Article

On Finite Quasi-Core-p p-Groups

Jiao Wang ${ }^{1, *(D)}$ and Xiuyun Guo ${ }^{2}$
1 Basic Course Department, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
2 Department of Mathematics, Shanghai University, Shanghai 200444, China; xyguo@staff.shu.edu.cn
* Correspondence: wangjiaomath@126.com

Received: 4 August 2019; Accepted: 5 September 2019; Published: 10 September 2019

Abstract

Given a positive integer n, a finite group G is called quasi-core- n if $\langle x\rangle /\langle x\rangle_{G}$ has order at most n for any element x in G, where $\langle x\rangle_{G}$ is the normal core of $\langle x\rangle$ in G. In this paper, we investigate the structure of finite quasi-core- $p p$-groups. We prove that if the nilpotency class of a quasi-core- p p-group is $p+m$, then the exponent of its commutator subgroup cannot exceed p^{m+1}, where p is an odd prime and m is non-negative. If $p=3$, we prove that every quasi-core-3 3-group has nilpotency class at most 5 and its commutator subgroup is of exponent at most 9. We also show that the Frattini subgroup of a quasi-core-2 2-group is abelian.

Keywords: finite p-group; quasi-core- p p-group; commutator subgroup

1. Introduction

Let G be a group and H is a subgroup of G. Then H_{G} is the normal core of H in G, where $H_{G}=$ $\bigcap_{g \in G} g^{-1} H g$ is the largest normal subgroup of G contained in H. A group G is called core- n if $\left|H / H_{G}\right| \leq n$ for every subgroup H of G, where n is a positive integer. Buckley, Lennox, Neumaan, Smith and Wiegold investigated the core- n groups in [1]. They show that every locally finite group G with H / H_{G} finite for all subgroups H is core- n for some n. Moreover, G has an abelian normal subgroup of index bounded in terms of n only. In [2], Lennox, Smith and Wiegold show that, for $p \neq 2$, a core- $p p$-group is nilpotent of class at most 3 and has an abelian normal subgroup of index at most p^{5}. Furthermore, Cutolo, Khukhro, Lennox, Wiegold, Rinauro and Smith [3] prove that a core-p p-group G has a normal abelian subgroup whose index in G is at most p^{2} if $p \neq 2$. Furthermore, if $p=2$, Cutolo, Smith and Wiegold [4] prove that every core-2 2-group has an abelian subgroup of index at most 16. As a deepening of research in this area, it is interesting to study the following question.

How about the structure of a p-group G in which $\left|\langle x\rangle /\langle x\rangle_{G}\right| \leq p$, for any $x \in G$?
In this paper we hope to investigate the structure of a p-group G in which $\left|\langle x\rangle /\langle x\rangle_{G}\right| \leq p$, for any $x \in G$. For convenience, we call this kind of p-groups quasi-core- p p-groups.

2. Preliminaries

For convenience, we first recall some notations.
Let G be a p-group. We use $d(G)$ and $c(G)$ to denote the minimal number of generators and the nilpotency class of G respectively. We use $C_{p^{m}}$ to denote the cyclic group of order p^{m}. Let $G_{n}=$ $\left\langle\left[g_{1}, g_{2}, \ldots, g_{n}\right] \mid g_{i} \in G\right\rangle$. If H and K are groups, then $H \times K$ denotes a product of H and K. For other notations the reader is referred to [5].

Lemma 1. ([6], Section Appendix 1, Theorem A.1.4) Let G be a p-group and $x, y \in G$.

1. $(x y)^{p} \equiv x^{p} y^{p}\left(\bmod \mho_{1}\left(G^{\prime}\right) G_{p}\right)$.
2. $\left[x^{p}, y\right] \equiv[x, y]^{p}\left(\bmod \mho_{1}\left(N^{\prime}\right) N_{p}\right)$, where $N=\langle x,[x, y]\rangle$.

Lemma 2. ([7], Lemma 2.2) Suppose that G is a finite non-abelian p-group. Then the following conditions are equivalent.

1. G is minimal non-abelian;
2. $d(G)=2$ and $\left|G^{\prime}\right|=p$;
3. $d(G)=2$ and $\Phi(G)=Z(G)$.

Lemma 3. ([8], Theorem) Let p be a prime and d,e positive integers. A regular d-generator metabelian p-group G whose commutator subgroup has exponent p^{e} has nilpotency class at most $e(p-2)+1$ unless $e=1, d>2, p>2$ when the class can be p. These bounds are best possible.

