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Abstract: In this paper, a second-order nonlinear recursive sequence M(h, i) is studied. By using
this sequence, the properties of the power series, and the combinatorial methods, some interesting
symmetry identities of the structural properties of balancing numbers and balancing polynomials
are deduced.
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1. Introduction

For any positive integer n ≥ 2, we denote the balancing number by Bn and the balancer
corresponding to it by r(n) if

1 + 2 + · · ·+ (Bn − 1) = (Bn + 1) + (Bn + 2) + · · ·+ (Bn + r(n))

holds for some positive integer r(n) and Bn. It is clear that r(n) = Bn−Bn−1−1
2 , for example, r(2) = 2,

r(3) = 14, r(4) = 84, r(5) = 492. . .
It is found that the balancing numbers satisfy the second order linear recursive sequence Bn+1 =

6Bn − Bn−1 (n ≥ 1), providing B0 = 0 and B1 = 1 [1].
The balancing polynomials Bn(x) are defined by B0(x) = 1, B1(x) = 6x, B2(x) = 36x2 − 1,

B3(x) = 216x3 − 12x, B4(x) = 1296x4 − 108x2 + 1, and the second-order linear difference equation:

Bn+1(x) = 6xBn(x)− Bn−1(x), n ≥ 1,

where x is any real number. While n ≥ 1, we get Bn+1 = 6Bn − Bn−1 with Bn(1) = Bn+1. Such
balancing numbers have been widely studied in recent years. G. K. Panda and T. Komatsu [2] studied
the reciprocal sums of the balancing numbers and proved the following inequation holds for any
positive integer n:

1
Bn − Bn−1

<
∞

∑
k=n

1
Bk

<
1

Bn − Bn−1 − 1
.

G. K. Panda [3] studied some fascinating properties of balancing numbers and gave the following
result for any natural numbers m > n:

(Bm + Bn)(Bm − Bn) = Bm+n · Bm−n.

Other achievements related to balancing numbers can be found in [4–7].
It is found that the balancing polynomials Bn(x) can be generally expressed as

Bn(x) =
1

2
√

9x2 − 1

[(
3x +

√
9x2 − 1

)n+1
−
(

3x−
√

9x2 − 1
)n+1

]
,
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and the generating function of the balancing polynomials Bn(x) is given by

1
1− 6xt + t2 =

∞

∑
n=0

Bn(x) · tn. (1)

Recently, our attention was drawn to the sums of polynomials calculating problem [8–11], which
is important in mathematical application. We are going to study the computational problem of the
symmetry summation:

∑
a1+a2+···+ah+1=n

Ba1(x)Ba2(x) · · · Bah+1(x),

where h is any positive integer. We shall prove the following theorem holds.

Theorem 1. For any specific positive integer h and any integer n ≥ 0, the following identity stands:

∑
a1+a2+···+ah+1=n

Ba1(x)Ba2(x) · · · Bah+1(x)

=
1

2h · h!
·

h

∑
j=1

M(h, j)
(3x)2h−j

n

∑
i=0

(n− i + j)!
(n− i)!

·
Bn−i+j(x)
(3x)i ·

(
2h + i− j− 1

i

)
,

where M(h, i) is defined by M(h, 0) = 0, M(h, i) = (2h−i−1)!
2h−i ·(h−i)!·(i−1)!

for all positive integers 1 ≤ i ≤ h.

In particular, for n = 0, the following corollary can be deduced.

Corollary 1. For any positive integer h ≥ 1, the following formula holds:

h

∑
j=1

M(h, j) · j! · (3x)j · Bj(x) = 2h · h! · (3x)2h.

The formula in Corollary 1 shows the close relationship among the balancing polynomials. For
h = 2, the following corollary can be inferred by Theorem 1.

Corollary 2. For any integer n ≥ 0, we obtain

∑
a+b+c=n

Ba(x) · Bb(x) · Bc(x) =
1

216x3

n

∑
i=0

(n− i + 1)(i + 1)(i + 2) · Bn−i+2

(3x)i

+
1

72x2

n

∑
i=0

(n− i + 1)(n− i + 2)(i + 1) · Bn−i+3

(3x)i .

For x = 1, h = 2 and 3, according to Theorem 1 we can also infer the following corollaries:

Corollary 3. For any integer n ≥ 0, we obtain

∑
a+b+c=n

Ba+1 · Bb+1 · Bc+1 =
1

216

n

∑
i=0

(n− i + 1)(i + 1)(i + 2) · Bn−i+2

3i

+
1

72

n

∑
i=0

(n− i + 1)(n− i + 2)(i + 1) · Bn−i+3

3i .
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Corollary 4. For any integer n ≥ 0, we obtain:

∑
a+b+c+d=n

Ba+1 · Bb+1 · Bc+1 · Bd+1

=
1

3888

n

∑
i=0

(n− i + 1)(i + 1)(i + 2)(i + 3)(i + 4) · Bn−i+2

3i

+
1

1296

n

∑
i=0

(n− i + 1)(n− i + 2)(i + 1)(i + 2)(i + 3) · Bn−i+3

3i

+
1

1296

n

∑
i=0

(n− i + 1)(n− i + 2)(n− i + 3)(i + 1)(i + 2) · Bn−i+4

3i .

