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Abstract: Rail operators in many countries discount group tickets to improve revenue by increasing
price-driven demand. For individual passengers, dynamic pricing is beneficial for maximizing
revenue based on the price discrimination principle. Usually, group fares are cheaper than individual
fares. If too many group tickets are sold, there will not be enough tickets available to meet high-priced
individual demand; by contrast, if not enough group tickets are sold and there is insufficient
individual demand, the unsold seats will not have value once the train departs. Therefore, for railway
operators, it is worth looking for a balance between group discounts and dynamic pricing to maximize
benefits. Essentially, rail operators need to find the symmetry point of the expected revenue between
accepting group bookings and reserving tickets for individuals when making decisions. In this
study, we formulated a joint decision model of group ticket booking control and dynamic pricing
and investigated the effect of the joint decision. The results of numerical experiments showed that
incorporating group discounts into dynamic pricing can improve expected revenue when passenger
demand is weak, and compared to setting fixed quantities for group tickets, dynamically controlling
the limit of group bookings can effectively increase expected revenue. Further analysis of the impacts
of time, number of tickets sold, and group demand was helpful to implement the proposed joint policy.

Keywords: high-speed railway; revenue management; booking limit; dynamic pricing; group
booking; dynamic programming

1. Introduction

Revenue management plays a very important role in the sustainable development of high-speed
railways and has received much attention from high-speed railway operators in many countries [1].
In China, the length of high-speed rail lines operated had reached 29,000 km by the end of 2018,
accounting for more than two-thirds of the world’s high-speed railways. According to the World Bank’s
Analysis Report “China High-Speed Railway: Construction Cost Analysis”, the weighted average unit
cost of a high-speed railway with design speeds of 350 km/h and 250 km/h is 129 million yuan/km
and 87 million yuan/km, respectively. There is a pressing need for the China Railway Corporation
to accelerate the rate of return on investment and supplement construction investment by increasing
revenue. At this point, many high-speed rail lines in China are still in a continual loss state. Improving
revenue is necessary to ensure the sustainable development of operation. Revenue management
techniques such as seat inventory control and dynamic pricing are very helpful for increasing railway
operators’ earnings in many countries.
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Some high-speed rail operators increase revenue by discounting group tickets. For example,
in Japan, groups of more than eight adults can enjoy a 10–15% discount on group tickets, and groups
of more than eight students can enjoy a 30–50% discount [2]. In China, group reservations require
more than 20 people. It should be emphasized that group discounts will have an impact on improving
the effectiveness of revenue management techniques. Since group tickets are usually cheaper than
individual tickets, if too many group tickets are sold, there will not be enough tickets available to
meet high-priced individual demand. By contrast, if not enough group tickets are sold and individual
demand is insufficient, the unsold seats will not have value once the train departs. Therefore, it is
worth looking for a balance between group ticket booking limits and individual ticket reservation.
To maximize benefits, operators need to find a symmetry point of expected revenue between accepting
group booking and reserving tickets for individuals when making decisions. When the expected
revenue of the group order is higher than that of reserving tickets for individuals, the operator will
accept the booking request for group tickets; otherwise, the booking request for group tickets will
be rejected.

According to the existing literature, revenue management includes inventory control, dynamic
pricing, and the joint optimization of both. Inventory control is used to control the quantity of seats
or tickets at each given fare class to maximize revenue. Dynamic pricing is used to adjust prices
dynamically based on demand to maximize revenue. The joint optimization of the two is used to
optimize the price and inventory as variables at the same time. Talluri and Van Ryzin [3] classified
group arrivals into two categories: Group booking, which allows partial acceptance, and whose static
stock control is basically the same as arriving alone; and all-or-none, which leads to a nonmonotonic
value function and makes the optimal control strategy more complex. In practice, approximate
strategies are often obtained using no group control models. The group booking studied here refers to
the latter. In the field of railways, Zhang et al. [2] divided passengers into individuals and groups.
Individual passengers are served by full-price tickets and group passengers are served by dynamic
discounts. Dynamic programming is used to obtain the optimal group discount strategy. However,
the joint strategy of group discounts and dynamic pricing for individuals is not investigated in the
existing literature.

