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Abstract: Aiming at the problem of moving target recognition, a moving target tracking model based
on FDRIG optical flow is proposed. First, the optical flow equation was analyzed from the theory
of optical flow. Then, with the energy functional minimization, the FDRIG optical flow technique
was proposed. Taking a road section of a university campus as an experimental section, 30 vehicle
motion sequence images were considered as objects to form a vehicle motion sequence image with a
complex background. The proposed FDRIG optical flow was used to calculate the vehicle motion
optical flow field by the Halcon software. Comparable with the classic Horn and Schunck (HS) and
Lucas and Kande (LK) optical flow algorithm, the monitoring results proved that the FDRIG optical
flow was highly precise and fast when tracking a moving target. The Ettlinger Tor traffic scene was
then taken as the second experimental object; FDRIG optical flow was used to analyze vehicle motion.
The superior performance of the FDRIG optical flow was further verified. The whole research work
shows that FDRIG optical flow has good performance and speed in tracking moving targets and can
be used to monitor complex target motion information in real-time.
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1. Introduction

Moving target tracking is a hotspot of computer image processing research and is widely used to
monitor intelligent traffic and robot motion. At present, the main methods for tracking and calculating
moving targets are the frame difference method, background subtraction, optical flow method, etc. [1–4].
Among them, the optical flow method can provide target recognition, matching and tracking [5–7]. It
can provide the two-dimensional motion information of the moving target. Therefore, the optical flow
method provides an effective measuring means for vision-based moving target analysis and behavior
understanding. Since Horn and Schunck [8] proposed that optical flow could be used to estimate the
motion between a pair of frames, many works have emerged to track moving objects by estimating
optical flow. Mohamed et al. [9] proposed applying local derivative pattern (LDP) features to calculate
the optical flow and transform images from gray space to light insensitive space in order. Bao et
al. [10] presented a fast optical flow method for handling large displacement motions by exploiting the
randomized propagation of self-similarity patterns and correspondence offsets.

However, some methods and models tracking moving targets are essentially based on improving
HS optical flow algorithm, and few studies can perfectly eliminate the sensitive problem of HS optical
flow algorithm in complex background noise. In this paper, an optical flow calculation model of FDRIG
is proposed, and Halcon software is used as the development environment to realize the moving target
extraction and tracking based on FDRIG optical flow. The FDRIG optical flow algorithm is applied
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to vehicle motion tracking through experiments. The algorithm, HS algorithm and LK algorithm are
compared, which proved that FDRIG optical flow technology can extract moving target optical flow
information under complex background.

The rest of the paper is organized as follows. Section 2 is related work. Section 3 will explain the
theory of FDRIG optical flow. Section 4 demonstrates the experimental studies and application, and
then vehicles of different scenes in two cases are analyzed. Finally, the research concludes in Section 5.

