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Abstract: Reinforcement learning (RL) based techniques have been employed for the tracking and
adaptive cruise control of a small-scale vehicle with the aim to transfer the obtained knowledge to
a full-scale intelligent vehicle in the near future. Unlike most other control techniques, the purpose of
this study is to seek a practical method that enables the vehicle, in the real environment and in real
time, to learn the control behavior on its own while adapting to the changing circumstances. In this
context, it is necessary to design an algorithm that symmetrically considers both time efficiency and
accuracy. Meanwhile, in order to realize adaptive cruise control specifically, a set of symmetrical
control actions consisting of steering angle and vehicle speed needs to be optimized simultaneously.
In this paper, firstly, the experimental setup of the small-scale intelligent vehicle is introduced.
Subsequently, three model-free RL algorithm are conducted to develop and finally form the strategy to
keep the vehicle within its lanes at constant and top velocity. Furthermore, a model-based RL strategy
is compared that incorporates learning from real experience and planning from simulated experience.
Finally, a Q-learning based adaptive cruise control strategy is intermixed to the existing tracking
control architecture to allow the vehicle slow-down in the curve and accelerate on straightaways.
The experimental results show that the Q-learning and Sarsa (λ) algorithms can achieve a better
tracking behavior than the conventional Sarsa, and Q-learning outperform Sarsa (λ) in terms of
computational complexity. The Dyna-Q method performs similarly with the Sarsa (λ) algorithms,
but with a significant reduction of computational time. Compared with a fine-tuned proportion
integration differentiation (PID) controller, the good-balanced Q-learning is seen to perform better
and it can also be easily applied to control problems with over one control actions.

Keywords: reinforcement learning; adaptive control; small-scale intelligent vehicle; Q-learning

1. Introduction

Self-driving vehicles—which incorporate multiple complex systems to sense the surrounding
environment, plan a path to a destination, and control steering and speed—have grown rapidly in the
last few years [1,2]. There are hundreds of companies worldwide that are on track to have autonomous
vehicle technology ready by 2020, including Toyota, Google, and Tesla [3]. Currently, one barrier to
the academics and industry who wish to develop and test their intelligent control algorithm is the
massive expense of the full-scale vehicles [4], not to mention the expense of constructing the test site in
order to provide a safe, controlled environment for the testing of self-driving vehicles (for example,
University of Michigan has spent $10 million developing an entire 32-acre mock city, Mcity, in order
to serve as a providing ground for their intelligent vehicles [5]). One solution to this problem would
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be to develop a small-scale vehicle that could be used as a testing platform for intelligent vehicle
technologies, without incurring the expense and safety hazards of a full-scale vehicle. Figure 1 shows
the small- and full- scale vehicle platform for developing and testing the intelligent control algorithm
for self-driving vehicles.

Symmetry 2019, 11, x 2 of 17 

constructing the test site in order to provide a safe, controlled environment for the testing of self-
driving vehicles (for example, University of Michigan has spent $10 million developing an entire 32-
acre mock city, Mcity, in order to serve as a providing ground for their intelligent vehicles [5]). One 
solution to this problem would be to develop a small-scale vehicle that could be used as a testing 
platform for intelligent vehicle technologies, without incurring the expense and safety hazards of a 
full-scale vehicle. Figure 1 shows the small- and full- scale vehicle platform for developing and testing 
the intelligent control algorithm for self-driving vehicles. 

 
Figure 1. Small- and full- scale platform for developing and testing the intelligent algorithm for self-
driving vehicles. 

For the tracking and adaptive cruise control of an intelligent vehicle, the proportion integration 
differentiation (PID) control is a control loop mechanism employing feedback that is widely used in 
industrial control systems and a variety of other applications requiring continuously modulated 
control. It has been the classic type of controller since the mid-20th century and will continue as the 
most often used industrial control scheme, due to its remarkable effectiveness, simple 
implementation, and broad applicability [6,7]. However, the parameter setting processing of 
conventional PID controllers is very complicated and the results are hard to be satisfactory, which 
might cause a great waste of manpower, material resources, and equipment. There are some other 
PID variants, including expert PID control [8], fuzzy PID control [9], and neural network-based PID 
control [10], etc. Although they are said to perform better if tuned well, rich expert knowledge for the 
expert PID, sophisticated fuzzy control decision table for the fuzzy PID control, and fine-tuned neural 
network parameters for the neural network-based PID control are required, and this may prevent 
their widespread use for self-driving vehicles’ tracking and adaptive cruise control. Meanwhile, in 
the complex systems with high order, large lag, strong coupling, nonlinear and time-varying 
parameters, the traditional control theory which relies on mathematical models is still immature, and 
some methods are complicated and cannot be directly applied for industrial applications. In this 
context, it is urgent to construct a “model-free” intelligent algorithm to achieve end-to-end learning 
and intelligent control while taking the industrial need of simplicity and robustness into 
consideration. 

