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Abstract

:

Given a positive integer n, a finite group G is called quasi-core-n if     〈 x 〉  /   〈 x 〉  G     has order at most n for any element x in G, where     〈 x 〉  G    is the normal core of    〈 x 〉    in G. In this paper, we investigate the structure of finite quasi-core-p p-groups. We prove that if the nilpotency class of a quasi-core-p p-group is    p + m   , then the exponent of its commutator subgroup cannot exceed    p  m + 1    , where p is an odd prime and m is non-negative. If    p = 3   , we prove that every quasi-core-3 3-group has nilpotency class at most 5 and its commutator subgroup is of exponent at most 9. We also show that the Frattini subgroup of a quasi-core-2 2-group is abelian.
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1. Introduction


Let G be a group and H is a subgroup of G. Then    H G    is the normal core of H in G, where     H G  =  ⋂  g ∈ G    g  − 1   H g    is the largest normal subgroup of G contained in H. A group G is called core-n if     | H /   H G   | ≤ n     for every subgroup H of G, where n is a positive integer. Buckley, Lennox, Neumaan, Smith and Wiegold investigated the core-n groups in [1]. They show that every locally finite group G with    H /  H G     finite for all subgroups H is core-n for some n. Moreover, G has an abelian normal subgroup of index bounded in terms of n only. In [2], Lennox, Smith and Wiegold show that, for    p ≠ 2   , a core-p p-group is nilpotent of class at most 3 and has an abelian normal subgroup of index at most    p 5   . Furthermore, Cutolo, Khukhro, Lennox, Wiegold, Rinauro and Smith [3] prove that a core-p p-group G has a normal abelian subgroup whose index in G is at most    p 2    if    p ≠ 2   . Furthermore, if    p = 2   , Cutolo, Smith and Wiegold [4] prove that every core-2 2-group has an abelian subgroup of index at most 16. As a deepening of research in this area, it is interesting to study the following question.



How about the structure of a p-group G in which      |  〈 x 〉  /  〈 x 〉   G   | ≤ p    , for any    x ∈ G   ?



In this paper we hope to investigate the structure of a p-group G in which      |  〈 x 〉  /  〈 x 〉   G   | ≤ p    , for any    x ∈ G   . For convenience, we call this kind of p-groups quasi-core-p p-groups.




2. Preliminaries


For convenience, we first recall some notations.



Let G be a p-group. We use    d ( G )    and    c ( G )    to denote the minimal number of generators and the nilpotency class of G respectively. We use    C  p m     to denote the cyclic group of order    p m   . Let     G n  =  〈  [  g 1  ,  g 2  , … ,  g n  ]  |  g i  ∈ G 〉    . If H and K are groups, then    H × K    denotes a product of H and K. For other notations the reader is referred to [5].



Lemma 1.

([6], Section Appendix 1, Theorem A.1.4) Let G be a p-group and    x , y ∈ G   .




	1.

	
     ( x y )  p  ≡  x p   y p     (mod     ℧ 1   (  G ′  )   G p    ).




	2.

	
    [  x p  , y ]  ≡   [ x , y ]  p     (mod     ℧ 1   (  N ′  )   N p    ), where    N = 〈 x , [ x , y ] 〉   .











Lemma 2.

([7], Lemma 2.2) Suppose that G is a finite non-abelian p-group. Then the following conditions are equivalent.




	1.

	
G is minimal non-abelian;




	2.

	
   d ( G ) = 2    and     |   G ′   | = p    ;




	3.

	
   d ( G ) = 2    and    Φ ( G ) = Z ( G )   .











Lemma 3.

([8], Theorem) Let p be a prime and    d , e    positive integers. A regular d-generator metabelian p-group G whose commutator subgroup has exponent    p e    has nilpotency class at most    e ( p − 2 ) + 1    unless    e = 1 , d > 2 , p > 2    when the class can be p. These bounds are best possible.





Lemma 4.

([9], Theorem 2) Let G be a metacyclic 2-group. Then G has one presentation of the following three kinds:




	1.

	
G has a cyclic maximal subgroup.




	2.

	
Ordinary metacyclic 2-groups    G = 〈  a , b  |  a  2  r + s + u    = 1 ,  b  2  r + s + t    =  a  2  r + s    ,  a b  =  a  1 +  2 r    〉   , where    r , s , t , u    are non-negative integers with    r ≥ 2    and    u ≤ r   .