2. Related Work

Recently, lots of techniques for motion detection have been studied in the area of computer
and image processing [11,12]. The motion object has been extracted from optical flow estimation
for a long time. Most existing approaches are based on optical flow estimation. Rashwan et al. [13]
proposed a modified optical flow algorithm to improve the stability of the system based on tensor
voting filtering. Bung et al. [14] used a pyramid multi-resolution model to filter the aerated-water
flow image, and then to calculate the optical flow based on the HS algorithm, thereby estimating the
dynamics of the aerated-water flow. Bengtsson et al. [15] proved that the optical flow estimation can
track the target motion by using a camera to alternately capture the multi-frame sequence image of
the moving targets. Lan et al. [16] proposed a target extraction and tracking method based on sparse
optical flow, aiming at the problem of moving object tracking on condition of simultaneous motion
between the background and camera, this method significantly reduced the false detection rate of
target feature points and is suitable for slow-motion scenes. Qin et al. [17] proposed an optimized HS
optical flow algorithm based on motion estimation. The ROI was determined by detecting HARRIS
corners in the image and combining with block motion estimation. Kumaran et al. [18] proposed
a new approach of traffic flow-based intelligent signal timing by temporally clustering optical flow
features of moving vehicles using temporal unknown incremental clustering (TUIC) model. The model
designed a new inference scheme that works approximately 5-times faster as compared to the one
originally proposed in TUIC in a dense traffic intersection. The new inference scheme can trace clusters
representing moving objects that may be occluded while being tracked. A new method named laser
speckle optical flow imaging (LSOFI) was introduced by Aminfar et al. [19], this method used the
optical flow algorithms to calculate the apparent motion of laser speckle patterns. The differences in
the apparent motion of speckle patterns were used to identify the blood vessels from surrounding
tissue. LSOFI has better spatial and temporal resolution compared to LSCI. Zhang et al. [20] proposed
an effective motion object detection method based on optical flow estimation, which the characterized
was that the complete boundary of the motion object can be extracted from the combination of the
optimized horizontal flow with the optimized vertical flow. Sengar et al. [21] have efficiently detected
the moving objects by computing the optical flow between three consecutive frames. The algorithm
combines both the optical flow components to compute the gross optical flow, moving objects are
detected using morphological operation on the equalized output. But the optical flow of motion targets
can not be extracted accurately in the above methods. In this paper, we will in-depth study tracking
motion objects using a novel optical flow algorithm.

3. Principle and Implementation of FDRIG Optical Flow

In this section, we mainly introduce the theory of optical flow and proposed the FDRIG optical
flow method and the main steps of the proposed algorithm.

3.1. Theory of Optical Flow

The concept of optical flow is proposed by Gison. It is the instantaneous change of the position
of the object point in the image [22]. The motion of the object can be described by the motion field
composed of the motion vector of points in the image. The optical flow field is the projection of the
motion field of the two-dimensional image. It contains the motion target information: motion or
velocity field, part of optical features, and the projection of the image. The core is to solve the optical
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flow of the moving target, i.e., the velocity. The image projected of the camera is continuously changing
during the motion, so the optical gradation equation can be solved by assuming the instantaneous
gray is invariant.

Optical flow describes the movement of a space object on the image at two-dimensional motion.
As shown in Figure 1, O is the optical center of the camera, and the camera coordinate system is OXYZ.
Setting P as an object point in three-dimensional space, at time t, (X1, Y1, Z1) is the coordinates of
P in OXYZ. At time t + δt, P moves to P′(X1 + δx, Y1 + δy, Z1 + δz), and then the image projection
point of image plane is p′, which the corresponding image coordinate is (x + u, y + v), and the
grayscale is I(x + u, y + v, t + δt). So when P moves from coordinate (X1, Y1, Z1) to coordinate in
P′(X1 + δx, Y1 + δy, Z1 + δz) three-dimensional space, p moves from coordinate (x, y) to coordinate
(x + u, y + v) in two-dimensional image plane, as shown in Figure 1.
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Let the gray of point p (x, y) on the image be I (x, y, t) at time t, then the optical flow w = (u, v) at
the horizontal and vertical movement component u (x, y) and v (x, y) are:

u =
dx
dt

v =
dy
dt

(1)

After the time interval dt, and the corresponding point gray is I(x + dt, y + dy, t + dt). When the
time interval t approaches 0, the gray does not change, there are:

I(x, y, t) = I(x + dt, y + dy, t + dt) (2)

Expanded by Taylor, the basic optical flow constraint equation is:

∂I
∂t

+
∂I
∂x

u +
∂I
∂y

v = 0 (3)

In order to solve the optical flow w = (u, v), a constraint must be added to the formula (3) to form
different optical flow algorithms. There are mainly block matching algorithms, Horn and Schunck (HS)
algorithms and Lucas and Kande (LK) algorithms. However, the optical flow block matching algorithm
determines the offset of feature matching, and the calculation amount is large, and the matching block
size has a great influence on the optical flow calculation, and the local information is easily missed. The
HS algorithm assumes that the rate of change of velocity is zero using a global smoothing constraint,
but the condition is difficult to fully realize, and the algorithm removes important feature parameters
such as contour and shape of the object. The LK algorithm is a local smoothing algorithm, suitable for
small image motion or slow speed, but it is helpless for tracking large moving targets.
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3.2. FDRIG Optical Flow Algorithm