This study proposes a joint policy of group discounts and dynamic pricing for individuals and
builds a comprehensive optimization model of inventory control and dynamic pricing to obtain
this policy and investigate the effectiveness of revenue improvement. According to the number of
passengers per order, orders are divided into two categories: Individual and group orders. Dynamic
pricing is applied for individual orders to tap individual demand, while discounted tickets are provided
for group orders to stimulate group travel demand. With fixed group discounts, the booking limit of
group discount tickets and the optimal price for each individual should be optimized and determined
in order to improve the overall revenue.

The framework of this paper is as follows: Section 2 reviews the literature and summarizes our
main contributions to the literature. We present a dynamic programming model for the joint decision
and design an effective solving algorithm in Section 3. Then, numerical experiments and discussions
are described in Section 4. Finally, Section 5 presents our conclusions.

2. Literature Review

The earliest research on revenue management began in the aviation industry, and a lot of research
results have been achieved in capacity control and dynamic pricing. Capacity control usually seeks to
maximize revenue by setting booking limits or making decisions on acceptance or rejection at a given
price level. Dynamic pricing is used to maximize revenue by adjusting prices, such as according to time
and by determining the available time for given products. For a detailed description, see McGill and
Van Ryzin [4], Talluri and Van Ryzin [3], and Bitran and Caldentey [5]. Referring to stochastic demand,
Gallego and van Ryzin [6] investigated dynamic pricing problems with finite horizons, obtaining
closed form policy for a special exponential family of demand functions and an upper bound on
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the expected revenue for general demand functions. You [7] developed a multileg dynamic pricing
model for discrete time stochastic demand. Chatwin [8] reported on a retailer dynamically adjusting
prices at any time according to inventory. In the last 20 years, there have been many achievements
in dynamic pricing considering multiple products, competition, and limited demand information,
under the three basic assumptions of finite time horizon, finite amount of inventory, and dynamic
pricing [9]. With regard to the perishable product life cycle, Tekin and Erol proposed a dynamic pricing
model to maximize the profits of supermarkets and product utilization rates [10].

The joint optimization of pricing and capacity control has received much attention. Prices for
each class affect demand and should be treated as decision variables [11]. McGill and Van Ryzin [4]
proposed that the joint optimization of pricing and capacity deserves more attention. Feng and
Xiao [12] investigated how operators decide who is served and at what price. Chew et al. [13] designed
a discrete time dynamic programming model to determine the joint optimization of price and capacity
allocation. Another method for modeling joint decision is to categorize customers. Gans and Savin [14]
classified customers into two types: For contract customers, the operator determines service time
for a fixed price; while for walk-in customers, the operator applies dynamic pricing. Li et al. [15]
proposed a joint decision model to provide discounts for students and dynamic pricing for ordinary
passengers. Other methods are also used for joint decision making. Kuyumcu and Garcia-Diaz [16]
introduced a polyhedral graph theoretical approach to joint decision on pricing and seat allocation for
airlines. The proposed approach saves a lot of computing time compared with integer programming
of commercial solution software. Zhao et al. [17] applied game theory to investigate joint decisions
of pricing and inventory control for a duopoly. However, the above studies did not pay attention to
group arrivals.