	3.

	
Exceptional metacyclic 2-groups    G = 〈  a , b  |  a  2  r + s + v +  t ′  + u    = 1 ,  b  2  r + s + t    =  a  2  r + s + v +  t ′     ,  a b  =  a  − 1 +  2  r + v     〉   , where    r , s , v , t ,  t ′  , u    are non-negative integers with    r ≥ 2 ,  t ′  ≤ r , u ≤ 1 , t  t ′  = s v = t v = 0 ,    and if     t ′  ≥ r − 1   , then    u = 0   .









Groups of different types or of the same type but with different values of parameters are not isomorphic to each other.





Lemma 5.

([5], Theorem 10.3) Let G be a regular 3-group. Then    G ′    is abelian.





Lemma 6.

Let G be a quasi-core-p p-group. If H is a subgroup of G and N is a normal subgroup of G, then H and    G / N    are quasi-core-pp-groups.





Proof. 

The proof of the lemma comes immediately from the definition of quasi-core-p p-groups. □





Lemma 7.

Let G be a p-group. Then G is quasi-core-p if and only if    〈  x p  〉 ⊴ G   , for any element x in G.





Proof. 

Obviously, G is quasi-core-p if and only if      |  〈 x 〉   G  /  〈  x p  〉   | ≤ p    , for any    x ∈ G   , and this holds if and only if    〈  x p  〉 ⊴ G   , for any element x in G. □





Lemma 8.

Let G be a quasi-core-p p-group. Then    [  G ′  ,  ℧ 1   ( G )  ] = 1   .





Proof. 

For any    x ∈ G   , according to Lemma 7, we see    〈  x p  〉 ⊴ G   . Thus    G /  C G   (  x p  )     is abelian and so     G ′  ≤  C G   (  x p  )    , which implies    [  G ′  ,  ℧ 1   ( G )  ] = 1   . □






3. Quasi-Core-p p-Groups with p > 2


In this section we investigate the quasi-core-p p-groups for    p > 2   .



Theorem 1.

Let G be a quasi-core-p p-group and    p > 2   . If    G ′    is cyclic, then     |   G ′   | ≤ p    .





Proof. 

Suppose the result is not true and G is a counterexample of minimal order. Then there exist    a , b ∈ G    such that    o  (  [ a , b ]  )  ≥  p 2    . Thus we may assume    G = 〈 a , b 〉   ,    [ a , b ] = c    and    L = 〈 a , c 〉   . Since G is regular, we may assume    〈 a 〉 ∩ 〈 b 〉 = 1   . By Lemma 1, we see     [  a p  , b ]  =  c p  x   , where    x ∈  ℧ 1   (  L ′  )   L p    . Since    L < G   ,     ℧ 1   (  L ′  )   L p  = 1   . So    x = 1    and     [  a p  , b ]  =  c p    . Similarly,     [ a ,  b p  ]  =  c p    . It follows from Lemma 7 that     c p  ∈  〈 a 〉  ∩  〈 b 〉  = 1   , in contradiction to the hypothesis. Thus the theorem is true. □





Corollary 1.

Let G be a quasi-core-p p-group with    p > 2   . Then     ℧ 1   ( G )     is abelian and     ℧ 2   ( G )  ≤ Z  ( G )    .





Proof. 

For any    a , b ∈ G   , we assume    H = 〈  a p  , b 〉   . By the hypotheses, we see    〈  a p  〉 ⊴ G    and so H is metacyclic. By Theorem 1,     |   H ′   | ≤ p     and so H is abelian or minimal non-abelian. Thus     ℧ 1   ( H )  ≤ Φ  ( H )  ≤ Z  ( H )     by Lemma 2. It follows that     [  a  p 2   , b ]  =  [  a p  ,  b p  ]  = 1   , which implies     ℧ 1   ( G )     is abelian and     ℧ 2   ( G )  ≤ Z  ( G )    . □





Corollary 2.

Let G be a quasi-core-p p-group with    p > 2   . Then    G /  C G   (  a p  )  ≲  C p    , for any    a ∈ G   .





Proof. 