Corollary 5. For any odd prime p, we have the congruence M(p, i) ≡ 0(modp), 0 ≤ i ≤ p− 1.

Corollary 6. The balancing polynomials are essentially Chebyshev polynomials of the second kind, specifically
Bn(x) = Un(3x). Taking x = 1

3 x in Theorem 1, we can get the following:

∑
a1+a2+···+ah+1=n

Ua1(x)Ua2(x) · · ·Uah+1(x)

=
1

2h · h!
·

h

∑
j=1

(2h− j− 1)!
2h−j · (h− j)! · (j− 1)! · x2h−j

n

∑
i=0

(n− i + j)!
(n− i)!

·
Un−i+j(x)

xi ·
(

2h + i− j− 1
i

)
.

Compared with [8], we give a more precise result for ∑a1+a2+···+ah+1=n Ua1(x)Ua2(x) · · ·Uah+1(x) with the
specific expressions of M(h, i). This shows our novelty.

Here, we list the first several terms of M(h, i) in Table 1 in order to demonstrate the properties of
the sequence M(h, i) clearly.

Table 1. Values of M(h, i).

M(h, i) i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

h=1 1
h=2 1 1
h=3 3 3 1
h=4 15 15 6 1
h=5 105 105 45 10 1
h=6 945 945 420 105 15 1
h=7 10,395 10,395 4725 1260 210 21 1
h=8 135,135 135,135 62,370 17,325 3150 378 28 1

2. Several Lemmas

For the sake of clarity, several lemmas that are necessary for proving our theorem will be given in
this section.

Lemma 1. For the sequence M(n, i), the following identity holds for all 1 ≤ i ≤ n:

M(n, i) =
(2n− i− 1)!

2n−i · (n− i)! · (i− 1)!
.

Proof. We present a straightforward proof of this lemma by using mathematical introduction. It is
obvious that

M(1, 1) =
0!

1 · 0! · 0!
= 1.
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This means Lemma 1 is valid for n = 1. Without loss of generality, we assume that Lemma 1
holds for 1 ≤ n = h and all 1 ≤ i ≤ h. Then, we have

M(h, i) =
(2h− i− 1)!

2h−i · (h− i)! · (i− 1)!
,

M(h, i + 1) =
(2h− i− 2)!

2h−i−1 · (h− i− 1)! · i!
.

According to the definitions of M(n, i), it is easy to find that

M(h + 1, i + 1) = (2h− 1− i) ·M(h, i + 1) + M(h, i)

= (2h− 1− i) · 2(h− i)
(2h− i− 1)i

·M(h, i) + M(h, i)

=
2h− i

i
M(h, i) =

(2h− i)!
2h−i · (h− i)! · i!

=
(2(h + 1)− (i + 1)− 1)!

2h−i · (h− i)! · i!
.

Thus, Lemma 1 is also valid for n = h + 1. From now on, Lemma 1 has been proved.

Lemma 2. If we have a function f (t) = 1
1−6xt+t2 , then for any positive integer n, real numbers x and t with

|t| < |3x|, the following identity holds:

2n · n! · f n+1(t) =
n

∑
i=1

M(n, i) · f (i)(t)
(3x− t)2n−i ,

where f (i)(t) denotes the i-th order derivative of f (t), with respect to variable t and M(n, i), which is defined in
the theorem.

Proof. Similarly, Lemma 2 will be proved by mathematical induction. We start by showing that
Lemma 2 is valid for n = 1. Using the properties of the derivative, we have:

f ′(t) = (6x− 2t) · f 2(t),

or

2 f 2(t) =
f ′(t)

3x− t
= M(1, 1) · f ′(t)

3x− t
.

This is in fact true and provides the main idea to show the following steps. Without loss of
generality, we assume that Lemma 2 holds for 1 ≤ n = h. Then, we have

2h · h! · f h+1(t) =
h

∑
i=1

M(h, i) · f (i)(t)
(3x− t)2h−i . (2)

As an immediate consequence, we can tell by (2), the properties of M(n, i), and the derivative,
we get

2h · (h + 1)! · f h(t) · f ′(t) = 2h+1 · (h + 1)! · (3x− t) · f h+2(t)

=
h

∑
i=1

M(h, i)
(3x− t)2h−i · f (i+1)(t) +

h

∑
i=1

(2h− i)M(h, i)
(3x− t)2h−i+1 · f (i)(t)
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=
M(h, h)
(3x− t)h · f (h+1)(t) +

h−1

∑
i=1

M(h, i)
(3x− t)2h−i · f (i+1)(t) +

(2h− 1)M(h, 1)
(3x− t)2h · f ′(t)

+
h−1

∑
i=1

(2h− i− 1)M(h, i + 1)
(3x− t)2h−i · f (i+1)(t)

=
M(h + 1, h + 1)

(3x− t)h · f (h+1)(t) +
M(h + 1, 1)
(3x− t)2h · f ′(t) +

h−1

∑
i=1

M(h + 1, i + 1)
(3x− t)2h−i · f (i+1)(t)