Lemma 4. ([9], Theorem 2) Let G be a metacyclic 2-group. Then G has one presentation of the following three kinds:

1. G has a cyclic maximal subgroup.
2. Ordinary metacyclic 2-groups $G=\left\langle a, b \mid a^{2^{2+s+u}}=1, b^{2^{r+s+t}}=a^{2^{r+s}}, a^{b}=a^{1+2^{r}}\right\rangle$, where r, s, t, u are non-negative integers with $r \geq 2$ and $u \leq r$.
3. Exceptional metacyclic 2-groups $G=\left\langle a, b \mid a^{2^{2+s+v+t^{\prime}+u}}=1, b^{2^{r+s+t}}=a^{2^{r+s+v+t^{\prime}}}, a^{b}=a^{-1+2^{r+v}}\right\rangle$, where $r, s, v, t, t^{\prime}, u$ are non-negative integers with $r \geq 2, t^{\prime} \leq r, u \leq 1, t t^{\prime}=s v=t v=0$, and if $t^{\prime} \geq r-1$, then $u=0$.

Groups of different types or of the same type but with different values of parameters are not isomorphic to each other.

Lemma 5. ([5], Theorem 10.3) Let G be a regular 3-group. Then G^{\prime} is abelian.
Lemma 6. Let G be a quasi-core-p p-group. If H is a subgroup of G and N is a normal subgroup of G, then H and G / N are quasi-core- p-groups.

Proof. The proof of the lemma comes immediately from the definition of quasi-core-p p-groups.
Lemma 7. Let G be a p-group. Then G is quasi-core-p if and only if $\left\langle x^{p}\right\rangle \unlhd G$, for any element x in G.
Proof. Obviously, G is quasi-core- p if and only if $\left|\langle x\rangle_{G} /\left\langle x^{p}\right\rangle\right| \leq p$, for any $x \in G$, and this holds if and only if $\left\langle x^{p}\right\rangle \unlhd G$, for any element x in G.

Lemma 8. Let G be a quasi-core-p p-group. Then $\left[G^{\prime}, \mho_{1}(G)\right]=1$.
Proof. For any $x \in G$, according to Lemma 7, we see $\left\langle x^{p}\right\rangle \unlhd G$. Thus $G / C_{G}\left(x^{p}\right)$ is abelian and so $G^{\prime} \leq C_{G}\left(x^{p}\right)$, which implies $\left[G^{\prime}, \mho_{1}(G)\right]=1$.

3. Quasi-Core-p p-Groups with $p>2$

In this section we investigate the quasi-core- p-groups for $p>2$.
Theorem 1. Let G be a quasi-core- p-group and $p>2$. If G^{\prime} is cyclic, then $\left|G^{\prime}\right| \leq p$.
Proof. Suppose the result is not true and G is a counterexample of minimal order. Then there exist $a, b \in G$ such that $o([a, b]) \geq p^{2}$. Thus we may assume $G=\langle a, b\rangle,[a, b]=c$ and $L=\langle a, c\rangle$. Since G is regular, we may assume $\langle a\rangle \cap\langle b\rangle=1$. By Lemma 1 , we see $\left[a^{p}, b\right]=c^{p} x$, where $x \in \mho_{1}\left(L^{\prime}\right) L_{p}$. Since $L<G, \mho_{1}\left(L^{\prime}\right) L_{p}=1$. So $x=1$ and $\left[a^{p}, b\right]=c^{p}$. Similarly, $\left[a, b^{p}\right]=c^{p}$. It follows from Lemma 7 that $c^{p} \in\langle a\rangle \cap\langle b\rangle=1$, in contradiction to the hypothesis. Thus the theorem is true.

Corollary 1. Let G be a quasi-core-p p-group with $p>2$. Then $\mho_{1}(G)$ is abelian and $\mho_{2}(G) \leq Z(G)$.

Proof. For any $a, b \in G$, we assume $H=\left\langle a^{p}, b\right\rangle$. By the hypotheses, we see $\left\langle a^{p}\right\rangle \unlhd G$ and so H is metacyclic. By Theorem $1,\left|H^{\prime}\right| \leq p$ and so H is abelian or minimal non-abelian. Thus $\mho_{1}(H) \leq$ $\Phi(H) \leq Z(H)$ by Lemma 2. It follows that $\left[a^{p^{2}}, b\right]=\left[a^{p}, b^{p}\right]=1$, which implies $\mho_{1}(G)$ is abelian and $\mho_{2}(G) \leq Z(G)$.

Corollary 2. Let G be a quasi-core-p p-group with $p>2$. Then $G / C_{G}\left(a^{p}\right) \lesssim C_{p}$, for any $a \in G$.
Proof. We may assume $a^{p} \notin Z(G)$ and $o(a)=p^{n}$. Then $n \geq 3$ and there exists an element $b \in G$ such that $b \notin C_{G}\left(a^{p}\right)$. By Theorem 1, we may assume $\left[a^{p}, b\right]=a^{p^{n-1}}$. Take $x \in G \backslash C_{G}\left(a^{p}\right)$. Assume $\left[a^{p}, x\right]=$ $a^{i p^{n-1}}$, where $(i, p)=1$. Then $\left[a^{p}, b^{-i} x\right]=1$, which implies $x \in C_{G}\left(a^{p}\right)\langle b\rangle$ and so $G=C_{G}\left(a^{p}\right)\langle b\rangle$. It follows from $b^{p} \in C_{G}\left(a^{p}\right)$ that $G / C_{G}\left(a^{p}\right) \lesssim C_{p}$.