We may assume     a p  ∉ Z  ( G )     and    o  ( a )  =  p n    . Then    n ≥ 3    and there exists an element    b ∈ G    such that    b ∉  C G   (  a p  )    . By Theorem 1, we may assume     [  a p  , b ]  =  a  p  n − 1      . Take    x ∈ G \  C G   (  a p  )    . Assume     [  a p  , x ]  =  a  i  p  n − 1       , where    ( i , p ) = 1   . Then    [  a p  ,  b  − i   x ] = 1   , which implies    x ∈  C G   (  a p  )   〈 b 〉     and so    G =  C G   (  a p  )   〈 b 〉    . It follows from     b p  ∈  C G   (  a p  )     that    G /  C G   (  a p  )  ≲  C p    . □





Corollary 3.

Let G be a quasi-core-p p-group with    p > 2   . If    c ( G /  ℧ 1   ( G )  ) ≤ n   , then    c ( G ) ≤ n + 2   .





Proof. 

Set     G ¯  = G /  ℧ 1   ( G )    . Then      G ¯   n + 1   =  1 ¯     and so     G  n + 1   ≤  ℧ 1   ( G )    . It follows from Theorem 1 that     [  G  n + 1   , G ]  ≤  [  ℧ 1   ( G )  , G ]  ≤ Z  ( G )    , which implies    c ( G ) ≤ n + 2   . □





According to Lemma 3 and Corollary 3, we get the following theorem.



Theorem 2.

Suppose that G is a quasi-core-p p-group and    G ′    is abelian with    p > 2   . If    d ( G ) = 2   , then    c ( G ) ≤ p + 1   . If    d ( G ) > 2   , then    c ( G ) ≤ p + 2   .





If    p = 3   , then, according to Lemma 5 and Corollary 3, we get the theorem below.



Theorem 3.

Let G be a quasi-core-3 3-group. If    d ( G ) = 2   , then    c ( G ) ≤ 4   . If    d ( G ) > 2   , then    c ( G ) ≤ 5   .





Theorem 4.

Let G be a quasi-core-3 3-group with    d ( G ) = 2   . Then    Φ ( G )    is abelian.





Proof. 

We may assume    G = 〈 x , y 〉    and    [ x , y ] = z   . Then     G ′  =  〈 z ,  [ z , g ]  | g ∈ G 〉    . For any     g 1  ,  g 2  ∈ G   , it follows from Theorem 3 that     [ z ,  [ z , g ]  ]  ∈  [  G 2  ,  G 3  ]  = 1    and    [  [ z ,  g 1  ]  ,  [ z ,  g 2  ]  ] = 1   , which implies    G ′    is abelian. So, according to Lemma 8 and Corollary 1,    Φ ( G )    is abelian. □





Now, we investigate the exponent of commutator subgroups of the quasi-core-p p-groups.



Lemma 9.

Let G be a quasi-core-p p-group with     G  p + 1   = 1    and    p > 2   . Then    exp (  G ′  ) ≤ p   .





Proof. 

Suppose the result is not true and G is a counterexample of minimal order. For any     g 1  ,  g 2  ∈  G ′    , let    H = 〈  g 1  ,  g 2  〉   . By Lemma 1,      (  g 1   g 2  )  p  =  g 1 p   g 2 p  x   , where    x ∈  ℧ 1   (  H ′  )   H p    . Since    c ( H ) < c ( G )   ,     H p  = 1   . By induction,    exp (  H ′  ) ≤ p    and so    exp (  ℧ 1   (  H ′  )  ) = 1   . Thus    x = 1   . It follows that there exist    a , b ∈ G    such that    o ( [ a , b ] ) > p    and    exp (  G 3  ) ≤ p   .



By induction, we may assume    G = 〈 a , b 〉   ,    [ a , b ] = c    and    L = 〈 a , c 〉   . Then, according to Lemma 1, we see     [  a p  , b ]  =  c p  y   , where    y ∈  ℧ 1   (  L ′  )   L p    . Since    c ( L ) < c ( G )   ,     L p  = 1    and    exp (  L ′  ) ≤ p   . Thus    y = 1   . Since G is a quasi-core-p p-group,    〈  a p  〉 ⊴ G   . So     c p  ∈  〈 a 〉    . It follows from Theorem 1 that    o  ( c )  =  p 2    . Similarly, we see     c p  ∈  〈 b 〉    .



