h] \in \Omega_1(\langle g \rangle)$ for any $h \in G$, which implies $[g^4, h] = 1$ and therefore $g^4 \in Z(G)$. So $U_2(G) \leq G'Z(G)$. \Box

Corollary 7. Let G be a quasi-core-2 2-group. Then, for any $a \in G$, $G/C_G(a^2) \leq C_2 \times C_2$, $G/C_G(a^4) \leq C_2$ and if $G/C_G(a^4) \cong C_2$, then $a^4 \in G'$ and $\langle a \rangle \cap Z(G) = \Omega_1(\langle a \rangle)$.

Proof. Without loss of generality, we may assume $a^2 \notin Z(G)$, $o(a) = 2^n$ and $n \ge 3$. By Corollary 6, we see $\Phi(G) \le C_G(a^2)$, which implies $G/C_G(a^2)$ is elementary abelian. For any $g \in G \setminus C_G(a^2)$, according to Lemma 10, we see $[a^2, g] = a^{-4}, a^{2^{n-1}}$ or $a^{-4+2^{n-1}}$. It is easy to see that $G/C_G(a^2) \le C_2 \times C_2$ and $G/C_G(a^4) \le C_2$. If $G/C_G(a^4) \le C_2$, then, there exists an element $b \in G \setminus C_G(a^4)$ such that $\langle [a^2, b] \rangle = \langle a^4 \rangle$. So $a^4 \in G'$ and $\langle a \rangle \cap Z(G) = \Omega_1(\langle a \rangle)$. \Box

Lemma 11. Let G be a quasi-core-2 2-group with c(G) = 2. Then $exp(G') \le 4$.

Proof. If not, then there exist $a, b \in G$ such that $o([a, b]) \ge 8$. We may assume [a, b] = c. Then $[a^2, b] = c^2$. By induction, $o(c^2) \le 4$ and so o(c) = 8. It follows from Lemma 10 that $\langle c^2 \rangle = \langle a^4 \rangle$, which implies $a^4 \in Z(G)$. However, $[a^4, b] = c^4 \ne 1$, a contradiction. So the conclusion holds. \Box

Theorem 7. Let G be a quasi-core-2 2-group with c(G) = n and $n \ge 2$. Then $\exp(G') \le 2^{2(n-1)}$.

Proof. If n = 2, then the conclusion holds by Lemma 11. Thus we may assume $n \ge 3$. Set $\overline{G} = G/G_n$. Then $c(\overline{G}) = n - 1$. By induction, we see $\exp(\overline{G}') \le 2^{2(n-2)}$. Since $G_n = [G_{n-1}, G] \le Z(G)$, by Lemma 11, we see $\exp(G_n) \le 4$. It follows that $\exp(G') \le 2^{2(n-1)}$. \Box

Theorem 8. Let G be a non-abelian quasi-core-2 2-group with d(G) = 2. Then $\mathfrak{V}_1(G')$, G_4 are cyclic, and either $G' \cap Z(G) \leq C_2 \times C_2 \times C_2$ or $G = \langle a, b \mid a^8 = 1, a^4 = b^4 = c^2, [a, b] = c, [c, a] = [c, b] = 1 \rangle$.

Proof. If *G* is metacyclic, then the conclusion holds by Lemma 10. So we may assume $G = \langle a, b \rangle$ is non-metacyclic, [a, b] = c, $o(a) = 2^n$, $o(b) = 2^m$ and $o(c) = 2^t$ with $n \ge m$. Thus $G' = \langle c, [c, g] | g \in G \rangle$. By Corollary 6, $\Phi(G)$ is abelian. So $[c, g]^2 = [c^2, g] \in \langle c^2 \rangle$, which implies $\mathcal{V}_1(G') \le \langle c^2 \rangle$ and therefore $\mathcal{V}_1(G')$ is cyclic. Now we consider the following two cases: c(G) = 2 and c(G) > 2.