Reinforcement learning (RL), which is considered as one of three machine learning paradigms 
alongside supervised learning and unsupervised learning, is an area of machine learning concerned 
with how agents ought to take actions in an environment so as to maximize cumulative reward (see 
Figure 2). The theory of reinforcement learning, inspired by the psychology of behaviorism, focuses 
on online learning and tries to maintain a balance between exploration and exploitation. Different 
from supervised learning and unsupervised learning, reinforcement learning does not require any 
pre-given data, but obtains learning information and updates model parameters by receiving 
rewards (feedback) from the environment for actions. Due to its generality, it is studied in many other 
disciplines, such as game theory [11], control theory [12], operations research [13], information theory 
[14], simulation-based optimization [15], and multi-agent systems [16]. Temporal-difference (TD) 
learning, which is a combination of Monte Carlo ideas and dynamic programming (DP) ideas, is 
considered as one idea which is central and novel to reinforcement learning [17]. Like Monte Carlo 

Figure 1. Small- and full- scale platform for developing and testing the intelligent algorithm for
self-driving vehicles.

For the tracking and adaptive cruise control of an intelligent vehicle, the proportion integration
differentiation (PID) control is a control loop mechanism employing feedback that is widely used in
industrial control systems and a variety of other applications requiring continuously modulated control.
It has been the classic type of controller since the mid-20th century and will continue as the most often
used industrial control scheme, due to its remarkable effectiveness, simple implementation, and broad
applicability [6,7]. However, the parameter setting processing of conventional PID controllers is very
complicated and the results are hard to be satisfactory, which might cause a great waste of manpower,
material resources, and equipment. There are some other PID variants, including expert PID control [8],
fuzzy PID control [9], and neural network-based PID control [10], etc. Although they are said to
perform better if tuned well, rich expert knowledge for the expert PID, sophisticated fuzzy control
decision table for the fuzzy PID control, and fine-tuned neural network parameters for the neural
network-based PID control are required, and this may prevent their widespread use for self-driving
vehicles’ tracking and adaptive cruise control. Meanwhile, in the complex systems with high order,
large lag, strong coupling, nonlinear and time-varying parameters, the traditional control theory which
relies on mathematical models is still immature, and some methods are complicated and cannot be
directly applied for industrial applications. In this context, it is urgent to construct a “model-free”
intelligent algorithm to achieve end-to-end learning and intelligent control while taking the industrial
need of simplicity and robustness into consideration.

Reinforcement learning (RL), which is considered as one of three machine learning paradigms
alongside supervised learning and unsupervised learning, is an area of machine learning concerned
with how agents ought to take actions in an environment so as to maximize cumulative reward
(see Figure 2). The theory of reinforcement learning, inspired by the psychology of behaviorism,
focuses on online learning and tries to maintain a balance between exploration and exploitation.
Different from supervised learning and unsupervised learning, reinforcement learning does not require
any pre-given data, but obtains learning information and updates model parameters by receiving
rewards (feedback) from the environment for actions. Due to its generality, it is studied in many
other disciplines, such as game theory [11], control theory [12], operations research [13], information
theory [14], simulation-based optimization [15], and multi-agent systems [16]. Temporal-difference
(TD) learning, which is a combination of Monte Carlo ideas and dynamic programming (DP) ideas,
is considered as one idea which is central and novel to reinforcement learning [17]. Like Monte Carlo
methods, TD methods can learn directly from raw experience without a model of the environment’s
dynamics. Like DP, TD methods update estimates based, in part, on other learned estimates,
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without waiting for a final outcome. In RL, there are two classes of TD methods: on-policy and
off-policy. The most important on-policy algorithm includes Sarsa and Sarsa (λ), and one of the
breakthroughs in off-policy reinforcement learning is known as Q-learning. Apart from the above
pure model-free reinforcement learning method, some model-based methods can be intermixed to
make the learning more efficient [18]. For example, Figure 3 shows the information flow in a Dyna-Q
architecture. It includes planning, acting, model-learning, and direct RL—all occurring continuously.
The planning method is the random-sample one-step tabular Q-planning method, and the direct RL
method is one-step tabular Q-learning.
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For the industrial application, the Q-learning algorithm was used to reduce the induction motor
losses by controlling the magnetic currents in different torque loads, and approximately 50% power
loss was reduced in comparison with the standard driver of motor when the motor works in low
loads [19]. The Q-learning algorithm was also demonstrated to outperform the existing expert-based
power management strategy on achieving better power performance trade-off, and it was more flexible
in adapting to different workloads and hardware [20]. Anderlini et al. [21] presented the application of
Q-learning algorithm for the optimal resistive control of a point absorber in order to maximize energy
absorption in each sea state. They found that the algorithm can be converged towards the optimal
controller damping in each sea state and this model-free approach ensures the algorithm adapts the
changes to the device hydrodynamics over time and is unbiased by modelling errors. Sun et al. [22]
proposed a hybrid module algorithm based on Q-learning to achieve the goal of maximizing the benefit
to the network service provider. As for Sarsa, Aissani et al. [23] presented a multi-agent approach for the
dynamic maintenance task scheduling for a petroleum industry production system. They showed that
the agents can simultaneously ensure effective maintenance scheduling and continuous improvement
of the solution quality by means of Sarsa algorithm. In addition, the Sarsa (λ) algorithm was proposed
to select an optimal route in the stages of a supply chain that will balance the reverse condition of cost
and time, and the experimental results show that Sarsa (λ) outperformed optimal route selection over
the conventional Q-learning by exhibiting higher convergence speed, a lesser number of episodes to
find optimal route, and a lesser computational time for different scenarios [24]. Li et al. [25] proposed
a communication solution based on Dyna-Q algorithm to effectively avoid intelligent interference
attacks, with better learning efficiency and faster convergence. Liu et al. [18] compared the Dyna-Q
and Q-learning algorithms by applying them to the energy management strategy for a hybrid electric
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tracked vehicle. They indicated that although the Q-learning algorithm is faster than the Dyna-Q
algorithm, its fuel consumption is 1.7% higher than that of the Dyna-Q algorithm. To the authors’ best
knowledge, there are few literatures that systematically analyze the four mentioned RL techniques
on sequential decision control problems for industrial products, and also for the self-driving vehicles’
tracking and adaptive cruise control, limited knowledge can be found to showcase the experimentally
practical method to learn the optimal strategy from scratch based on the classical tabular RL methods.