Revenue management also plays an important role in other transportation industries, such as
railway [18] and shipping [19]. Railway revenue management has received less attention than
aviation [18]. However, after the large-scale construction of a high-speed railway, there has been
some research achievements in high-speed railway revenue management. Ciancimino et al. [20] first
attributed railway revenue management to the multileg single-fare yield management problem. Then,
You [21] extended the single-fare problem to the double-fare problem and proposed a nonlinear integer
programming model for seat allocation. Jiang et al. [22] integrated dynamic passenger flow forecasting
into seat allocation and proposed a dynamic adjustment mechanism. Wang et al. [23] investigated
seat allocation models for multitrain and multistop networks considering passenger choice behavior.
Yuan et al. [1] utilized dynamic control of bid price to incorporate passenger transfers in a network
capacity control problem. Nuzzolo et al. [24] presented a nest-logit choice model for evaluating the
pricing policy of railway service. Zheng et al. [25] and Zheng et al. [26] applied dynamic pricing to
China’s high-speed railway and proposed appropriate fare grades and optimal prices. Hetrakul and
Cirillo [27,28] first formulated latent class and mixed logit models by internet booking data to analyze
railway passenger choice behavior, then proposed a joint optimization model for pricing and seat
allocation with the assumption of deterministic demand. All studies of railway revenue management
are based on prepared line planning [29], train diagrams [30], and timetables [31]. However, group
reservations were not considered in the above literature. Zhang et al. [2] investigated optimal discount
prices for passenger groups when individuals are served by the full price; however, when the operator
applies dynamic pricing for individuals, this model proposed is no longer applicable. The joint
decision of group discounts and dynamic pricing for individuals has not been investigated in the
existing literature.

This study proposes a comprehensive model of seat inventory control and dynamic pricing
with all-or-none group reservations to investigate the joint decision of group discount and dynamic
pricing. According to the number of passengers per order, orders are classified into individuals
and groups. Dynamic pricing is applied for individuals in order to stimulate individual demand,
while discount tickets are provided for group passengers and the booking limit of group tickets is
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controlled dynamically to maximize the total revenue. The specific contributions to the existing
literature are as follows.

(1) We proposed a comprehensive model of seat inventory control and dynamic pricing considering
all-or-none group reservations, which extends the joint decision of capacity control and
dynamic pricing.

(2) We investigated how group discounts affect total revenue when dynamic pricing is applied for
individuals. The way of discounting group tickets can effectively stimulate group demand, and the
booking of group discount tickets needs to be limited to maximize total revenue. Numerical
experiments showed that decision making is superior to simple dynamic pricing when demand
is weak.

(3) We investigated the effects of time and the sales volume of tickets on total revenue, and the effects
of group demand and total demand on the total expected revenue. These rules will help rail
operators to apply the comprehensive policy appropriately.

3. Methodology

In this section, we describe the problem and introduce the control process of joint decision making.
The assumptions of building the model are elaborated on as well. Then, a dynamic programming
model for the joint decision is proposed and the boundary conditions are given. Finally, the optimal
policy is determined and the inverse recursive algorithm for solving the model is designed.

3.1. Problem Description

There is a train with C second-class seats running between 2 stations. Because of the large volume
of second-class seats, they are more appropriate for group booking and joint decision making. Here
we studied a single-leg problem, so the number of tickets is equal to the number of seats. Tickets are
sold before the train departs. Let the presale period be T. In order to improve revenue, the operator
provides discount tickets for groups and applies dynamic pricing for individuals. Here we define that a
group should include at least 20 passengers, which is in line with the regulations of the China Railway
Corporation. Actually, the following proposed model can be adjusted for groups of any size based on
the number of passengers. Therefore, arrival orders can be divided into 2 types: Group and individual
orders. For group orders, operators provide a fixed discounts and limit the booking according to
the number of tickets sold. For individual orders, operators decide on ticket prices dynamically and
passengers buy tickets with a certain probability. The control process is shown in Figure 1.
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The problem to be solved and its background are described now in detail. We divided the time
interval [0, T] finely enough so that at most, one order arrives in each period. Let t be the time periods
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after sales begin. Sales begin at t = 0 and end after t = T. The arrival orders fall into 2 categories:
Group orders and individual orders. The average order arrival probability with one period is α.
The probability of the arriving order belonging to group orders is β. At any time, if the arriving order is
a group order, passengers will only choose to purchase discounted tickets provided by the rail operator.
It should be noted that the discount is fixed throughout the sales period, and the price for the group is
denoted by θ. To maximize the total revenue, railway operators should reserve appropriate seats for
individual passengers at higher fares. Therefore, railway operators should limit the number of group
purchases. If the arrival order is an individual one, the passenger purchases a ticket with a certain
probability, according to the fare set by the rail operator. The purchase probability is related to the
passenger reserve price. The fare will be dynamically adjusted based on time and number of seats sold.
It was assumed that the reserve price of individuals (denoted as x) is independently and identically
distributed, and the cumulative distribution function and probability density function are Ft(x) and
ft(x), respectively, which are continuously differentiable. For the sake of discussion, we assumed that
Ft(x) is strictly increasing. The reserve price is private information for the passengers, but information
of Ft(x) and ft(x) is symmetrical between the railway operator and the passenger.