Without loss of generality, we may assume     〈 a 〉  ∩  〈 b 〉  =  〈  a  p s   〉  =  〈  b  p t   〉    ,     a  p s   =  b  p t      and    s ≥ t ≥ 2   . If    s > t   , then, by letting     b 1  =  a  −  p  s − t     b   , we see     [ a ,  b 1 p  ]  =  c p     and     c p  ∉  〈  b 1 p  〉    , in contradiction to the hypothesis. So    s = t   . Let     b 2  = a  b  − 1     . Then, by Lemma 1, we see     b 2 p  =  a p   b  − p   z   , where    z ∈  ℧ 1   (  G ′  )   G p    . Since     G ′  =  〈 c ,  [ c , g ]  | g ∈ G 〉    , we see     ℧ 1   (  G ′  )  =  〈  c p  〉    . Then     ℧ 1   (  G ′  )   G p  ≤ Z  ( G )     and    exp (  ℧ 1   (  G ′  )   G p  ) ≤ p   . Thus    o ( z ) ≤ p    and    o  (  b 2  )  =  p s    . Noticing that     [ a ,  b 2 p  ]  =  c p    , we see     c p  ∈  〈  b 2 p  〉    . If    s = 2   , then     〈  c p  〉  =  〈  b 2 p  〉    , which implies     b 2 p  =  a p   b  − p   z ∈ Z  ( G )    , a contradiction. If    s > 2   , then     〈  c p  〉  =  〈  b 2  p  s − 1    〉  =  〈  a  p  s − 1     b  p  s − 1    〉    . It follows that     〈 a 〉  ∩  〈 b 〉  =  〈  a  p  s − 1    〉    , another contradiction. □





Corollary 4.

Let G be a quasi-core-p p-group and    exp  (  G  p + 1   )  =  p n     with    p > 2    and    n ≥ 0   . Then    exp  (  G ′  )  ≤  p  n + 1     .





Proof. 

If    n = 0   , then the conclusion holds by Lemma 9. Thus we may assume    n ≥ 1   . Set     G ¯  = G /  G  p + 1     . Then      G ¯   p + 1   =   G  p + 1   ¯  =  1 ¯    . It follows from Lemma 9 that    exp (   G ¯  ′  ) ≤ p   , which implies    exp  (  G ′  )  ≤  p  n + 1     . □





Corollary 5.

Let G be a quasi-core-p p-group and    c ( G ) = p + n    with    p > 2    and    n ≥ 0   . Then    exp  (  G ′  )  ≤  p  n + 1     .





Proof. 

If    n = 0   , then the conclusion holds by Lemma 9. Thus we assume    n ≥ 1   . Set     G ¯  = G /  G  p + n     . Then    c (  G ¯  ) = p + n − 1   . By induction, we see    exp  (   G ¯  ′  )  ≤  p n    . Since     G  p + n   =  [  G  p + n − 1   , G ]  ≤ Z  ( G )    , by Lemma 9, we see    exp (  G  p + n   ) ≤ p   . It follows that    exp  (  G ′  )  ≤  p  n + 1     . □





Theorem 5.

Let G be a quasi-core-p p-group with    p > 2   . If    G ′    is abelian, then    exp  (  G ′  )  ≤  p 2     and    exp (  G 3  ) ≤ p   .





Proof. 

Suppose that the result is not true and G is a counterexample of minimal order. Then there exist    a , b ∈ G    such that    o  (  [ a , b ]  )  ≥  p 3    . We may assume    G = 〈 a , b 〉   ,    [ a , b ] = c    and    L = 〈 a , c 〉   . By Lemma 1,     [  a p  , b ]  =  c p  x   , where    x ∈  ℧ 1   (  L ′  )   L p    . By induction,    exp  (  L ′  )  ≤  p 2     and so    exp (  ℧ 1   (  L ′  )  ) ≤ p   . On the other hand, since      [ a , c ]  p  ∈ Z  ( G )    , it is easy to see that    exp (  L 3  ) ≤ p   . So    o ( x ) ≤ p   . According to Theorem 1, we see    o (  c p  x ) = p   , which implies    o  ( c )  ≤  p 2    , in contradiction to the hypothesis. So    exp  (  G ′  )  ≤  p 2    . Thus, for any    g ∈  G ′    , we see     g p  ∈ Z  ( G )    . It follows that    exp (  G 3  ) ≤ p   . □





Theorem 6.