Based on the above discussion, it is necessary to apply the RL techniques for the tracking and
adaptive cruise control on a small-scale intelligent vehicle in order to a) systematically compare the
different RL techniques under the experimental environment and b) provide references for the further
development of RL techniques (including deep RL) on a full-scale intelligent vehicle. For the sake
of achieving the tracking and longitudinal control performance, first the experimental setup of the
small-scale intelligent vehicle is introduced. Subsequently, the model-free RL algorithm, including
Q-learning, Sarsa, and Sarsa (λ), was conducted to develop and finally form the strategy to keep
the vehicle within its lanes at constant and top longitudinal velocity. Furthermore, a model-based
RL strategy (Dyna-Q) was built that incorporates learning from real experience and planning from
simulated experience. Finally, in order to achieve the fastest lap time, a Q-learning based adaptive
cruise control strategy was intermixed to the existing tracking control architecture to allow the vehicle to
slow-down in the curve and accelerate on straightaways. The rest of this article is structured as follows:
Section 2 describes the experimental setup for the small-scale intelligent vehicle. In Section 3, the RL
based framework is proposed to realize the optimal tracking and adaptive cruise control. In Section 4,
the corresponding experimental results will be illustrated to compare different RL techniques and
a fine tuned PID algorithm. Section 5 concludes the article.

2. Experimental Setup

The experimental platform that the RL algorithm will be implemented on is shown in Figure 4.
Like any other small-scale vehicle platform (such as the rapid autonomous complex-environment
competing Ackermann-steering robots at Massachusetts Institute of Technology (MIT) [26] and the
Berkeley autonomous race car at University of California, Berkeley [27]), this platform will help
test various intelligent and adaptive control strategies on a physical vehicle system, thus providing
references for the further development of full-scale intelligent vehicles. In order to focus on the RL
techniques without spending too much time on the hardware debugging, we have designed the platform
to use many purchased ordinary parts (in order to make it easy to transfer the knowledge acquired
from this study to a full-scale intelligent vehicle) and to take advantage of low-cost manufacturing
processes, such as 3D printing.
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A MK60DN512ZVLQ10 Microprogrammed Control Unit (MCU) was used as the core control to
obtain the experimental data from the sensor, and transmits the command to each actuator, in order to
coordinate the operation as required. For actuators, a Futaba S3010 servo motor controls the steering
of the vehicle body and an RS380 motor controls the speed of the vehicle. As for sensors, in this study,
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an MT9V032 digital camera was used to obtain the environment information (in this study, a simplified
track is provided as shown in Figure 5a) which then can be converted to the offset from the track
centerline. In detail, the camera first obtains the track image as shown in Figure 5b. Then, the gray
image obtained by the digital camera is converted into a binarized map by software binarization to
determine the road conditions in front of the vehicle (See Figure 5c). Finally, the distance between the
black and white boundary at 23 cm in front of the vehicle body is found to determine the offset of the
vehicle body from the centerline. Two 1024-line dual-phase incremental mini encoders were used to
obtain the vehicle speed. By obtaining the encoder pulse for a period of time, the vehicle speed was
calculated based on the wheel-to-encoder gear ratio and the wheel diameter. A HC-06 Bluetooth serial
port module was used to achieve the interactive functions, so as to send the experimental data to the
host computer.

Symmetry 2019, 11, x 5 of 17 

to coordinate the operation as required. For actuators, a Futaba S3010 servo motor controls the 
steering of the vehicle body and an RS380 motor controls the speed of the vehicle. As for sensors, in 
this study, an MT9V032 digital camera was used to obtain the environment information (in this study, 
a simplified track is provided as shown in Figure 5a) which then can be converted to the offset from 
the track centerline. In detail, the camera first obtains the track image as shown in Figure 5b. Then, 
the gray image obtained by the digital camera is converted into a binarized map by software 
binarization to determine the road conditions in front of the vehicle (See Figure 5c). Finally, the 
distance between the black and white boundary at 23 cm in front of the vehicle body is found to 
determine the offset of the vehicle body from the centerline. Two 1024-line dual-phase incremental 
mini encoders were used to obtain the vehicle speed. By obtaining the encoder pulse for a period of 
time, the vehicle speed was calculated based on the wheel-to-encoder gear ratio and the wheel 
diameter. A HC-06 Bluetooth serial port module was used to achieve the interactive functions, so as 
to send the experimental data to the host computer. 

 

   
(a) Test track (b) Greyscale image (c) Binary image 

Figure 5. Digital image processing. 

The small-scale intelligent vehicle is powered by a 7.2v, 2000 mAh nickel–cadmium battery. The 
hardware board, as shown in Figure 6, was used to connect the various functional components so 
that they can be controlled by the MCU to achieve the purpose of coordinated operation. It mainly 
includes the power supply circuit (power supply to MCU and to each module), each drive circuit 
involving identifying the control signal of the small current emitted by MCU, supplying sufficient 
energy to the steering servo motor and the speed motor to perform the corresponding actions, driving 
the camera to work according to the MCU instructions, and driving the wireless Bluetooth serial port 
module to transmit data functionally. 