This study was also based on the following assumptions:

(1) The minimum price of dynamic pricing for individual orders is not less than the discount price
for group orders, so as to ensure that groups will be attracted by the discount.

(2) The order arrival rate is time homogeneous. In fact, although rail operators cannot predict
demand accurately, they can estimate the average order arrival probability and the average
proportion of group purchase orders in total orders based on historical data, so that we can
consider the arrival probability of each type of order as time homogeneous.

(3) The reserve price distribution information is symmetrical for the rail operator and passengers.
(4) Overbooking, no-shows, refunds, and standing-room-only tickets were not considered.

3.2. Dynamic Programming Model for Joint Decision

3.2.1. Notation

For convenience, the notations are listed as follows:
t Time periods after sale begins,t ∈ [0, T]; ticket presale begins at t = 0 and ends after t = T
α Average order arrival probability within one period, 0 < α < 1
β Probability of the arriving order belonging to group order, 0 < β < 1α1 Average arrival

probability of group order within one period, α1 = α · β

α2 Average arrival probability of individual order within one period, α2 = α · (1− β)
θ Discounted price for group
x Reserve price for individuals
Ft(x) Cumulative distribution function of x
ft(x) Density function of x
y Number of passengers included in a group order
P j Probability of a group order including j passengers
s Number of tickets sold at the initiation of any interval
C Total seats or tickets
V(t, s) Value function, indicating expected revenue
r(t, s) Dynamic fare for individuals (abbreviated as r later)

3.2.2. Value Functions

Before constructing the recursive value function, 2 probabilities should be explained:
The probability of passengers included in a group order, and the purchasing probability of an
individual passenger.

For j = 1, 2, . . ., the probability of a group order including j passengers is expressed as P j,
which can be estimated by historical data.
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Let s be the number of tickets sold at the initiation of any interval, and then the number of
remaining tickets is C − s. V(t, s) represents the total expected revenue from the beginning of time
period t to the end of ticket presale, when the number of tickets sold is s at the beginning of t. r(t, s)
denotes the fare decided for individual orders by the rail operator in time period t when the number of
tickets sold is s (abbreviated as r later).

Ft(x) is common knowledge for the rail operator and passengers. In period t, the number of sold
tickets is s. When r(t, s) is less than the reserved price for individuals, the ticket will be purchased.
Therefore, the purchasing probability of the individual order is:

Ex[P(x ≥ r(t, s))] = 1− Ft(r(t, s)) (1)

To build the dynamic programming model, the following 2 situations must be
considered separately:

(1) If C − s ≥ 20, the number of remaining tickets is enough for a group, so the total expected
revenue is shown as follows:

V(t, s) =
∑C−s

j=20 α1 × P j ×max
{
V(t + 1, s), V(t + 1, s + j) + θ× j

}
+α1

(
1−

∑C−s
j=20 P j

)
V(t + 1, s)

+α2 ×max
r

{
(1− Ft(r))(V(t + 1, s + 1) + r) + Ft(r)V(t + 1, s)