Corollary 3. Let G be a quasi-core-p p-group with $p>2$. If $c\left(G / \mho_{1}(G)\right) \leq n$, then $c(G) \leq n+2$.
Proof. Set $\bar{G}=G / \mho_{1}(G)$. Then $\bar{G}_{n+1}=\overline{1}$ and so $G_{n+1} \leq \mho_{1}(G)$. It follows from Theorem 1 that $\left[G_{n+1}, G\right] \leq\left[\mho_{1}(G), G\right] \leq Z(G)$, which implies $c(G) \leq n+2$.

According to Lemma 3 and Corollary 3, we get the following theorem.
Theorem 2. Suppose that G is a quasi-core-p p-group and G^{\prime} is abelian with $p>2$. If $d(G)=2$, then $c(G) \leq$ $p+1$. If $d(G)>2$, then $c(G) \leq p+2$.

If $p=3$, then, according to Lemma 5 and Corollary 3, we get the theorem below.
Theorem 3. Let G be a quasi-core-3 3-group. If $d(G)=2$, then $c(G) \leq 4$. If $d(G)>2$, then $c(G) \leq 5$.
Theorem 4. Let G be a quasi-core-3 3-group with $d(G)=2$. Then $\Phi(G)$ is abelian.
Proof. We may assume $G=\langle x, y\rangle$ and $[x, y]=z$. Then $G^{\prime}=\langle z,[z, g] \mid g \in G\rangle$. For any $g_{1}, g_{2} \in G$, it follows from Theorem 3 that $[z,[z, g]] \in\left[G_{2}, G_{3}\right]=1$ and $\left[\left[z, g_{1}\right],\left[z, g_{2}\right]\right]=1$, which implies G^{\prime} is abelian. So, according to Lemma 8 and Corollary $1, \Phi(G)$ is abelian.

Now, we investigate the exponent of commutator subgroups of the quasi-core-p p-groups.
Lemma 9. Let G be a quasi-core-p p-group with $G_{p+1}=1$ and $p>2$. Then $\exp \left(G^{\prime}\right) \leq p$.
Proof. Suppose the result is not true and G is a counterexample of minimal order. For any $g_{1}, g_{2} \in G^{\prime}$, let $H=\left\langle g_{1}, g_{2}\right\rangle$. By Lemma $1,\left(g_{1} g_{2}\right)^{p}=g_{1}^{p} g_{2}^{p} x$, where $x \in \mho_{1}\left(H^{\prime}\right) H_{p}$. Since $c(H)<c(G), H_{p}=1$. By induction, $\exp \left(H^{\prime}\right) \leq p$ and so $\exp \left(\mho_{1}\left(H^{\prime}\right)\right)=1$. Thus $x=1$. It follows that there exist $a, b \in G$ such that $o([a, b])>p$ and $\exp \left(G_{3}\right) \leq p$.

By induction, we may assume $G=\langle a, b\rangle,[a, b]=c$ and $L=\langle a, c\rangle$. Then, according to Lemma 1, we see $\left[a^{p}, b\right]=c^{p} y$, where $y \in \mho_{1}\left(L^{\prime}\right) L_{p}$. Since $c(L)<c(G), L_{p}=1$ and $\exp \left(L^{\prime}\right) \leq p$. Thus $y=1$. Since G is a quasi-core- $p p$-group, $\left\langle a^{p}\right\rangle \unlhd G$. So $c^{p} \in\langle a\rangle$. It follows from Theorem 1 that $o(c)=p^{2}$. Similarly, we see $c^{p} \in\langle b\rangle$.