  
  

Figure 6. Printed circuit board layout image. 

3. Control Strategy based on Reinforcement Learning 

3.1. Problem Formulation 

Figure 5. Digital image processing.

The small-scale intelligent vehicle is powered by a 7.2v, 2000 mAh nickel–cadmium battery.
The hardware board, as shown in Figure 6, was used to connect the various functional components so
that they can be controlled by the MCU to achieve the purpose of coordinated operation. It mainly
includes the power supply circuit (power supply to MCU and to each module), each drive circuit
involving identifying the control signal of the small current emitted by MCU, supplying sufficient
energy to the steering servo motor and the speed motor to perform the corresponding actions, driving
the camera to work according to the MCU instructions, and driving the wireless Bluetooth serial port
module to transmit data functionally.
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3. Control Strategy Based on Reinforcement Learning

3.1. Problem Formulation

In this study, there are three control behaviors that need to be learned, namely, (a) tracking control
at constant velocity, (b) tracking control at incrementally constant speed, and (c) tracking control at
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adaptive cruise velocity. In detail, the first task requires the small-scale vehicle to travel along the
centerline of the test track while keeping the vehicle speed constant. The second task increases the
control difficulty by making the vehicle learn the maximum speed that allows the vehicle to travel
along the track centerline without running out of bounds. The ultimate aim of this study is to enable
the vehicle to keep the vehicle along its centerline while learning to slow down or accelerate adaptively
according to different road conditions. Unlike any other control techniques, the purpose of this study
is to seek a practical method that enables the vehicle, in the real environment and in real time, to learn
the control behavior on its own while adapting to the changing circumstances. Thus, it is necessary
to design an algorithm that symmetrically considers both time efficiency and accuracy. Meanwhile,
in order to realize adaptive cruise control specifically, a set of symmetrical control actions consisting of
steering angle and vehicle speed needs to be optimized simultaneously. Figure 7 illustrates the control
flow chart for the small-scale intelligent vehicle, in which the sensor data is used by the control unit to
regulate the steering angle and motor duty cycle to keep the vehicle travelling along the centerline
with required vehicle velocity.
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3.2. The Key Concept of Reinforcement Learning

Reinforcement learning is the core technology of many artificial intelligence software. Compared
to supervised learning and unsupervised learning in the machine learning field, RL uses a continuous
“trial-and-error” mechanism and a “exploitation and exploration” balance without correct sample
labeling [28]. Through the real-time perception of the feedback status of the environment (as a supervised
signal of its actions), see Figure 2, the parameters are continuously adjusted to achieve the optimal
sequential decision making for a given task. In the following, key concepts of the RL-based tracking
and adaptive cruise control algorithm are formulated.

System state: In the RL algorithm, control action is directly determined by the system states.
In this study, the offset from centerline, vehicle yaw angle, and vehicle velocity are selected to form
a three-dimensional state space, i.e., s(t) = (e(t), ϕ(t), v(t))T, where e(t) represents the offset from
the centerline at time t, ϕ(t), and v(t) represent yaw angle and vehicle speed at time t, respectively.
Figure 8 illustrates the three defined states, in which the value after the servo represents a set of yaw
angle states, the value after Pulse-Width Modulation (PWM) represents a set of vehicle speed states,
and the number at the top of the figure represents a set of the offset from the centerline. It should
be noted here that only a small number of states are chosen in this study in order to (a) facilitate the
training process and (b) showcase the generalization ability of the RL techniques.
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Control action: The decision-making on the steering servo motor which decides the vehicle
steering angle and the motor which determines the vehicle speed are the core problem of the control
strategy. We choose the steering angle of the servo motor and the duty cycle of the motor as the control
actions, denoted as A(t) = (µ(t),ρ(t)), where t is the time step index. A(t) should be discretized in
order to apply the RL-based algorithm, i.e., the entire action space is A =

{
A1, A2, . . .An

}
, where n is

the degree of discretization and is the multiplication of the number of steering actions and the number
of speed actions. In this study, for the first two tasks, we consider n as 9, and for the ultimate task, n is
set to be 27 with three speed control actions added.

Immediate reward: Immediate reward is important in the RL algorithm because it directly
influences the convergence curves and, in some cases, a fine adjustment of the immediate reward
parameter can bring the final policy to the opposite poles [29]. The agent is always trying to maximize
the reward, which it can obtain by taking the optimal action at each time step. Therefore, the immediate
reward should be defined according to the optimization objective. The control objective of this work
is to enable the vehicle to travel along the centerline (for task a, b, and c) and adaptively alter speed
according to different road conditions (for task c). Keeping this objective in mind, the function of
the offset from the centerline (for task a, b, and c) and the current vehicle speed are defined as the
immediate reward. A large penalty value was introduced to penalize the situation when the vehicle is
running out of the boundaries. In this experiment, when the vehicle is about to rush out of the runway
at a long distance from the centerline, the vehicle is given a command to reverse the full steering angle
and use this as the current action to update Q table in the current state. In the conventional process of
RL, the experimental body has to be put back into the environment to continue learning when rushing
out of boundaries, and this design can creatively make the experiment body correct itself and continue
to learn when it is about to go out of bounds, which effectively reduces the human-made operational
factors. Meanwhile, there is no need to supervise the learning process at all times, which greatly
improves the learning efficiency. In the following, the equations for the immediate reward are given:

r(t) = −e(t)2 + (2× v(t))2 + 20 (1)

where r(t) is the immediate reward generated when the state change by taking an action at time t.
As the objective is to maximize the cumulated rewards for a period of time, a negative sign is given
before e(t) which is the offset from the centerline. v(t) represents the vehicles speed and a larger value
of that without compromising the tracking performance should be given a larger reward.
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Formally, the goal of this tracking and adaptive cruise control is to find the optimal control strategy,
π∗, that maps the observed states st to the control action at. Mathematically, the control strategy of this
vehicle control can be formulated as an infinite horizon dynamic optimization problem, as follows:

R =
∞∑

t=0

γtr(t) (2)

where γ ∈ (0, 1) is a discount factor that assures the infinite sum of cost function convergence. We used
Q∗(st, at), i.e., the optimal value, to represent the maximum accumulative reward, which we can
obtain by taking action at in state st, Q∗(st, at) is calculated by the Bellman equation, whose equation is
different for different RL techniques, as shown from Section 3.3 to Section 3.6.

3.3. The Q-Learning Algorithm

One of the early breakthroughs in RL was the development of an off-policy TD control algorithm
known as Q-learning. The learning state-action function, Q, directly approximates q∗, the optimal
state-action function, independent of the policy being followed [30]. This dramatically simplifies the
analysis of the algorithm and enables early convergence proofs. The pseudo-code of this algorithm can
be seen in Algorithm 1, in which ε− greedy means the control strategy is to behave greedily most of
the time, but every once in a while, say with small probability, instead, select randomly from among all
the actions with equal probability, independently of the state-action estimates.

Algorithm 1. The Q-learning algorithm pseudo code.

Algorithm : RL : Q-learning algorithm
1. Initialize Q(s, a) arbitrarily
2. Repeat (for each episode) :
3. Initialize s
4. Repeat (for each step of episode) :
5. Choose a from s using policy derived from Q(e.g., ε− greedy)
6. Take action a, observe r, s′

7. Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′) −Q(s, a)]
8. s← s′

9. Until s is terminal

3.4. The Sarsa Algorithm

The full name of the Sarsa algorithm is state action reward state action (see Figure 9), which is also
a kind of TD learning algorithm. It has a high degree of similarity with the Q-learning algorithm and it
is also a value-based reinforcement learning algorithm that uses the Q function to find the optimal
action selection strategy. Compared with the Q-learning algorithm, Sarsa has already chosen the
next state and the next action at the current iteration, putting it into the on-policy algorithm category.
This difference makes Sarsa more timid than Q-learning, because Q-learning always thinks about Q
function maximization, thus making it greedy, regardless of other non-maxQ results. Compared with
Q-learning, which can be described as greedy, bold, and brave, Sarsa is a conservative algorithm that is
sensitive to control errors. Algorithm 2 shows the pseudo code for the Sarsa algorithm.
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The full name of the Sarsa algorithm is state action reward state action (see Figure 9), which is 
also a kind of TD learning algorithm. It has a high degree of similarity with the Q-learning algorithm 
and it is also a value-based reinforcement learning algorithm that uses the Q function to find the 
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Algorithm 2. The Sarsa algorithm pseudo code.

Algorithm : RL : Sarsa algorithm
1. Initialize Q(s, a) arbitrarily
2. Repeat (for each episode) :
3. Initialize s
4. Choose a from s using policy derived from Q(e.g., ε− greedy)
5. Repeat (for each step of episode) :
6. Choose a′ from s′ using policy derived from Q(e.g., ε− greedy)
7. Take action a, observe r, s′

8. Q(s, a)← Q(s, a) + α[r + γQ(s′, a′) −Q(s, a)]
9. s← s′; a← a′;
10. Until s is terminal

3.5. The Sarsa (λ) Algorithm

Sarsa (λ) is an upgraded version based on the Sarsa method. It can learn more efficiently on how
to get the maximum accumulative reward. For Sarsa and Q-learning, both being one-step TD learning
methods, they can only update the corresponding Q function (the step before getting the current
reward) per time step, while Sarsa (λ) enables bootstrapping to occur over multiple steps, freeing us
from the tyranny of the single time step [11]. This feature, in theory, is more capable of solving the
control problem with sparse reward delays.

Compared with Sarsa, the Sarsa (λ) algorithm has an additional eligibility trace matrix, which is
used to save every step experienced in the past. By doing so, the steps that are previously experienced
are able to be updated on each iteration. To make it clearer, the Sarsa (λ) backup diagram is shown in
Figure 10. The first update looks ahead one full step, to the next state-action pair, the second looks ahead
two steps, to the second state-action pair, and so on. A final update is based on the complete return.
The weighting of each n-step update in the λ -return is also shown in Figure 10. This approach is the
theoretical forward view of the learning algorithm. For each state visited, we looked forward in time to
all the future rewards and decided how best to combine them. However, Sarsa (λ) is oriented backward
in time. At each moment, we looked at the current TD error and assigned it backward to each prior
state according to how much that state contributed to the current eligibility trace at that time. Usually
λ is set between 0 and 1, which means that more of the preceding states are changed, but each more
temporally distant state is changed less (in other words, giving less credit) because the corresponding
eligibility trace is smaller. Algorithm 3 shows the pseudo code for the Sarsa (λ) algorithm.Symmetry 2019, 11, x 10 of 17 
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3.6. Dyna-Q Algorithm 

The Dyna-Q algorithm is based on the Q-learning algorithm. It is an algorithm that combines 
the features of model based and model free. It learns both in the model and in the environment 
interaction. That is, in each iteration round, it will interact with the environment first, and update the 
Q function. Then, the simulation planning of the model is performed n times, and the Q function is 
updated correspondingly. Figure 11 illustrates the overall architecture of Dyna-Q algorithm. It can 
be seen that the same RL method (here the Q-learning method) is used both for learning from real 
experience and for planning from simulated experience. Thus, learning and planning are deeply 
integrated in the sense that they share almost all the same machinery, differing only in the source of 
their experience. Algorithm 4 shows the pseudo code for the Dyna-Q algorithm. 