}
+(1− α1 − α2)V(t + 1, s)

(2)

In order to facilitate the follow-up proof of theorems, we divided the expected revenue V(t, s)
into 3 parts to explain it. First, when the group order arrives, the railway operator decides whether to
accept the order. When 20 ≤ j ≤ C− s, there are enough remaining tickets for the group. Let H1(t, s)
denote the expected revenue of a group order as follows:

H1(t, s) =
C−s∑
j=20

α1 × P j ×max
{
V(t + 1, s), V(t + 1, s + j) + θ× j

}
(3)

Second, when an individual order arrives, the railway operator decides the optimal price
dynamically to maximize revenue. Let H2(t, s) denote the expected revenue of an individual order
as follows:

H2(t, s) = α2 ×max
r

{
(1− Ft(r))(V(t + 1, s + 1) + r) + Ft(r)V(t + 1, s)

}
(4)

Finally, when no order arrives within an interval, the number of tickets sold remains unchanged.
The expected revenue is shown as the first part of H3(t, s). Similarly, when j > C − s, there are not
enough remaining tickets for this group, the order cannot be accepted at this time. The expected
revenue is thus shown as the remaining part of H3(t, s):

H3(t, s) = (1− α1 − α2)V(t + 1, s) + α1

1−
C−s∑
j=20

P j

V(t + 1, s) (5)

(2) If C− s < 20, there are not enough remaining tickets for a group. Thus, the tickets can only be
purchased by individuals. In fact, if the number of remaining tickets is insufficient, and the group
wants to travel together, they will leave without purchasing any tickets. The total expected revenue is
shown as follows:

V(t, s) = α2 ×max
r

{
(1− Ft(r))(V(t + 1, s + 1) + r) + Ft(r)V(t + 1, s)

}
+(1− α2)V(t + 1, s)

(6)
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3.2.3. Boundary Conditions

For the value functions of both situations above, the boundary conditions are identical and are
shown as follows:

1. V(T + 1, s) = 0, ∀s indicates that the ticket’s residual value should be zero at the departure time
of the train; and

2. V(t, C) = 0, ∀t indicates that when tickets are sold out at the beginning of time period t,
the expected revenue from time period t to T should be zero.

3.3. Optimal Policy

There are 2 policies to be decided in this problem: Booking limits for group orders and optimal
prices for individuals. According to Theorem 1, the optimal price for individual orders can be obtained.

Theorem 1. If (1− Ft(r))
2/ ft(r) is a decreasing function of r, then the optimal price for individual

orders satisfies
r∗t − (1− Ft(r∗))

2/ ft(r∗) = V(t + 1, s) −V(t + 1, s + 1) (7)

Proof. When C− s ≥ 20, let the first derivative of V(t, s) to r be zero according to Equation (2):

∂V(t, s)
∂r

= α1[− ft(r)(V(t + 1, s + 1) + rt) + 1− Ft(r) + ft(r)V(t + 1, s)] = 0

Thus:
rt − (1− Ft(r))

2/ ft(r) = V(t + 1, s) −V(t + 1, s + 1) (8)

Let the second derivative of V(t, s) to r be:

∂2V(t, s)
∂r2 = α1

[
− f ′t (r)(V(t + 1, s + 1) + rt −V(t + 1, s)) − 2 ft(r)

]
(9)

Substitute Equation (8) into Equation (9), then ∂2V(t, s)/∂r2 = α1
[
− f ′t (r)(1− Ft(r))/ ft(r) − 2 ft(r)

]
.

Because (1− Ft(r))
2/ ft(r) is a subtraction function of r,

[
(1− Ft(r))

2/ ft(r)
]
′

= −1− Ft(r)/ ft(r) ∗
f ′t (r)(1− Ft(r)) − 2 f 2

t (r)/ ft(r) < 0. Thus, − f ′t (r)(1− Ft(r)) − 2 f 2
t (r)/ ft(r) < 0.