Because of the current deficiencies of several optical flow algorithms, this paper uses FDRIG
optical flow to track moving targets. Featuring flow drive-based, robustness and constant gradient, the
FDRIG optical flow is based on the warping algorithm proposed by Brox, Bruth, and Papernberg [23].
So we also defined the FDRIG optical flow algorithm as the warping algorithm. The formation of
optical flow is estimated by the energy minimum function. Firstly, the FDRIG optical flow is smoothed
by Gaussian filtering, with the standard deviation as the initial value, and the optical flow variation is
calculated as the minimum suitable energy function. Which is:

E(w) = ED(w) + alpha ∗ ES(w) (4)

where w = (u, v) is the calculated optical flow field. ED(w) denotes the conservation term energy
function, which is based on the continuous image target feature constant, that is, the gray level is
unchanged or the gray value space derivative is steady. ES(w) expresses smoothness; alpha is the
smoothing factor, which determined the smoothness weight.

Equation (4) can be expressed as:

E(w) = ED(w) + alpha ∗ ES(w)

=
s [

(Ixu + Iyv + It)
2 + alpha ∗ (u2

x + u2
y + v2

x + v2
y)
]
dxdy

=
s [

(Ixu + Iyv + It)
2 + alpha ∗ (∇u2 +∇v2)

]
dxdy

(5)

where Ix = ∂I
∂x , Iy = ∂I

∂y , It =
∂I
∂t denote the partial derivative of the image gray value in the spatial

domain x, y and the time domain, respectively. ∇u2 = u2
x + u2

y,∇v2 = v2
x + v2

y is respectively the
gradient values of the pixel points in the u and the v domain space.

The FDRIG optical flow is to minimize energy function E(w) to estimate the optical flow based on
warping algorithm. And the optical flow is extracted by calculating the minimum value of the formula
(5). The partial derivative of the optical component u, v is obtained, respectively. Let the derivative is 0,
and the optical flow w = (u, v) is solved.

The FDRIG optical flow computing steps are as follows:
Step 1. Acquire the original two sequence images. The optical flow represents motion information

of the two images.
Step 2. Preprocess image, and convert a color motion sequence image into a monochrome gray

image. This step is carried out in Matlab software.
Step 3. Use Gaussian filtering to smooth the image sequence and eliminate noise. The Gaussian

filter calculation method can be referred to in the literature [24].
Step 4. Solve the partial derivative of the optical component using Equations (4) and (5), and

estimate the optical flow w = (u, v) of the target moving image, then to calculate the optical flow field,
and obtain the target motion information.

4. Experimental Studies and Discuss

In this section, we studied the experiment that to estimate the motion of the target based on
FDRIG optical flow and testified the advantages of FDRIG optical flow proposed in the paper. The
important results and discussion were analyzed in the section.
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4.1. Experiment 1 on one Vehicle

4.1.1. Description of the Experimental Process

In order to estimate the motion of the target based on FDRIG optical flow, we used a tripod fixed
mobile phone to shoot images. The height of the tripod is 150 cm, and the mobile phone brand is
Huawei Honor 6 Plus. The section for the experiment is 150 m from the exit of a tunnel named Shijimen
on the campus of a university. A moving target is tracked by computing FDRIG optical of sequences
images of the silver color vehicle motion with speed is 20 km/h. The time interval of the sequence
images is 1 second, and the experimental sequence images are 30 frames. Sequential images were
acquired at 10:00 A.M, 21 May 2018. Figure 2a,b are the first and last frame images of vehicle motion,
respectively. The experimental computer was the Vostro 3900-R6308 Dell desktop. The programming
environment was Windows 7 and the programming language was Halcon. Figure 3a,b are gray images
of the first frame and the last frame of the vehicle motion using Matlab software. In the sequential
images of vehicle motion, the background has both trees and roads, street signs, and other static or
moving vehicles with complex background. So the experiment tested vehicle moving tracking with a
complex background, which can effectively verify the proposed FDRIG optical flow.
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4.1.2. Parameter Setting in Halcon Software Based on FDRIG Optical Flow