Figure 10. Sarsa (λ) backup diagram.



Symmetry 2019, 11, 1139 10 of 17

Algorithm 3. The Sarsa (λ) algorithm pseudo code.

Algorithm : RL : Sarsa-λ algorithm
1. Initialize Q(s, a) arbitrarily, for all s ∈ S, a ∈ A(s)
2. Repeat (for each episode) :
3. E(s, a) = 0, for all s ∈ S, a ∈ A(s)
4. Initialize S, A
5. Repeat (for each step of episode) :
6. Take action A, observe R, S′

7. Choose A′ from S′ using policy derived from Q(e.g., ε− greedy)
8. δ← R + γQ(S′, A′) −Q(S, A)

9. E(S, A)← E(S, A) + 1
10. For all s ∈ S, a ∈ A(s)
11. Q(s, a)← Q(s, a) + αδE(s, a)
12. E(s, a)← γλE(s, a)
13. S← S′; A← A′;
14. Until S is terminal

3.6. Dyna-Q Algorithm

The Dyna-Q algorithm is based on the Q-learning algorithm. It is an algorithm that combines the
features of model based and model free. It learns both in the model and in the environment interaction.
That is, in each iteration round, it will interact with the environment first, and update the Q function.
Then, the simulation planning of the model is performed n times, and the Q function is updated
correspondingly. Figure 11 illustrates the overall architecture of Dyna-Q algorithm. It can be seen that
the same RL method (here the Q-learning method) is used both for learning from real experience and
for planning from simulated experience. Thus, learning and planning are deeply integrated in the
sense that they share almost all the same machinery, differing only in the source of their experience.
Algorithm 4 shows the pseudo code for the Dyna-Q algorithm.
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4. Experimental Results and Discussion 

The experimental results are structured as follows: Section 4.1 shows the tracking control of the 
small-scale vehicle based on Q-learning, Sarsa, Sarsa (λ), and Dyna-Q at constant velocity. In Section 
4.2, the Q-learning, Sarsa, and Sarsa (λ) algorithms are used to showcase the tracking behavior while 
learning to increment the vehicle speed. Section 4.3 shows the ultimate aim of this study, which is to 
enable the vehicle travelling along its centerline while learning to slow-down or accelerate adaptively 
according to different road conditions. 

4.1. Tracking Control at Constant Vehicle Velocity 

Figure 12 shows the number of outbound and the accumulated rewards per episode during the 
Q-learning, Sarsa, and Sarsa (λ) training process. It can be seen that all of the three RL algorithms are 
able to reach the convergence after a certain episode, i.e., the number of outbound per episode 
converges to zero and the accumulated rewards per episode converges to a certain value. But the 
difference between the three algorithms is also clear. For example, the training effect of the Q-learning 
algorithm is better than that of Sarsa. To make it clearer, The Q-learning curve can converge in a 
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Algorithm 4. The Dyna-Q algorithm pseudo code.

Algorithm : RL : Dyna-Q algorithm
1. Initialize Q(s, a) and M(s, a) for all s ∈ S and a ∈ A(s)
2. Do forever :
3. S← current (nonterminal) state
4. A← ε− greedy(S, Q)

5. Execute action A; observe resultant reward,R, and state,S′

6. Q(S, A)← Q(S, A) + α[R + γmaxaQ(S′, a) −Q(S, A)]

7. Model (S, A)← R, S′(assuming deterministic environment)
8. Repeat n times :
9. S← random previously observed state
10. A← random action previously taken in S
11. R, S′ ←Model(S, A)

12. Q(S, A)← Q(S, A) + α[R + γmaxaQ(S′, a) −Q(S, A)]

4. Experimental Results and Discussion

The experimental results are structured as follows: Section 4.1 shows the tracking control of the
small-scale vehicle based on Q-learning, Sarsa, Sarsa (λ), and Dyna-Q at constant velocity. In Section 4.2,
the Q-learning, Sarsa, and Sarsa (λ) algorithms are used to showcase the tracking behavior while
learning to increment the vehicle speed. Section 4.3 shows the ultimate aim of this study, which is to
enable the vehicle travelling along its centerline while learning to slow-down or accelerate adaptively
according to different road conditions.