Therefore, ∂2V(t, s)/∂r2 < 0. It is proven that Equation (3) has a unique optimal solution.
Similarly, we can prove that Equation (7) has a unique optimal solution and

rt − (1− Ft(r))
2/ ft(r) = V(t + 1, s) −V(t + 1, s + 1) when C− s < 20. �

Theorem 1 shows that the optimal price in Equation (7) corresponds to the optimal solution of
the univariate programming problem. The optimal solution satisfies Equation (7). The conditions in
Theorem 1 are easy to meet by most of the common distribution functions. When the reserved price
distribution of passengers does not meet the conditions in Theorem 1, the one-dimensional search
method can be used to solve the model.

As for the reservation limit of group tickets, since the gradient of value function with respect to s
is not monotonous, the group reservation limit varies with changes of s, t, and j. Therefore, let u ∈ [0, 1]
be the control decision of group booking; when the group order is rejected u = 0, otherwise u = 1.
The booking limit for group orders is dependent on Equation (10).

u(t, s, j) =
{

0, V(t + 1, s) > V(t + 1, s + j) + θ× j
1, V(t + 1, s) ≤ V(t + 1, s + j) + θ× j

(10)
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3.4. Inverse Recursive Algorithm

Using Theorem 1 and the boundary conditions, the inverse recursive algorithm is designed to
solve the model, shown as Algorithm 1. Combined with Theorem 1, the joint decision can be obtained.

Algorithm 1 Inverse recursive algorithm

1: Initialize ∀s, V(T + 1, s) = 0, and ∀t, V(t, C) = 0
2: for t = T to 1 do
3: for s = C− 1 to 1 do
4: calculate r(t, s) according to (7)
5: If (C− s) < 20, then
6: calculate V(t, s) according to (6)
7: else
8: calculate V(t, s) according to (2)
9: end if
10: end for
11: end for

3.5. Application Process for the Rail Operator

According to the above discussion, the rail operator can obtain the joint decision of group booking
limits and the optimal price for individual passengers, based on the demand forecast. In the operation,
the rail operator could apply the joint policy following the application process shown in Figure 2.
At the beginning of t, for any j (number of passengers in arriving order), the rail operator can obtain r∗t
and u(t, s, j), where r∗t is solved by Equation (8) or by one-dimensional search, u(t, s, j) can be obtained
by Equation (10). If an individual order arrives, the rail operator will provide price r∗t ; if a group
order arrives, the rail operator makes a decision according to u(t, s, j). If u(t, s, j) = 1, the rail operator
accepts the group order; otherwise, the group order will be rejected.
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4. Numerical Experiments

In this section, numerical experiments verified the superiority and some other properties of joint
decision making.

4.1. Data

The presale period is divided into 2000 periods, and at most, one order arrives at each period,
so T = 2000. The total arrival probability is represented by α, where α = 0.6. Here α = α1 + α2.
Let α1 = βα, so α2 = (1− β)α. β represents the ratio of group orders to total orders and β = 0.2.
Assuming that there are 560 second-class seats in the electric multiple unit (abbreviated as EMU) with
8 vehicles, C = 560. According to the Beijing Railway Administration, the number of passengers in a
group order is generally between 20 and 40. Therefore, let the number of passengers in a group order
follow a uniform distribution of [20, 40]. In this paper, it is assumed that the reserved price distribution of
individual passengers is a static exponential distribution function f (x) = 1/µ× e−x/µ [15]; µ indicates
the average price that passengers are willing to pay. We normalized the ticket fare, so that µ = 1,
and the discount price for the group is set as θ = 0.8.