Let G be a quasi-core-3 3-group. Then    exp (  G ′  ) ≤ 9    and    exp (  G 3  ) ≤ 3   .





Proof. 

Take    a , b ∈  G ′     with    o ( a ) ≤ 9    and    o ( b ) ≤ 9   . Let    K = 〈 a , b 〉   . Then, by Lemma 1,      ( a b )  3  =  a 3   b 3  c   , where    c ∈  ℧ 1   (  K ′  )   K 3    . Since     K ′  ≤  G 4    , we see    c ( K ) ≤ 3    by Theorem 3. Thus    exp (  K ′  ) ≤ 3    by Corollary 5, which implies    o ( c ) ≤ 3   . It follows that      ( a b )  9  =  a 9   b 9  = 1   . So, we may assume    d ( G ) = 2   . According to Corollary 5 and Theorem 3, we see    exp (  G ′  ) ≤ 9   .



Take    x ∈  G ′     and    y ∈ G   . Then    o ( x ) ≤ 9    and so     〈  x 3  〉  ≤ Z  ( G )    . Assume    [ x , y ] = z    and    L = 〈 x , z 〉   . Then, by Lemma 1,    1 =  [  x 3  , y ]  =  z 3  w   , where    w ∈  ℧ 1   (  L ′  )   L 3    . Since     L ′  ≤  G 5  ≤ Z  ( G )    , by Lemma 9, we see     ℧ 1   (  L ′  )   L 3  = 1   . It follows that     z 3  = 1   . For any    g , h ∈  G 3     with    o ( g ) ≤ 3    and    o ( h ) ≤ 3   , then, by Theorem 3, we see     [ g , h ]  ∈  G 6  = 1   . So    o ( g h ) ≤ 3   , which implies    exp (  G 3  ) ≤ 3   . □






4. Quasi-Core-2 2-Groups


In this section, we investigate the quasi-core-2 2-groups.



Lemma 10.

Let    G = 〈 a , b 〉    be a non-abelian metacyclic quasi-core-2 2-group with    〈 a 〉 ⊴ G    and    o  ( a )  =  2 n    . Then     [ a , b ]  =  a  2  n − 1      ,    a  − 2     or    a  − 2 +  2  n − 1      .





Proof. 

Since G is a non-abelian metacyclic 2-group, we see    n ≥ 2    and G is one of the groups listed in Lemma 4.



If G is a group listed in (1) in Lemma 4, then the conclusion holds by the classification of p-groups with a cyclic maximal subgroup.



If G is a group listed in (2) in Lemma 4, then    G = 〈  a , b  |  a  2  r + s + u    = 1 ,  b  2  r + s + t    =  a  2  r + s    ,  [ a , b ]  =  a  2 r   〉    with    r ≥ 2    and    u ≤ r   . We may assume    s + u ≥ 2   . By calculation, it is easy to see     〈  [ a ,  b 2  ]  〉  =  〈  a  2  r + 1    〉    . Since G is a quasi-core-2 2-group, we see     a  2  r + 1    ∈  〈  b 2  〉    , which implies    s ≤ 1   . Let     a 1  = a  b  −  2 t      . If    s = 0   , then     〈  a 1  〉  ∩  〈 a 〉     = 1. It follows from G is quasi-core-2 that     a 1 2  ∈ Z  ( G )    , which implies     a 2  ∈ Z  ( G )    . However, it is impossible. If    s = 1   , then    o  (  a 1  )  =  2  r + 1      and     〈  [  a 1 2  , b ]  〉  =  〈  a  2  r + 1    〉  ≤  〈  a 1 2  〉    . It follows that     〈  a  2  r + u    〉  =  〈  a 1  2 r   〉    , which implies     b  2  r + t    ∈  〈 a 〉    . It is also impossible. So    s + u = 1    and therefore     [ a , b ]  =  a  2  n − 1      .