4.1. Tracking Control at Constant Vehicle Velocity

Figure 12 shows the number of outbound and the accumulated rewards per episode during the
Q-learning, Sarsa, and Sarsa (λ) training process. It can be seen that all of the three RL algorithms
are able to reach the convergence after a certain episode, i.e., the number of outbound per episode
converges to zero and the accumulated rewards per episode converges to a certain value. But the
difference between the three algorithms is also clear. For example, the training effect of the Q-learning
algorithm is better than that of Sarsa. To make it clearer, The Q-learning curve can converge in a shorter
time and can get more accumulated rewards in a shorter time (the final accumulated rewards are
also larger). In addition, the converging speed of the Sarsa (λ) algorithm seems to be better than the
Q-learning method, but only by a very small margin, and the Sarsa (λ) algorithm seems to be more
stable in the training and can converge to a higher steady value in the accumulated reward figure
(which corresponds to a better final control behavior) than the proposed Q-learning. From the degree
of inclination of the curve, Sarsa is not as fast as the other two algorithms because of its “conservative”
behavior in learning, while the backtracking learning process features of Sarsa (λ) and the courage of
Q-learning in exploring movements make their learning more efficient.
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When the model-free RL techniques above were compared with the model-based Dyna-Q method,
Figure 13 can be drawn. It can be seen that the proposed Dyna-Q algorithm can quickly converge,
just like Sarsa (λ), and the training process seems to be more stable. It indicates the superiority of
the model-based approach integrates model learning and direct RL processes, although the model is
only learned from real experience and gives rise to simulated experience. Furthermore, the proposed
Dyna-Q algorithm, in which n was chosen to be 10, can run much faster than the proposed Sarsa (λ)
method whose λ was chosen to be 0.8 (generally a good balance between the conventional Sarsa and
Monte Carlo). Thus, although seen from Figure 13, the two algorithms can behave similarly after
training, the proposed Dyna-Q method is more suitable to implement on real hardware, especially when
the number of states and actions are discretized more finely (thus requiring more computing resources).
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Table 1 compares the training process, the final control behavior, and the computational complexity
between the four RL techniques. In this study, the single step calculation time is selected to represent
the computational complexity (for easy comparison, the calculation time for Q-learning is used as the
baseline). For Q-learning and Sarsa, as they are both a one-step TD learning method, the single step
calculation time is fast. However, the computational complexity increases dramatically for Sarsa (λ)
and Dyna-Q, especially when the Q table and the time of simulation planning are large. For example,
if the state-action pair in the Q table was doubled, the single step calculation time of the Sarsa (λ)
controller would also be doubled. That is, when the state and/or action are divided more finely, the Sarsa
(λ) algorithm would not meet the real-time control requirement. From the analysis above, it can be
concluded that although the proposed Q-learning algorithm has a poorer converging speed than the
Sarsa (λ) and Dyna-Q algorithm, it balances the performance between the converging speed, the final
control behavior, and the computational complexity, thus putting it more suitable for the first trial of
industrial application.

Table 1. The control behavior comparison between four reinforcement learning techniques.

Q-Learning Sarsa Sarsa (λ) Dyna-Q

Minimum episodes to converge 45 50 28 20
Final accumulated reward per episode 9511 6578 12,204 12,506

Single step calculation time (%) * 100 100 1335 766

* processed after normalization.

4.2. Tracking Control While Learning to Increament the Vehicle Speed

Figure 14 shows the tracking training processes while the vehicle learns to increment speed using
Q-learning, Sarsa, and Sarsa (λ). We first set the initial speed of the three algorithms to be 50% of
the maximum available speed. After detecting the training converging with a good control behavior,
the vehicle speed is increased by 10% of the maximum available speed automatically and this iteration
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stops when the learning curve vibrates (in this case, the vehicle speed of the previous iteration is
determined as the maximum speed that can be achieved). In this experiment, we can see that after
a certain period of training, the proposed Q-learning, Sarsa, and Sarsa (λ) algorithm can accelerate
to 80%, 60%, and 90% of its maximum available speed, respectively. This indicates that the learning
ability of Q-learning to adapt to different environments is stronger than that of Sarsa, and Sarsa (λ) is
stronger than Q-learning.

Symmetry 2019, 11, x 13 of 17 

For example, if the state-action pair in the Q table was doubled, the single step calculation time of the 
Sarsa (λ) controller would also be doubled. That is, when the state and/or action are divided more 
finely, the Sarsa (λ) algorithm would not meet the real-time control requirement. From the analysis 
above, it can be concluded that although the proposed Q-learning algorithm has a poorer converging 
speed than the Sarsa (λ) and Dyna-Q algorithm, it balances the performance between the converging 
speed, the final control behavior, and the computational complexity, thus putting it more suitable for 
the first trial of industrial application. 

Table 1. The control behavior comparison between four reinforcement learning techniques. 

 Q-learning Sarsa Sarsa (λ) Dyna-Q 

Minimum episodes to converge 45 50 28 20 

Final accumulated reward per episode 9511 6578 12204 12506 

Single step calculation time (%)* 100 100 1335 766 
* processed after normalization. 

4.2. Tracking Control While Learning to Increament the Vehicle Speed 

Figure 14 shows the tracking training processes while the vehicle learns to increment speed 
using Q-learning, Sarsa, and Sarsa (λ). We first set the initial speed of the three algorithms to be 50% 
of the maximum available speed. After detecting the training converging with a good control 
behavior, the vehicle speed is increased by 10% of the maximum available speed automatically and 
this iteration stops when the learning curve vibrates (in this case, the vehicle speed of the previous 
iteration is determined as the maximum speed that can be achieved). In this experiment, we can see 
that after a certain period of training, the proposed Q-learning, Sarsa, and Sarsa (λ) algorithm can 
accelerate to 80%, 60%, and 90% of its maximum available speed, respectively. This indicates that the 
learning ability of Q-learning to adapt to different environments is stronger than that of Sarsa, and 
Sarsa (λ) is stronger than Q-learning. 