Without loss of generality, we may assume $\langle a\rangle \cap\langle b\rangle=\left\langle a p^{p^{s}}\right\rangle=\left\langle b^{p^{t}}\right\rangle$, $a^{p^{s}}=b^{p^{t}}$ and $s \geq t \geq 2$. If $s>t$, then, by letting $b_{1}=a^{-p^{s t}} b$, we see $\left[a, b_{1}^{p}\right]=c^{p}$ and $c^{p} \notin\left\langle b_{1}^{p}\right\rangle$, in contradiction to the hypothesis. So $s=t$. Let $b_{2}=a b^{-1}$. Then, by Lemma 1 , we see $b_{2}^{p}=a^{p} b^{-p} z$, where $z \in \mho_{1}\left(G^{\prime}\right) G_{p}$. Since $G^{\prime}=\langle c,[c, g] \mid g \in G\rangle$, we see $\mho_{1}\left(G^{\prime}\right)=\left\langle c^{p}\right\rangle$. Then $\mho_{1}\left(G^{\prime}\right) G_{p} \leq Z(G)$ and $\exp \left(\mho_{1}\left(G^{\prime}\right) G_{p}\right) \leq p$. Thus $o(z) \leq p$ and $o\left(b_{2}\right)=p^{s}$. Noticing that $\left[a, b_{2}^{p}\right]=c^{p}$, we see $c^{p} \in\left\langle b_{2}^{p}\right\rangle$. If $s=2$, then $\left\langle c^{p}\right\rangle=\left\langle b_{2}^{p}\right\rangle$, which implies $b_{2}^{p}=a^{p} b^{-p} z \in Z(G)$, a contradiction. If $s>2$, then $\left\langle c^{p}\right\rangle=\left\langle b_{2}^{p^{s-1}}\right\rangle=\left\langle a^{p^{s-1}} b^{p^{s-1}}\right\rangle$. It follows that $\langle a\rangle \cap\langle b\rangle=\left\langle a p^{s-1}\right\rangle$, another contradiction.

Corollary 4. Let G be a quasi-core-p p-group and $\exp \left(G_{p+1}\right)=p^{n}$ with $p>2$ and $n \geq 0$. Then $\exp \left(G^{\prime}\right) \leq p^{n+1}$.

Proof. If $n=0$, then the conclusion holds by Lemma 9. Thus we may assume $n \geq 1$. Set $\bar{G}=$ G / G_{p+1}. Then $\bar{G}_{p+1}=\overline{G_{p+1}}=\overline{1}$. It follows from Lemma 9 that $\exp \left(\bar{G}^{\prime}\right) \leq p$, which implies $\exp \left(G^{\prime}\right) \leq p^{n+1}$.

Corollary 5. Let G be a quasi-core- p-group and $c(G)=p+n$ with $p>2$ and $n \geq 0$. Then $\exp \left(G^{\prime}\right) \leq p^{n+1}$.

Proof. If $n=0$, then the conclusion holds by Lemma 9. Thus we assume $n \geq 1$. Set $\bar{G}=G / G_{p+n}$. Then $c(\bar{G})=p+n-1$. By induction, we see $\exp \left(\bar{G}^{\prime}\right) \leq p^{n}$. Since $G_{p+n}=\left[G_{p+n-1}, G\right] \leq Z(G)$, by Lemma 9 , we see $\exp \left(G_{p+n}\right) \leq p$. It follows that $\exp \left(G^{\prime}\right) \leq p^{n+1}$.

Theorem 5. Let G be a quasi-core- p-group with $p>2$. If G^{\prime} is abelian, then $\exp \left(G^{\prime}\right) \leq p^{2}$ and $\exp \left(G_{3}\right) \leq p$.

Proof. Suppose that the result is not true and G is a counterexample of minimal order. Then there exist $a, b \in G$ such that $o([a, b]) \geq p^{3}$. We may assume $G=\langle a, b\rangle,[a, b]=c$ and $L=\langle a, c\rangle$. By Lemma 1, $\left[a^{p}, b\right]=c^{p} x$, where $x \in \mho_{1}\left(L^{\prime}\right) L_{p}$. By induction, $\exp \left(L^{\prime}\right) \leq p^{2}$ and so $\exp \left(\mho_{1}\left(L^{\prime}\right)\right) \leq p$. On the other hand, since $[a, c]^{p} \in Z(G)$, it is easy to see that $\exp \left(L_{3}\right) \leq p$. So $o(x) \leq p$. According to Theorem 1, we see $o\left(c^{p} x\right)=p$, which implies $o(c) \leq p^{2}$, in contradiction to the hypothesis. So $\exp \left(G^{\prime}\right) \leq p^{2}$. Thus, for any $g \in G^{\prime}$, we see $g^{p} \in Z(G)$. It follows that $\exp \left(G_{3}\right) \leq p$.

Theorem 6. Let G be a quasi-core-3 3-group. Then $\exp \left(G^{\prime}\right) \leq 9$ and $\exp \left(G_{3}\right) \leq 3$.
Proof. Take $a, b \in G^{\prime}$ with $o(a) \leq 9$ and $o(b) \leq 9$. Let $K=\langle a, b\rangle$. Then, by Lemma 1, $(a b)^{3}=a^{3} b^{3} c$, where $c \in \mho_{1}\left(K^{\prime}\right) K_{3}$. Since $K^{\prime} \leq G_{4}$, we see $c(K) \leq 3$ by Theorem 3 . Thus $\exp \left(K^{\prime}\right) \leq 3$ by Corollary 5 , which implies $o(c) \leq 3$. It follows that $(a b)^{9}=a^{9} b^{9}=1$. So, we may assume $d(G)=2$. According to Corollary 5 and Theorem 3, we see $\exp \left(G^{\prime}\right) \leq 9$.