Case 1. c(G) = 2.

By Lemma 11, we see $\exp(G') \leq 4$. We may assume $\exp(G') = 4$. Then o(c) = 4 and $[a^2, b] = [a, b^2] = c^2$. Thus $n \geq m \geq 3$ and $c^2 \in \langle a \rangle \cap \langle b \rangle$. Without loss of generality, we may assume $\langle a \rangle \cap \langle b \rangle = \langle a^{2^u} \rangle = \langle b^{2^v} \rangle$, $a^{2^u} = b^{2^v}$ and $u \geq v \geq 2$. Let $b_1 = a^{-2^{u-v}}b$. Then $[a, b_1^2] = c^2$. If u > v or $v \geq 3$, then $o(b_1) = 2^v$. Thus $\langle c^2 \rangle = \langle b_1^{2^{v-1}} \rangle$, which implies $a^{2^{u-1}} \in \langle b \rangle$, a contradiction. So u = v = 2 and $a^4 = b^4$. Noticing that $G = \langle a, b_1 \rangle$ and

 $[a, b_1] = c$, we see $a^4 = b_1^4$ by the above. It follows from $o(b_1) = 8$ that o(a) = 8. So, we see $G = \langle a, b \mid a^8 = 1, a^4 = b^4 = c^2, [a, b] = c, [c, a] = [c, b] = 1 \rangle$. c(G) > 2.

Case 2. *c*(*G*) 2

In this case, we consider the following two subcases: G' is cyclic and G' is not cyclic.

Subcase 1. *G'* is cyclic.

If $o(c) \leq 4$, then $c^2 \in Z(G)$ and $G' \cap Z(G) \leq C_2$. So we may assume $t \geq 3$. By Lemma 10, we see $[c, a] = 1, c^{-2}, c^{-2+2^{t-1}}$ or $c^{2^{t-1}}$. If $\langle [c, a] \rangle = \langle c^2 \rangle$, then $\exp(G' \cap Z(G)) = 2$. Thus we may assume $[c, a] = c^{2^{t-1}}$ and [c, b] = 1. It follows that $[a^2, b] = c^{2+2^{t-1}}$. According to Lemma 10, it is easy to see $\langle c^2 \rangle = \langle a^4 \rangle$. So $[a^4, b] = 1$ and therefore $o(c) \leq 4$, in contradiction to the hypothesis. G' is not cyclic.

Subcase 2.
$$G'$$
 is:

Since [a,b] = c, $[a^2,b] = c^2[c,a]$. By Lemma 10, we see $[c,a] = c^{-2}a^{-4}, c^{-2}a^{-4+2^{n-1}}, c^{-2}$ or $c^{-2}a^{2^{n-1}}$. Similarly, $[c,b] = c^{-2}b^{-4}, c^{-2}b^{-4+2^{m-1}}, c^{-2}$ or $c^{-2}b^{2^{m-1}}$. It follows that $G' \leq \langle c, a^4, b^4 \rangle$, $[\langle [c,a] \rangle, G] \leq \mathcal{O}_1(\langle [c,a] \rangle)$ and $[\langle [c,b] \rangle, G] \leq \mathcal{O}_1(\langle [c,b] \rangle)$. Then $[G_3, G] \leq \mathcal{O}_1(G_3) \leq \mathcal{O}_1(G')$. So G_4 is cyclic.

Now we prove $\exp(G' \cap Z(G)) = 2$. Assume $[c, a] = c^{-2}a^{-4}$ or $c^{-2}a^{-4+2^{n-1}}$, and $n \ge 4$.

If $[c, b] = c^{-2}$, then $G' = \langle c, a^4 \rangle$. Since G' is not cyclic, we see $[c, a] \neq 1$. Take $g \in G' \cap Z(G)$ and assume $g = c^{2i}a^{4j}$. It follows from [g, b] = 1 that $o(g) \leq 2$. So $\exp(G' \cap Z(G)) = 2$.