  
(a) Q-learning training behavior (b) Sarsa training behavior 

 
(c) Sarsa (λ) training behavior 

Figure 14. Training behavior of the tracking control while learning to increment the vehicle speed. 

In the meanwhile, a fine-tuned PID controller has also been employed to the same task, and 70% 
of the maximum available speed can be achieved, indicating that the RL techniques can have a better 
steering control performance than that of the classical PID controller. To make it clearer, the 

Figure 14. Training behavior of the tracking control while learning to increment the vehicle speed.

In the meanwhile, a fine-tuned PID controller has also been employed to the same task, and 70%
of the maximum available speed can be achieved, indicating that the RL techniques can have a better
steering control performance than that of the classical PID controller. To make it clearer, the performance
of the fine-tuned PID controller is compared with the proposed Q-learning algorithm at the same
vehicle speed (which corresponds to the 70% of the maximum speed). It can be seen from Figure 15
that, compared with the fine-tuned PID controller, the deviation of the vehicle position from the
centerline of the trained Q-learning algorithm is much smaller throughout the entire test track, with the
gap becoming bigger during corning. This is because, in general, the PID algorithm does not have
a good adaptability. Its parameters may be able to maintain a good control performance in the face
of a straight road, but for corners, there is no guarantee that it will still perform well. For RL, as the
algorithm can have more defined states, its control strategy that maps the observed states to the control
action will be more adaptive. It should also be noted here that the traditional PID algorithm requires
manual adjustment of parameters so that the efficiency of algorithm tuning is low. However, RL is able
to adaptively adjust the algorithm strategy in the learning process, which not only can save a lot of
manpower resources, but also can more adapt to the changing environment and hardware aging over
time (thus is unbiased by modelling errors).
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4.3. Steering Control at Adaptive Velocity

Figure 16 shows the training process of the tracking control at adaptive cruise velocity based on
Q-learning. Unlike the proposed algorithm above, which has only single output action, this section
shows the ability of Q-learning with multiple actions controlled simultaneously. Quite interestingly,
it can be seen that the proposed Q-learning method does not significantly increase the training time
due to the increase in the number of states and actions, and still can achieve a relatively good control
behavior with the number of outbound and the averaged speed per 1000 steps converging within
a certain episode (after approximately 40 episodes). It should be noted that in this study, the small-scale
vehicle learns to steer correctly and learns to travel with adaptive velocity almost simultaneously,
which is extremely difficult for traditional PID controllers. This indicates that the Q-learning method
can be an attractive alternative for complex industrial control problems (such as the self-driving control
in this case) whose multiple actuators need to be regulated simultaneously.
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Figure 17 shows the chosen vehicle speed (indicated by motor’s pulse-width modulation: PWM)
for different steering selection (in simplicity, only the most left, neural, and the most right steering are
shown) at different states (namely, offset from the centerline, vehicle’s yaw angle, and current vehicle
speed). Although it might be a little difficult to analyze these figures, due to its four-dimensional space,
it still shows some clear trends. For example, when the vehicle is in a straight road (corresponding
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to the offset being 0), the vehicle is driven at the fastest speed, and when the vehicle is in a corner
(corresponding to the offset being a large absolute value), the vehicle is required to be at a slower speed.
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Future work may include applying deep reinforcement learning (DRL) to formulate a real-time
tracking and adaptive cruise controller for the small-scale intelligent vehicle. Another interesting
direction could be combining some look-ahead strategies with the proposed RL or DRL techniques to
accelerate the training process and improve the final control performance. The interactions between
multiple reinforcement learning based controllers, including distributed RL and hierarchical RL,
will also be studied in the near future.

5. Conclusions

In this paper, three classical model-free, and a model-based RL, techniques have been employed
for a small-scale vehicle with the aim to transfer the obtained knowledge to a full-scale intelligent
vehicle in the near future. Unlike most of the RL-based research whose agents only interact with
and learn from the virtual environments, this study directly places the small-scale vehicle in a real
environment where the vehicle uses a continuous “trial-and-error” mechanism and an “exploitation
and exploration” balance, in order for the parameters of the algorithm to be adjusted adaptively.
In addition, the emphasis is also put on the potential industrial use by analyzing each algorithm’s
training behavior and computational complexity without finely discretizing the control states and
actions. The major findings are summarized as follows:

• The Q-learning and Sarsa (λ) algorithms can achieve a better tracking behavior than the
conventional Sarsa, although they all can converge within a small number of training episodes.
In addition, the converging speed and the final tracking behavior of Sarsa (λ) seems to be better
than Q-learning by a small margin, but Q-learning outperforms Sarsa (λ) in terms of computational
complexity and thus is more suitable for the vehicle’s real time learning and control.

• The Dyna-Q method, which can learn both in the model and in the environment interaction, performs
similarly with the Sarsa (λ) algorithms, but with a significant reduction of computational time.
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• The Q-learning algorithm with a good balance between the converging speed, the computational
complexity, and the final control behavior is seen to perform better compared with a fine-tune
PID controller in terms of adaptability and tuning efficiency, and the Q-learning method can
also be easily applied to control problems with over one control actions, putting it as more
suitable for the self-driving vehicle control whose steering angle and vehicle speed needs to be
regulated simultaneously.
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