Take $x \in G^{\prime}$ and $y \in G$. Then $o(x) \leq 9$ and so $\left\langle x^{3}\right\rangle \leq Z(G)$. Assume $[x, y]=z$ and $L=\langle x, z\rangle$. Then, by Lemma $1,1=\left[x^{3}, y\right]=z^{3} w$, where $w \in \mho_{1}\left(L^{\prime}\right) L_{3}$. Since $L^{\prime} \leq G_{5} \leq Z(G)$, by Lemma 9, we see $\mho_{1}\left(L^{\prime}\right) L_{3}=1$. It follows that $z^{3}=1$. For any $g, h \in G_{3}$ with $o(g) \leq 3$ and $o(h) \leq 3$, then, by Theorem 3, we see $[g, h] \in G_{6}=1$. So $o(g h) \leq 3$, which implies $\exp \left(G_{3}\right) \leq 3$.

4. Quasi-Core-2 2-Groups

In this section, we investigate the quasi-core-2 2-groups.
Lemma 10. Let $G=\langle a, b\rangle$ be a non-abelian metacyclic quasi-core-2 2-group with $\langle a\rangle \unlhd G$ and $o(a)=2^{n}$. Then $[a, b]=a^{2^{n-1}}, a^{-2}$ or $a^{-2+2^{n-1}}$.

Proof. Since G is a non-abelian metacyclic 2-group, we see $n \geq 2$ and G is one of the groups listed in Lemma 4.

If G is a group listed in (1) in Lemma 4, then the conclusion holds by the classification of p-groups with a cyclic maximal subgroup.

If G is a group listed in (2) in Lemma 4, then $G=\left\langle a, b \mid a^{2^{r+s+u}}=1, b^{2^{2+s+t}}=a^{2^{r+s}},[a, b]=a^{2^{r}}\right\rangle$ with $r \geq 2$ and $u \leq r$. We may assume $s+u \geq 2$. By calculation, it is easy to see $\left\langle\left[a, b^{2}\right]\right\rangle=\left\langle a^{2^{r+1}}\right\rangle$. Since G is a quasi-core-2 2-group, we see $a^{2^{r+1}} \in\left\langle b^{2}\right\rangle$, which implies $s \leq 1$. Let $a_{1}=a b^{-2^{t}}$. If $s=0$, then $\left\langle a_{1}\right\rangle \cap\langle a\rangle=1$. It follows from G is quasi-core-2 that $a_{1}^{2} \in Z(G)$, which implies $a^{2} \in Z(G)$. However, it is impossible. If $s=1$, then $o\left(a_{1}\right)=2^{r+1}$ and $\left\langle\left[a_{1}^{2}, b\right]\right\rangle=\left\langle a^{2^{r+1}}\right\rangle \leq\left\langle a_{1}^{2}\right\rangle$. It follows that $\left\langle a^{2^{r+u}}\right\rangle=\left\langle a_{1}^{2^{r}}\right\rangle$, which implies $b^{2^{r+t}} \in\langle a\rangle$. It is also impossible. So $s+u=1$ and therefore $[a, b]=a^{2^{n-1}}$.

If G is of type (3) in Lemma 4, then $G=\langle a, b| a^{2^{r+s+v+t^{\prime}+u}}=1, b^{2^{r+s+t}}=a^{2^{r+s+v+t^{\prime}}},[a, b]=$ $\left.a^{-2+2^{r+v}}\right\rangle$ with $r \geq 2$ and $u \leq 1$. It follows from $\left[a, b^{2}\right] \in\langle b\rangle$ that $s+t^{\prime} \leq 1$ and so $s+t^{\prime}+u \leq 2$. We may assume $s+t^{\prime}+u=2$ and so $u=s+t^{\prime}=1$. Then $b^{2^{2+s+t}}=a^{2^{n-1}}$ and $[a, b]=a^{-2+2^{n-2}}$. We assume $o(b)=2^{m}$. If $r+s+t=2$, then, since $(b a)^{2}=b^{2} a^{2^{n-2}}$, we see $o(b a)=4$. On the other hand, $\left[a,(b a)^{2}\right]=a^{2^{n-1}}$. So, by the hypotheses, we see $a^{2^{n-1}} \in\left\langle(b a)^{2}\right\rangle=\left\langle b^{2} a^{2^{n-2}}\right\rangle$, a contradiction. If $r+s+t \geq 3$, then $o\left(b^{2^{m-3}} a^{2^{n-3}}\right)=4$ and $\left[b,\left(b^{2^{m-3}} a^{2^{n-3}}\right)^{2}\right]=a^{2^{n-1}}$. Thus $a^{2^{n-1}} \in\left\langle\left(b^{2^{m-3}} a^{2^{n-3}}\right)^{2}\right\rangle=$ $\left\langle b^{2^{m-2}} a^{2^{n-2}}\right\rangle$, another contradiction. So the conclusion holds.