4.2. Results and Discussion

We used MATLAB R2016a to implement the algorithm on a desktop computer with 8.00 GB of
memory, Intel(R) Core (TM) I5-7200u, and CPU 2.50 GHZ. The run time was 19.362 s. In order to verify
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the superiority of the model, the comprehensive model of group booking limits and dynamic pricing
for individual passengers (CD) was compared with the simple dynamic pricing model without group
discounts (SD) and dynamic pricing with fixed inventory for groups (DF).

4.2.1. Comparison between CD and SD

When α changes from 0.1 to 1, the expected total revenues of CD and SD change, as shown in
Figure 3. It is shown that the expected revenue of CD is higher than that of SD, but with an increased
order arrival probability, the gap between CD and SD gradually narrows. Thus, we changed C to be
among 100, 200, and 300 and kept other parameters unchanged. The total expected revenues of CD and
SD are shown in Table 1. The values in bold in Table 1 indicate that SD is superior to CD. In order to
obtain the superior threshold of CD, we defined the individual demand–supply ratioπ = T · α(1− β)/C.
By changing T to change π and keeping other parameters unchanged, we obtained the expected total
revenue from the experiment, as shown in Table 2. When the individual demand–supply ratio reaches
or exceeds 6.0, the expected revenue of SD is a little higher than that of DC. This is because the group
discount is set lower than the individual price. Although the mechanism of CD allows a dynamic
adjustment threshold for group orders, when individual demand is high enough, the benefit for not
setting up group discounts is greater. However, when the individual demand–supply ratio is less than
6.0, group ticket discounts can effectively stimulate group demand and increase overall revenue.

To investigate how the interaction of α and β affects the comparison of CD vs. SD, we conducted a
simulation. The difference between the expected total revenue of CD and SD when α is 0.4, 0.6, and 0.8
is shown in Figure 4 and Table 3. It can be seen that the smaller α is, the more obvious the advantages
of CD are, and the larger β is, the more obvious the advantages of CD are.
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Figure 3. Comparison between comprehensive model of group booking limits and dynamic pricing for
individual passengers (CD) and simple dynamic pricing model without group discounts (SD) for the
total expected revenue.
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Table 1. Total expected revenue of CD and SD.

α C = 100 C = 200 C = 300

CD SD CD SD CD SD

0.1 58.89 104.02 58.89 184.02 58.89 264.02
0.2 114.89 130.45 117.78 210.50 117.78 290.50
0.3 154.61 156.58 176.64 236.98 176.67 316.98
0.4 183.12 182.27 231.07 263.45 235.56 343.45
0.5 205.31 204.22 275.10 289.93 294.08 369.93
0.6 223.47 222.20 311.31 316.35 347.36 396.41
0.7 238.84 237.42 342.00 342.36 393.15 422.89
0.8 252.16 250.60 368.61 367.81 432.98 449.37
0.9 263.91 262.24 392.10 391.13 468.17 475.83
1.0 274.43 272.65 413.13 412.04 499.68 502.20

Table 2. Total expected revenue of CD and SD with changing π.

π SD CD

0.6 474.95 123.72
1.2 556.32 247.44
1.8 611.82 370.94
2.4 667.41 494.66
3.0 722.91 613.77
3.6 778.50 715.16
4.2 833.99 801.04
4.8 889.58 875.65
5.4 945.05 941.39
6.0 1000.15 1000.32
6.6 1052.72 1053.55
7.2 1101.27 1102.24
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Figure 4. Difference between total expected revenue of CD and SD.
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Table 3. Difference between total expected revenue of CD and SD.