Halcon software has good performance for machine vision. Researchers can utilize Halcon software
for secondary development, precision measurement, 3D camera calibration, barcode recognition, visual
inspection, etc. [25,26]. Based on the further development of Halcon and setting the parameters to
track the vehicles in the experiment, this paper completed the moving target tracking based on FDRIG
optical flow algorithm.

Figure 4 shows an interface that calculates and process moving vehicles by FTRIG optical flow in
Halcon program.
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The FDRIG optical flow needed to calculate the optical flow fields of two adjacent pictures: Image1
and Image2. In the Halcon program, Image1 and Image2 were consecutive images of the input to two
monochromatic image sequences. VectorField was the output of optical flow. The parameters were set
in the experiment: initial value of the Gaussian smooth initial deviation was 0.8, initial value of the
integral filter deviation was 20, smoothness was 7, gradient constant coefficient relative to gray value
constancy was 5, and other parameters were set to default.

4.1.3. Results and Discussion

The 30 sequence images obtained in the experiment were used as test samples to estimate vehicle
motion vector by FDRIG optical flow. The current vehicle motion vector estimated by HS and LK
optical flow algorithm was used for comparison to test the superiority of the FDRIG optical flow
algorithm. Figure 5a,b show the optical flow field and vehicle motion tracking vector of the HS
algorithm. Figure 6a,b are the optical flow field and vehicle motion estimation vector of LK algorithm,
respectively, and Figure 7a,b are the optical flow field and vehicle motion estimation vector of FDRIG
algorithm, respectively.
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motion estimation vector.

It can be seen from the comparison of the above several optical flow fields that range of the
estimated optical flow field of the vehicle motion by HS algorithm is too large. The optical flow field
not only contains the vehicle motion tracking, but also the road in front of the vehicle. Two optical
flow fields were formed, as shown by the yellow color concentrated part in Figure 5a, and in the green
area of Figure 5b. There are some difficulties in estimating the moving target of complex background
images. On the contrary, the area where the two optical flow field estimated by the LK algorithm in
Figure 6a,b are very small, and the first optical flow field is located in the left window and the tire
area of the vehicle, and the second optical flow field is about 10 cm from the right edge of the license
plate. Moreover, the two optical flows are too intermittent to completely track vehicle motion. So the
experiment explains that LK algorithm is not suitable for clear and perfect tracking of vehicles with a
certain speed and large motion and it is not fit for tracking targets in complex scenes with noise.

Figure 7a,b are the optical flow fields calculated by the FDRIG algorithm proposed in this paper.
It can be seen that the optical flow field was concentrated around the front of the vehicle, and the
optical flow motion region was integrated enveloping the vehicle. In addition, the tracking precision
of vehicle motion is better than HS or LK algorithm. Accordingly, it is proved that the FDRIG
optical flow can accurately trace moving vehicle with a certain speed and complex background in the
natural environment.

The time of three optical flows (i.e., FDRIG, HS, and LK algorithm) for the vehicle’s optical flow
field in the same experimental environment is shown in Table 1. We can see that the longest time to
compute the flow field is 4s with HS algorithm, in contrast to 0.5 s with the FDRIG optical flow.

Table 1. Comparison of time for calculating optical flow field of three algorithms.