Corollary 6. Let G be a quasi-core-2 2-group. Then $\Phi(G)$ is abelian and $\mho_{2}(G) \leq G^{\prime} Z(G)$.
Proof. For any $a, b \in G$, we may assume $H=\left\langle a^{2}, b\right\rangle$ is not abelian and $o(a)=2^{n}$. By the hypotheses, we see $\left\langle a^{2}\right\rangle \unlhd G$ and so H is metacyclic. It follows from Lemma 10 that $\left[a^{2}, b\right]=a^{2^{n-1}}, a^{-4}$ or $a^{-4+2^{n-1}}$. Then, it is easy to see that $\left[a^{2}, b^{2}\right]=1$, which implies $\Phi(G)$ is abelian.

Take $g \in G$ with $g^{4} \notin G^{\prime}$. Then $\left[g^{2}, h\right] \in \Omega_{1}(\langle g\rangle)$ for any $h \in G$, which implies $\left[g^{4}, h\right]=1$ and therefore $g^{4} \in Z(G)$. So $\mho_{2}(G) \leq G^{\prime} Z(G)$.

Corollary 7. Let G be a quasi-core-2 2-group. Then, for any $a \in G, G / C_{G}\left(a^{2}\right) \lesssim C_{2} \times C_{2}, G / C_{G}\left(a^{4}\right) \lesssim C_{2}$ and if $G / C_{G}\left(a^{4}\right) \cong C_{2}$, then $a^{4} \in G^{\prime}$ and $\langle a\rangle \cap Z(G)=\Omega_{1}(\langle a\rangle)$.

Proof. Without loss of generality, we may assume $a^{2} \notin Z(G), o(a)=2^{n}$ and $n \geq 3$. By Corollary 6 , we see $\Phi(G) \leq C_{G}\left(a^{2}\right)$, which implies $G / C_{G}\left(a^{2}\right)$ is elementary abelian. For any $g \in G \backslash C_{G}\left(a^{2}\right)$, according to Lemma 10 , we see $\left[a^{2}, g\right]=a^{-4}, a^{2^{n-1}}$ or $a^{-4+2^{n-1}}$. It is easy to see that $G / C_{G}\left(a^{2}\right) \lesssim$ $C_{2} \times C_{2}$ and $G / C_{G}\left(a^{4}\right) \lesssim C_{2}$. If $G / C_{G}\left(a^{4}\right) \lesssim C_{2}$, then, there exists an element $b \in G \backslash C_{G}\left(a^{4}\right)$ such that $\left\langle\left[a^{2}, b\right]\right\rangle=\left\langle a^{4}\right\rangle$. So $a^{4} \in G^{\prime}$ and $\langle a\rangle \cap Z(G)=\Omega_{1}(\langle a\rangle)$.

Lemma 11. Let G be a quasi-core-2 2-group with $c(G)=2$. Then $\exp \left(G^{\prime}\right) \leq 4$.
Proof. If not, then there exist $a, b \in G$ such that $o([a, b]) \geq 8$. We may assume $[a, b]=c$. Then $\left[a^{2}, b\right]=$ c^{2}. By induction, $o\left(c^{2}\right) \leq 4$ and so $o(c)=8$. It follows from Lemma 10 that $\left\langle c^{2}\right\rangle=\left\langle a^{4}\right\rangle$, which implies $a^{4} \in Z(G)$. However, $\left[a^{4}, b\right]=c^{4} \neq 1$, a contradiction. So the conclusion holds.

Theorem 7. Let G be a quasi-core-2 2-group with $c(G)=n$ and $n \geq 2$. Then $\exp \left(G^{\prime}\right) \leq 2^{2(n-1)}$.
Proof. If $n=2$, then the conclusion holds by Lemma 11. Thus we may assume $n \geq 3$. Set $\bar{G}=$ G / G_{n}. Then $c(\bar{G})=n-1$. By induction, we see $\exp \left(\bar{G}^{\prime}\right) \leq 2^{2(n-2)}$. Since $G_{n}=\left[G_{n-1}, G\right] \leq Z(G)$, by Lemma 11, we see $\exp \left(G_{n}\right) \leq 4$. It follows that $\exp \left(G^{\prime}\right) \leq 2^{2(n-1)}$.