If $[c, b] = c^{-2}b^{2^{m-1}}$, then $G' = \langle c, a^4, b^{2^{m-1}} \rangle$. If [c, a] = 1, then $a^4 \in \langle c \rangle$ and $G' = \langle c, b^{2^{m-1}} \rangle$. It is easy to see that $\exp(G' \cap Z(G)) = 2$. Assume $[c, a] \neq 1$. Take $h \in G' \cap Z(G)$ and assume $h = c^{2k}a^{4l}$. It follows from [h, b] = 1 that $o(h) \leq 2$ and so $\exp(G' \cap Z(G)) = 2$.

If $[c,b] = c^{-2}b^{-4}$ or $c^{-2}b^{-4+2^{m-1}}$, we may assume $m \ge 4$ by the above. It is easy to see that $\langle a^8, b^8 \rangle \le \langle c \rangle$. Thus $[b^8, a] = 1$, which implies o(b) = 16 and $b^8 = a^{2^{n-1}}$. On the other hand, we see $[(a^{2^{n-3}}b^2)^2, a] = b^8$ and therefore $b^8 = a^{2^{n-2}}b^4$. It follows that $[a, b^4] = 1$. However, it is impossible. Assume $[c, a] = c^{-2}$ or $c^{-2}a^{2^{n-1}}$. Without loss of generality, we may assume $[c, b] = c^{-2}$ or

 $c^{-2}b^{2^{m-1}}$. Then $G' \leq (c, a^{2^{n-1}}, b^{2^{m-1}})$. It is clear that $\exp(G' \cap Z(G)) = 2$. \Box

Author Contributions: Both authors have contributed to this paper. Writing-original draft, J.W. and X.G., Writing-review and editing, J.W.

Funding: This research was funded by the research project of Tianjin Sino-German University of Applied Sciences grant number zdkt2018-015 and ZDJY2017-42.

Acknowledgments: The authors would like to thank the referee for his or her valuable suggestions and useful comments which contributed to the final version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Buckley, J.T.; Lennox, J.C.; Neumann, B.H.; Smith, H.; Wiegold, J. Groups with all subgroups normal-by-finite, *J. Aust. Math. Soc.* **1995**, *59*, 384–398. [CrossRef]
- Lennox, J.C.; Smith, H.; Wiegold, J. Finite *p*-groups in which subgroups have large cores. In Proceedings of the Infinite Groups 1994, International Conference, Ravello, Italy, 23–27 May 1994; de Gruyter: Berlin, Germany, 1996; pp. 163–169.
- 3. Cutolo, G.; Khukhro, E.I.; Lennox, J.C.; Wiegold, J.; Rinauro, S.; Smith, H. Finite quasi-core-*p p*-groups. *J. Algebra* **1997**, *188*, 701–719. [CrossRef]
- 4. Cutolo, G.; Smith, H.; Wiegold, J. On core-2 2-groups. J. Algebra 2001, 237, 813–841. [CrossRef]
- 5. Huppert, B. Endliche Gruppen I; Springer: Berlin, Germany, 1967.
- 6. Berkovich, Y. Groups of Prime Power Order, Volume I; Walter de Gruyter: Berlin, Germany, 2008.
- 7. Xu, M.Y.; An, L.J.; Zhang, Q.H. Finite *p*-groups all of whose non-abelian proper subgroups are generated by two elements. *J. Algebra* **2008**, *319*, 3603–3620. [CrossRef]

- Newman, M.F.; Xu, M.Y. A note on regular metabelian groups of prime-power order. *Bull. Austral. Math. Soc.* 1992, 46, 343–346. [CrossRef]
- 9. Xu, M.Y.; Zhang, Q.H. A classification of metacyclic 2-groups. Algebra Colloq. 2006, 13, 25–34. [CrossRef]

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).