If G is of type (3) in Lemma 4, then    G = 〈  a , b  |  a  2  r + s + v +  t ′  + u    = 1 ,  b  2  r + s + t    =  a  2  r + s + v +  t ′     ,  [ a , b ]  =  a  − 2 +  2  r + v     〉    with    r ≥ 2    and    u ≤ 1   . It follows from     [ a ,  b 2  ]  ∈  〈 b 〉     that    s +  t ′  ≤ 1    and so    s +  t ′  + u ≤ 2   . We may assume    s +  t ′  + u = 2    and so    u = s +  t ′  = 1   . Then     b  2  r + s + t    =  a  2  n − 1       and     [ a , b ]  =  a  − 2 +  2  n − 2       . We assume    o  ( b )  =  2 m    . If    r + s + t = 2   , then, since      ( b a )  2  =  b 2   a  2  n − 2      , we see    o ( b a ) = 4   . On the other hand,     [ a ,   ( b a )  2  ]  =  a  2  n − 1      . So, by the hypotheses, we see     a  2  n − 1    ∈  〈   ( b a )  2  〉  =  〈  b 2   a  2  n − 2    〉    , a contradiction. If    r + s + t ≥ 3   , then    o (  b  2  m − 3     a  2  n − 3    ) = 4    and     [ b ,   (  b  2  m − 3     a  2  n − 3    )  2  ]  =  a  2  n − 1      . Thus     a  2  n − 1    ∈  〈   (  b  2  m − 3     a  2  n − 3    )  2  〉  =  〈  b  2  m − 2     a  2  n − 2    〉    , another contradiction. So the conclusion holds. □





Corollary 6.

Let G be a quasi-core-2 2-group. Then    Φ ( G )    is abelian and     ℧ 2   ( G )  ≤  G ′  Z  ( G )    .





Proof. 

For any    a , b ∈ G   , we may assume    H = 〈  a 2  , b 〉    is not abelian and    o  ( a )  =  2 n    . By the hypotheses, we see    〈  a 2  〉 ⊴ G    and so H is metacyclic. It follows from Lemma 10 that     [  a 2  , b ]  =  a  2  n − 1      ,    a  − 4     or    a  − 4 +  2  n − 1      . Then, it is easy to see that    [  a 2  ,  b 2  ] = 1   , which implies    Φ ( G )    is abelian.



Take    g ∈ G    with     g 4  ∉  G ′    . Then     [  g 2  , h ]  ∈  Ω 1   (  〈 g 〉  )     for any    h ∈ G   , which implies    [  g 4  , h ] = 1    and therefore     g 4  ∈ Z  ( G )    . So     ℧ 2   ( G )  ≤  G ′  Z  ( G )    . □





Corollary 7.

Let G be a quasi-core-2 2-group. Then, for any    a ∈ G   ,    G /  C G   (  a 2  )  ≲  C 2  ×  C 2    ,    G /  C G   (  a 4  )  ≲  C 2     and if    G /  C G   (  a 4  )  ≅  C 2    , then     a 4  ∈  G ′     and     〈 a 〉  ∩ Z  ( G )  =  Ω 1   (  〈 a 〉  )    .





Proof. 

Without loss of generality, we may assume     a 2  ∉ Z  ( G )    ,    o  ( a )  =  2 n     and    n ≥ 3   . By Corollary 6, we see    Φ  ( G )  ≤  C G   (  a 2  )    , which implies    G /  C G   (  a 2  )     is elementary abelian. For any    g ∈ G /  C G   (  a 2  )    , according to Lemma 10, we see     [  a 2  , g ]  =  a  − 4   ,  a  2  n − 1       or    a  − 4 +  2  n − 1      . It is easy to see that    G /  C G   (  a 2  )  ≲  C 2  ×  C 2     and    G /  C G   (  a 4  )  ≲  C 2    . If    G /  C G   (  a 4  )  ≲  C 2    , then, there exists an element    b ∈ G ∖  C G   (  a 4  )     such that     〈  [  a 2  , b ]  〉  =  〈  a 4  〉    . So     a 4  ∈  G ′     and     〈 a 〉  ∩ Z  ( G )  =  Ω 1   (  〈 a 〉  )    . □





Lemma 11.

Let G be a quasi-core-2 2-group with    c ( G ) = 2   . Then    exp (  G ′  ) ≤ 4   .





Proof. 