Theorem 8. Let G be a non-abelian quasi-core-2 2-group with $d(G)=2$. Then $\mho_{1}\left(G^{\prime}\right), G_{4}$ are cyclic, and either $G^{\prime} \cap Z(G) \lesssim C_{2} \times C_{2} \times C_{2}$ or $G=\left\langle a, b \mid a^{8}=1, a^{4}=b^{4}=c^{2},[a, b]=c,[c, a]=[c, b]=1\right\rangle$.

Proof. If G is metacyclic, then the conclusion holds by Lemma 10. So we may assume $G=\langle a, b\rangle$ is non-metacyclic, $[a, b]=c, o(a)=2^{n}, o(b)=2^{m}$ and $o(c)=2^{t}$ with $n \geq m$. Thus $G^{\prime}=\langle c,[c, g] \mid g \in G\rangle$. By Corollary $6, \Phi(G)$ is abelian. So $[c, g]^{2}=\left[c^{2}, g\right] \in\left\langle c^{2}\right\rangle$, which implies $\mho_{1}\left(G^{\prime}\right) \leq\left\langle c^{2}\right\rangle$ and therefore $\mho_{1}\left(G^{\prime}\right)$ is cyclic. Now we consider the following two cases: $c(G)=2$ and $c(G)>2$.

Case 1. $c(G)=2$.
By Lemma 11, we see $\exp \left(G^{\prime}\right) \leq 4$. We may assume $\exp \left(G^{\prime}\right)=4$. Then $o(c)=4$ and $\left[a^{2}, b\right]=\left[a, b^{2}\right]=c^{2}$. Thus $n \geq m \geq 3$ and $c^{2} \in\langle a\rangle \cap\langle b\rangle$. Without loss of generality, we may assume $\langle a\rangle \cap\langle b\rangle=\left\langle a^{2^{u}}\right\rangle=\left\langle b^{2^{v}}\right\rangle, a^{2^{u}}=b^{2^{v}}$ and $u \geq v \geq 2$. Let $b_{1}=a^{-2^{u-v}} b$. Then $\left[a, b_{1}^{2}\right]=c^{2}$. If $u>v$ or $v \geq 3$, then $o\left(b_{1}\right)=2^{v}$. Thus $\left\langle c^{2}\right\rangle=\left\langle b_{1}^{2^{v-1}}\right\rangle$, which implies $a^{a^{u-1}} \in\langle b\rangle$, a contradiction. So $u=v=2$ and $a^{4}=b^{4}$. Noticing that $G=\left\langle a, b_{1}\right\rangle$ and
$\left[a, b_{1}\right]=c$, we see $a^{4}=b_{1}^{4}$ by the above. It follows from $o\left(b_{1}\right)=8$ that $o(a)=8$. So, we see $G=\left\langle a, b \mid a^{8}=1, a^{4}=b^{4}=c^{2},[a, b]=c,[c, a]=[c, b]=1\right\rangle$.
Case 2. $c(G)>2$.
In this case, we consider the following two subcases: G^{\prime} is cyclic and G^{\prime} is not cyclic.
Subcase 1. $\quad G^{\prime}$ is cyclic.
If $o(c) \leq 4$, then $c^{2} \in Z(G)$ and $G^{\prime} \cap Z(G) \lesssim C_{2}$. So we may assume $t \geq 3$. By Lemma 10, we see $[c, a]=1, c^{-2}, c^{-2+2^{t-1}}$ or $c^{2^{t-1}}$. If $\langle[c, a]\rangle=\left\langle c^{2}\right\rangle$, then $\exp \left(G^{\prime} \cap Z(G)\right)=2$. Thus we may assume $[c, a]=c^{2^{t-1}}$ and $[c, b]=1$. It follows that $\left[a^{2}, b\right]=c^{2+2^{t-1}}$. According to Lemma 10, it is easy to see $\left\langle c^{2}\right\rangle=\left\langle a^{4}\right\rangle$. So $\left[a^{4}, b\right]=1$ and therefore $o(c) \leq 4$, in contradiction to the hypothesis.
Subcase 2. G^{\prime} is not cyclic.
Since $[a, b]=c,\left[a^{2}, b\right]=c^{2}[c, a]$. By Lemma 10, we see $[c, a]=$ $c^{-2} a^{-4}, c^{-2} a^{-4+2^{n-1}}, c^{-2}$ or $c^{-2} a^{2^{n-1}}$. Similarly, $[c, b]=c^{-2} b^{-4}, c^{-2} b^{-4+2^{m-1}}, c^{-2}$ or $c^{-2} b^{2^{m-1}}$. It follows that $G^{\prime} \leq\left\langle c, a^{4}, b^{4}\right\rangle,[\langle[c, a]\rangle, G] \leq \mho_{1}(\langle[c, a]\rangle)$ and $[\langle[c, b]\rangle, G] \leq \mho_{1}(\langle[c, b]\rangle)$. Then $\left[G_{3}, G\right] \leq \mho_{1}\left(G_{3}\right) \leq \mho_{1}\left(G^{\prime}\right)$. So G_{4} is cyclic.