β α = 0.4 α = 0.6 α = 0.8

SD CD-SD % SD CD-SD % SD CD-SD %

0.01 291.51 181.80 62.37 437.26 185.86 42.50 581.55 123.99 21.32
0.02 288.56 271.45 94.07 432.84 206.33 47.67 575.97 128.24 22.26
0.03 285.62 286.90 100.45 428.43 209.04 48.79 570.35 131.35 23.03
0.04 282.67 289.32 102.35 424.01 211.58 49.90 564.68 134.47 23.81
0.05 279.73 291.05 104.05 419.59 214.09 51.02 558.98 137.61 24.62
0.06 276.78 292.74 105.77 415.18 216.59 52.17 553.23 140.77 25.44
0.07 273.84 294.42 107.52 410.76 219.07 53.33 547.45 143.95 26.29
0.08 270.89 296.09 109.30 406.34 221.55 54.52 541.65 147.16 27.17
0.09 267.95 297.76 111.12 401.93 224.03 55.74 535.81 150.39 28.07
0.10 265.01 299.42 112.99 397.51 226.50 56.98 529.96 153.63 28.99

4.2.2. Comparison between CD and DF

Let γ be the booking limits of group tickets in the DF model. For example, when γ = 100,
there are only 100 tickets for group orders. When all 100 tickets are sold to groups at the discount
price, the operators will no longer accept group orders. At the same time, there are not enough
group tickets remaining to meet the demand for arriving group orders, and group orders will be
rejected. The operators apply the dynamic pricing policy for individuals throughout the presale
period. The expected revenues of CD and DF when γ changes from 0 to 500 are shown in Figure 5.
The expected revenue of CD is better than that of DF at any time. Thus, it is necessary to dynamically
adjust booking limits for group orders.
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Figure 5. Comparison of total expected revenue between CD and dynamic pricing with fixed inventory
for groups (DF).

4.2.3. Impact of Proportion of Group Orders on Total Expected Revenue

Keeping the other parameters unchanged, we simulated the expected returns under different
α and β, and got the results shown in Table 4 and Figure 6. It can be seen that with increased β
under the same α, the total expected return decreases. This is because group discounts are lower than
individual prices. Specifically, the higher the proportion of group demand, the smaller the expected
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revenue. When the proportion of group demand is small, railway companies use pricing to guide more
individual demand to maximize revenue.

Table 4. Total expected revenue under different α and β.

β α = 0.4 α = 0.6 α = 0.8

0.05 570.78 633.68 696.58
0.06 569.53 631.76 694.00
0.07 568.26 629.83 691.41
0.08 566.99 627.90 688.81
0.09 565.71 625.95 686.20
0.10 564.42 624.01 683.59
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4.2.4. Law of Change of Value Function

The variation of V(t, s) with t and s is shown in Figure 7. When the value of s is fixed, the expected
revenue V(t, s) decreases as the value of t increases. Thus, the nearer the departure time, the lower
the expected revenue of remaining tickets for the railway company. The impact of s on V(t, s) is also
shown in Figure 8. For most time periods, when the value of t is fixed, the expected revenue V(t, s)
decreases with increased s, and the marginal benefit of tickets ∆V(t, s) = V(t, s) −V(t, s + 1) increases
as the number of tickets sold increases. However, when the presale comes to the end, the expected
revenue V(t, s) of the railway company is not the decreasing convex function of s.
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5. Conclusions

In this study, we used dynamic programming to model the joint decision of inventory control and
dynamic pricing considering group reservations and designed a reverse recursive algorithm to obtain
a control policy. For group reservations, the operators provide discounts and decide on booking limits,
while applying dynamic pricing for individual reservations. The main contribution of this study is that
the effect of group discounts on dynamic pricing was investigated and the proposed model enriches
the theory of joint decision making. Numerical experiments show that the proposed joint policy is
superior to the dynamic pricing policy without groups in terms of expected revenue when individual
demand is weak, and it is always superior to the dynamic policy with a fixed group inventory. Thus,
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if group discounts are integrated into the dynamic pricing policy, the inventory of groups needs to be
controlled dynamically to maximize the expected revenue.

This study shows the advantage of incorporating group discounts into dynamic pricing.
The network problem of multiple trains and multiple stops, considering competitive factors and
nonhomogeneous, constrained information, will be the future research direction. Future study also
could introduce local or national conditions and investigate the financial effects, such as the cost of
providing cards for unemployed people or people with large families.
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