If not, then there exist    a , b ∈ G    such that    o ( [ a , b ] ) ≥ 8   . We may assume    [ a , b ] = c   . Then     [  a 2  , b ]  =  c 2    . By induction,    o (  c 2  ) ≤ 4    and so    o ( c ) = 8   . It follows from Lemma 10 that     〈  c 2  〉  =  〈  a 4  〉    , which implies     a 4  ∈ Z  ( G )    . However,     [  a 4  , b ]  =  c 4  ≠ 1   , a contradiction. So the conclusion holds. □





Theorem 7.

Let G be a quasi-core-2 2-group with    c ( G ) = n    and    n ≥ 2   . Then    exp  (  G ′  )  ≤  2  2 ( n − 1 )     .





Proof. 

If    n = 2   , then the conclusion holds by Lemma 11. Thus we may assume    n ≥ 3   . Set     G ¯  = G /  G n    . Then    c (  G ¯  ) = n − 1   . By induction, we see    exp  (   G ¯  ′  )  ≤  2  2 ( n − 2 )     . Since     G n  =  [  G  n − 1   , G ]  ≤ Z  ( G )    , by Lemma 11, we see    exp (  G n  ) ≤ 4   . It follows that    exp  (  G ′  )  ≤  2  2 ( n − 1 )     . □





Theorem 8.

Let G be a non-abelian quasi-core-2 2-group with    d ( G ) = 2   . Then     ℧ 1   (  G ′  )    ,    G 4    are cyclic, and either     G ′  ∩ Z  ( G )  ≲  C 2  ×  C 2  ×  C 2     or    G = 〈 a , b |  a 8  = 1 ,  a 4  =  b 4  =  c 2  ,  [ a , b ]  = c ,  [ c , a ]  =  [ c , b ]  = 1 〉   .





Proof. 

If G is metacyclic, then the conclusion holds by Lemma 10. So we may assume    G = 〈 a , b 〉    is non-metacyclic,    [ a , b ] = c   ,    o  ( a )  =  2 n  , o  ( b )  =  2 m     and    o  ( c )  =  2 t     with    n ≥ m   . Thus     G ′  =  〈 c ,  [ c , g ]  | g ∈ G 〉    . By Corollary 6,    Φ ( G )    is abelian. So      [ c , g ]  2  =  [  c 2  , g ]  ∈  〈  c 2  〉    , which implies     ℧ 1   (  G ′  )  ≤  〈  c 2  〉     and therefore     ℧ 1   (  G ′  )     is cyclic. Now we consider the following two cases:    c ( G ) = 2    and    c ( G ) > 2   .




	Case 1.

	
   c ( G ) = 2   .



By Lemma 11, we see    exp (  G ′  ) ≤ 4   . We may assume    exp (  G ′  ) = 4   . Then    o ( c ) = 4    and     [  a 2  , b ]  =  [ a ,  b 2  ]  =  c 2    . Thus    n ≥ m ≥ 3    and     c 2  ∈  〈 a 〉  ∩  〈 b 〉    . Without loss of generality, we may assume     〈 a 〉  ∩  〈 b 〉  =  〈  a  2 u   〉  =  〈  b  2 v   〉    ,     a  2 u   =  b  2 v      and    u ≥ v ≥ 2   . Let     b 1  =  a  −  2  u − v     b   . Then     [ a ,  b 1 2  ]  =  c 2    . If    u > v    or    v ≥ 3   , then    o  (  b 1  )  =  2 v    . Thus     〈  c 2  〉  =  〈  b 1  2  v − 1    〉    , which implies     a  2  u − 1    ∈  〈 b 〉    , a contradiction. So    u = v = 2    and     a 4  =  b 4    . Noticing that    G = 〈 a ,  b 1  〉    and    [ a ,  b 1  ] = c   , we see     a 4  =  b 1 4     by the above. It follows from    o (  b 1  ) = 8    that    o ( a ) = 8   . So, we see    G = 〈 a , b |  a 8  = 1 ,  a 4  =  b 4  =  c 2  ,  [ a , b ]  = c ,  [ c , a ]  =  [ c , b ]  = 1 〉   .




	Case 2.

	
   c ( G ) > 2   .



In this case, we consider the following two subcases:    G ′    is cyclic and    G ′    is not cyclic.




	Subcase 1.

	
   G ′    is cyclic.