Optical flow algorithm HS Optical Flow LK Optical Flow FDRIG Optical Flow

Time of optical flow field (s) 4 1 0.5

It is seen that the longest time to compute optical flow field is 4 s with HS algorithm with HS
and LK algorithm. In contrast, the shortest calculated time is 0.5 s with FDRIG optical flow. As a
global smoothing algorithm, HS optical flow has a large computational complexity, and its optical
flow field calculation time is longer than that of LK and FDRIG local smoothing algorithm, Therefore,
HS optical flow is not suitable for real-time dynamic tracking of moving targets. Being able to do
dynamic real-time moving target tracking, both FDRIG and LK optical flow algorithms can be used to
do real-time tracking and monitoring of vehicles at traffic intersections.
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To evaluate the accuracy of the FDRIG algorithm, the average angular error (AAE) and the
standard deviation (SD) indicator were introduced [27]. The angular error calculation formula is

AE = cos−1(
1.0 + u× uGT + v× vGT

√
1.0 + u2 + v2

√
1.0 + u2

GT + v2
GT

) (6)

(u, v) refers to calculated value of optical flow, and (uGT, vGT) is true value of light flow.
The standard deviation of the average angular error and the angular error are respectively

calculated as
AAE =

1
N

∑
N

(AE) (7)

SD =

√
1

N − 1

∑
N

(AE−AAE)2 (8)

Table 2 shows the comparison results of the HS, LK, Weickert, and FDRIG optical flow
algorithm, respectively.

Table 2. Accuracy results of different optical flow algorithm.

Optical Flow Algorithm AAE SD

HS optical flow algorithm 10.58◦ 16.20◦

LK optical flow algorithm 7.19◦ 11.23◦

Weickert algorithm 6.15◦ 8.86◦

FDRIG optical flow algorithm 2.26◦ 5.31◦

It can be seen from the results in Table 2 that the performance on the average angular error and
standard deviation of the FDRIG optical flow is smaller than other optical flow algorithms, and the
angular error is less than half of other optical flow algorithms. This also illustrates that the FDRIG
algorithm based on the assumption of flow drive and gray stability can well handle the brightness
change problem caused by vehicle motion in this experimental scene.

4.2. Analysis and Discussion of Experiment 2 on Multi-Vehicles Motion

The simulation scenario of Experiment 1 is the motion situation of a single-vehicle. To further
study the parallel tracking characteristics of multi-vehicle motion, experiment 2 used real image data
in an Ettlinger Tor traffic scene for analysis. The Ettlinger Tor traffic scene was composed of 50 frames
of 512 × 512 pixels. The optical flow field calculated by the FDRIG method is shown in Figure 8.

Results of Figure 8 indicate that tracking vehicle motion by FDRIG optical flow is very clear and
there is no image artifact when tracking interleaved and complex vehicles in all frames of images. In
Figure 8a, the movement state of the pedestrian crossing the road is clearly tracked when the traffic
light turns green, and the walking state of the pedestrian on the sidewalk is also preferably displayed
in the optical flow field in Figure 8b,c. In addition, the boundary of four frame images selected from
50-frame traffic scene images are relatively sharp and clear. The waiting vehicles were not tracked by
FDRIG optical flow, which indicates that these vehicles were static when the traffic lights turned red.
In contrast, vehicles and pedestrians in motion can be tracked and identified by optical flow, marked
as moving state. So it can be verified from four frame images that FDRIG optical flow algorithm can
directly segment and recognize moving image quickly and accurately through threshold settings.
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5. Conclusions

The optical flow technology can track the moving targets. Experimental results show that the
proposed FDRIG algorithm outperforms the traditional optical flow algorithms, such as HS and LK,
and can monitor the moving vehicle in real-time and dynamically under the condition of a complex
background. Another important point is to study the tracking of vehicle motion in a complex scene
with multiple vehicles, pedestrians, and alternate stationary and moving scenes. The FDIRG optical
flow can accurately identify multiple moving targets, which can be used for vehicle tracking in real-time
at traffic intersections and realize intelligent traffic monitoring with high accuracy and efficiency. In
future works, we hope to study the performance of the optical flow algorithm in bad environments,
such as rain and fog, and to discuss the tracking and recognition of moving objects with six degrees of
freedom, such as rotating motion, so as to expand the application scenarios of FDRIG optical flow.
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