=
M(h + 1, h + 1)

(3x− t)h · f (h+1)(t) +
M(h + 1, 1)
(3x− t)2h · f ′(t) +

h

∑
i=2

M(h + 1, i)
(3x− t)2h+1−i · f (i)(t)

=
h+1

∑
i=1

M(h + 1, i) · f (i)(t)
(3x− t)2h+1−i . (3)

Then, it is deduced that

2h+1 · (h + 1)! · (3x− t) · f h+2(t) =
h+1

∑
i=1

M(h + 1, i) · f (i)(t)
(3x− t)2h+1−i ,

or

2h+1 · (h + 1)! · f h+2(t) =
h+1

∑
i=1

M(h + 1, i) · f (i)(t)
(3x− t)2h+2−i .

Thus, Lemma 2 is also valid for n = h + 1. From now on, Lemma 2 has been proved.

Lemma 3. The following power series expansion holds for arbitrary positive integers h and k:

f (h)(t)
(3x− t)k =

1
(3x)k

∞

∑
n=0

(
n

∑
i=0

(n− i + h)!
(n− i)!

· Bn−i+h(x)
(3x)i ·

(
i + k− 1

i

))
tn,

where t and x are any real numbers with |t| < |3x|.

Proof. According to the definition of the balancing polynomials Bn(x), we have:

f (t) =
1

1− 6xt + t2 =
∞

∑
n=0

Bn(x) · tn.

For any positive integer h, from the properties of the power series, we can obtain

f (h)(t) =
∞

∑
n=0

(n + h)(n + h− 1) · · · (n + 1) · Bn+h(x) · tn

=
∞

∑
n=0

(n + h)!
n!

· Bn+h(x) · tn. (4)

For all real t and x with |t| < |3x|, we have the following power series expansion:

1
3x− t

=
1

3x
·

∞

∑
n=0

tn

(3x)n ,

and
1

(3x− t)k =
1

(3x)k ·
∞

∑
n=0

(
n + k− 1

n

)
· tn

(3x)n , (5)
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with any positive integer k. Then, it is found that

f (h)(t)
(3x− t)k

=
1

(3x)k ·
(

∞

∑
n=0

(n + h)!
n!

· Bn+h(x) · tn

)(
∞

∑
n=0

(
n + k− 1

n

)
· tn

(3x)n

)

=
1

(3x)k

∞

∑
n=0

(
∑

i+j=n

(j + h)!
j!

· Bj+h(x) ·
(

i + k− 1
i

)
· 1
(3x)i

)
tn

=
1

(3x)k

∞

∑
n=0

(
n

∑
i=0

(n− i + h)!
(n− i)!

· Bn−i+h(x) ·
(

i + k− 1
i

)
· 1
(3x)i

)
tn,

where we have used the multiplicative of the power series. Lemma 3 has been proved.

3. Proof of Theorem

Based on the lemmas in the above section, it is easy to deduce the proof of Theorem 1. For any
positive integer h, we can derive

2h · h! · f h+1(t) = 2h · h! ·
(

∞

∑
n=0

Bn(x) · tn

)h+1

= 2h · h! ·
∞

∑
n=0

(
∑

a1+a2+···+ah+1=n
Ba1(x)Ba2(x) · · · Bah+1(x)

)
· tn. (6)

On the other hand, by the observation made in Lemma 3, it is deduced that

2h · h! · f h+1(t) =
h

∑
j=1

M(h, j) · f (j)(t)
(3x− t)2h−j

=
h

∑
j=1

M(h, j)
(3x)2h−j ·

(
∞

∑
n=0

(
n

∑
i=0

(n− i + j)!
(n− i)!

· Bn−i+j(x) ·
(

2h + i− j− 1
i

)
· 1
(3x)i

)
tn

)

=
∞

∑
n=0

(
h

∑
j=1

M(h, j)
(3x)2h−j

n

∑
i=0

(n− i + j)!
(n− i)!

·
Bn−i+j(x)
(3x)i ·

(
2h + i− j− 1

i

))
· tn. (7)

Altogether, we obtain the identity:

2h · h! ∑
a1+a2+···+ah+1=n

Ba1(x)Ba2(x) · · · Bah+1(x)

=
h

∑
j=1

M(h, j)
(3x)2h−j

n

∑
i=0

(n− i + j)!
(n− i)!

·
Bn−i+j(x)
(3x)i ·

(
2h + i− j− 1

i

)
.

This proves Theorem 1.

4. Conclusions

In this paper, a representation of a linear combination of balancing polynomials Bi(x) (see
Theorem 1) is obtained. Moreover, the specific expressions of M(h, i) is given by using mathematical
induction (see Lemma 1).

Theorem 1 can be reduced to various studies for the specific values of x, n, and h in the literature.
For example, if n = 0, our results reduce to Corollary 1. Taking h = 2, our results reduce to Corollary 2.
Taking x = 1, h = 2, 3, our results reduce to Corollary 3 and Corollary 4, respectively.
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