Now we prove $\exp \left(G^{\prime} \cap Z(G)\right)=2$. Assume $[c, a]=c^{-2} a^{-4}$ or $c^{-2} a^{-4+2^{n-1}}$, and $n \geq 4$.
If $[c, b]=c^{-2}$, then $G^{\prime}=\left\langle c, a^{4}\right\rangle$. Since G^{\prime} is not cyclic, we see $[c, a] \neq 1$. Take $g \in G^{\prime} \cap Z(G)$ and assume $g=c^{2 i} a^{4 j}$. It follows from $[g, b]=1$ that $o(g) \leq 2$. So $\exp \left(G^{\prime} \cap Z(G)\right)=2$.

If $[c, b]=c^{-2} b^{2^{m-1}}$, then $G^{\prime}=\left\langle c, a^{4}, b^{2^{m-1}}\right\rangle$. If $[c, a]=1$, then $a^{4} \in\langle c\rangle$ and $G^{\prime}=\left\langle c, b^{2^{m-1}}\right\rangle$. It is easy to see that $\exp \left(G^{\prime} \cap Z(G)\right)=2$. Assume $[c, a] \neq 1$. Take $h \in G^{\prime} \cap Z(G)$ and assume $h=c^{2 k} a^{4 l}$. It follows from $[h, b]=1$ that $o(h) \leq 2$ and so $\exp \left(G^{\prime} \cap Z(G)\right)=2$.

If $[c, b]=c^{-2} b^{-4}$ or $c^{-2} b^{-4+2^{m-1}}$, we may assume $m \geq 4$ by the above. It is easy to see that $\left\langle a^{8}, b^{8}\right\rangle \leq\langle c\rangle$. Thus $\left[b^{8}, a\right]=1$, which implies $o(b)=16$ and $b^{8}=a^{2^{n-1}}$. On the other hand, we see $\left[\left(a^{2^{n-3}} b^{2}\right)^{2}, a\right]=b^{8}$ and therefore $b^{8}=a^{2^{n-2}} b^{4}$. It follows that $\left[a, b^{4}\right]=1$. However, it is impossible.

Assume $[c, a]=c^{-2}$ or $c^{-2} a^{2^{n-1}}$. Without loss of generality, we may assume $[c, b]=c^{-2}$ or $c^{-2} b^{2^{m-1}}$. Then $G^{\prime} \leq\left\langle c, a^{2^{n-1}}, b^{2^{m-1}}\right\rangle$. It is clear that $\exp \left(G^{\prime} \cap Z(G)\right)=2$.

Author Contributions: Both authors have contributed to this paper. Writing-original draft, J.W. and X.G., Writing-review and editing, J.W.

Funding: This research was funded by the research project of Tianjin Sino-German University of Applied Sciences grant number zdkt2018-015 and ZDJY2017-42.

Acknowledgments: The authors would like to thank the referee for his or her valuable suggestions and useful comments which contributed to the final version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Buckley, J.T.; Lennox, J.C.; Neumann, B.H.; Smith, H.; Wiegold, J. Groups with all subgroups normal-by-finite, J. Aust. Math. Soc. 1995, 59, 384-398. [CrossRef]
2. Lennox, J.C.; Smith, H.; Wiegold, J. Finite p-groups in which subgroups have large cores. In Proceedings of the Infinite Groups 1994, International Conference, Ravello, Italy, 23-27 May 1994; de Gruyter: Berlin, Germany, 1996; pp. 163-169.
3. Cutolo, G.; Khukhro, E.I.; Lennox, J.C.; Wiegold, J.; Rinauro, S.; Smith, H. Finite quasi-core-p p-groups. J. Algebra 1997, 188, 701-719. [CrossRef]
4. Cutolo, G.; Smith, H.; Wiegold, J. On core-2 2-groups. J. Algebra 2001, 237, 813-841. [CrossRef]
5. Huppert, B. Endliche Gruppen I; Springer: Berlin, Germany, 1967.
6. Berkovich, Y. Groups of Prime Power Order, Volume I; Walter de Gruyter: Berlin, Germany, 2008.
7. $\mathrm{Xu}, \mathrm{M} . \mathrm{Y} . ;$ An, L.J.; Zhang, Q.H. Finite p-groups all of whose non-abelian proper subgroups are generated by two elements. J. Algebra 2008, 319, 3603-3620. [CrossRef]
8. Newman, M.F.; Xu, M.Y. A note on regular metabelian groups of prime-power order. Bull. Austral. Math. Soc. 1992, 46, 343-346. [CrossRef]
9. Xu, M.Y.; Zhang, Q.H. A classification of metacyclic 2-groups. Algebra Colloq. 2006, 13, 25-34. [CrossRef]
(c) 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