If    o ( c ) ≤ 4   , then     c 2  ∈ Z  ( G )     and     G ′  ∩ Z  ( G )  ≲  C 2    . So we may assume    t ≥ 3   . By Lemma 10, we see     [ c , a ]  = 1 ,  c  − 2   ,  c  − 2 +  2  t − 1        or    c  2  t − 1     . If     〈  [ c , a ]  〉  =  〈  c 2  〉    , then    exp (  G ′  ∩ Z  ( G )  ) = 2   . Thus we may assume     [ c , a ]  =  c  2  t − 1       and    [ c , b ] = 1   . It follows that     [  a 2  , b ]  =  c  2 +  2  t − 1       . According to Lemma 10, it is easy to see     〈  c 2  〉  =  〈  a 4  〉    . So    [  a 4  , b ] = 1    and therefore    o ( c ) ≤ 4   , in contradiction to the hypothesis.




	Subcase 2.

	
   G ′    is not cyclic.



Since    [ a , b ] = c   ,     [  a 2  , b ]  =  c 2   [ c , a ]    . By Lemma 10, we see     [ c , a ]  =  c  − 2    a  − 4   ,  c  − 2    a  − 4 +  2  n − 1     ,  c  − 2      or     c  − 2    a  2  n − 1      . Similarly,     [ c , b ]  =  c  − 2    b  − 4   ,  c  − 2    b  − 4 +  2  m − 1     ,  c  − 2      or     c  − 2    b  2  m − 1      . It follows that     G ′  ≤  〈 c ,  a 4  ,  b 4  〉    ,     [  〈  [ c , a ]  〉  , G ]  ≤  ℧ 1   (  〈  [ c , a ]  〉  )     and     [  〈  [ c , b ]  〉  , G ]  ≤  ℧ 1   (  〈  [ c , b ]  〉  )    . Then     [  G 3  , G ]  ≤  ℧ 1   (  G 3  )  ≤  ℧ 1   (  G ′  )    . So    G 4    is cyclic.















Now we prove    exp (  G ′  ∩ Z  ( G )  ) = 2   . Assume     [ c , a ]  =  c  − 2    a  − 4      or     c  − 2    a  − 4 +  2  n − 1       , and    n ≥ 4   .



If     [ c , b ]  =  c  − 2     , then     G ′  =  〈 c ,  a 4  〉    . Since    G ′    is not cyclic, we see    [ c , a ] ≠ 1   . Take    g ∈  G ′  ∩ Z  ( G )     and assume    g =  c  2 i    a  4 j     . It follows from    [ g , b ] = 1    that    o ( g ) ≤ 2   . So    exp (  G ′  ∩ Z  ( G )  ) = 2   .



If     [ c , b ]  =  c  − 2    b  2  m − 1      , then     G ′  =  〈 c ,  a 4  ,  b  2  m − 1    〉    . If    [ c , a ] = 1   , then     a 4  ∈  〈 c 〉     and     G ′  =  〈 c ,  b  2  m − 1    〉    . It is easy to see that    exp (  G ′  ∩ Z  ( G )  ) = 2   . Assume    [ c , a ] ≠ 1   . Take    h ∈  G ′  ∩ Z  ( G )     and assume    h =  c  2 k    a  4 l     . It follows from    [ h , b ] = 1    that    o ( h ) ≤ 2    and so    exp (  G ′  ∩ Z  ( G )  ) = 2   .



If     [ c , b ]  =  c  − 2    b  − 4      or     c  − 2    b  − 4 +  2  m − 1       , we may assume    m ≥ 4    by the above. It is easy to see that     〈  a 8  ,  b 8  〉  ≤  〈 c 〉    . Thus    [  b 8  , a ] = 1   , which implies    o ( b ) = 16    and     b 8  =  a  2  n − 1      . On the other hand, we see     [   (  a  2  n − 3     b 2  )  2  , a ]  =  b 8     and therefore     b 8  =  a  2  n − 2     b 4    . It follows that    [ a ,  b 4  ] = 1   . However, it is impossible.



Assume     [ c , a ]  =  c  − 2      or     c  − 2    a  2  n − 1      . Without loss of generality, we may assume     [ c , b ]  =  c  − 2      or     c  − 2    b  2  m − 1      . Then     G ′  ≤  〈 c ,  a  2  n − 1    ,  b  2  m − 1    〉    . It is clear that    exp (  G ′  ∩ Z  ( G )  ) = 2   . □
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