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Abstract: We consider an algebra Hsup
b of analytic functions on the Banach space of two-sided absolutely

summing sequences which is generated by so-called supersymmetric polynomials. Our purpose is to
investigate Hsup

b and its spectrum with using methods of infinite dimensional complex analysis and the
theory of Fréchet algebras. Some algebraic bases of Hsup

b are described. Also, we show that the spectrum
of the algebra of supersymmetric analytic functions of bounded type contains a metric ringM. We prove
thatM is a complete metric (nonlinear) space and investigate homomorphisms and additive operators
on this ring. Some possible applications are discussed.

Keywords: symmetric and supersymmetric polynomials on Banach spaces; algebras of analytic functions
on Banach spaces; spectra algebras of analytic functions

1. Introduction and Preliminaries

Let X be a complex Banach space. A (continuous) map P : X → C is said to be a (continuous)
n-homogeneous polynomial if there exists a (continuous) n-linear map BP : Xn → C such that
P(x) = BP(x, . . . , x). 0-homogeneous polynomial is just a constant function. A finite sum of homogeneous
polynomials is a polynomial. We denote byP(nX) the space of all continuous n-homogeneous polynomials
on X and by P(X) the space of all polynomials on X. Note that P(nX) is a Banach space with respect to
any of the norms

‖P‖r = sup
‖x‖≤r

|P(x)|, r > 0. (1)

Let τb be the topology on P(X) of uniform convergence on bounded subsets of X. This topology
is generated by the countable family of norms (1) for positive rational numbers r and so is metrisable.
We denote by Hb(X) the completion of (P(X), τb). So Hb(X) is a Fréchet algebra which consists of entire
analytic functions on X which are bounded on all bounded subsets (so-called entire functions of bounded type).
For details on polynomials and analytic functions on Banach spaces we refer the reader to [1]. The spectra
(sets of continuous complex homomorphisms = sets of characters) of Hb(X) and its subalgebras were
investigated by many authors (see e.g., [2–5]).

Let G be a group of isometric operators on X. We denote by HbG(X) the subalgebra of Hb(X)

which consists of G-invariant analytic functions. Such algebras were considered in the general case
in [6,7]. For some special cases of G there is a sequence of G-symmetric homogeneous polynomials
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{P1, P2, . . . , Pn, . . .}, deg Pn = n which forms an algebraic basis in the algebra of G-symmetric polynomials
PG(X). For example, if G = s is the group of all permutations of the basis vectors in `1, then the functions

Fk(x) =
∞

∑
i=1

xk
i , k ∈ N

form an algebraic basis in Ps(`1) [8]. The following bases in Ps(`1) also are important

Gn(x) = ∑
i1<···<in

xi1 · · · xin

and
Hn(x) = ∑

i1≤···≤in

xi1 · · · xin .

Let F (x)(t), G(x)(t) andH(x)(t) be formal series

F (x)(t) =
∞

∑
n=1

tn−1Fn(x),

G(x)(t) =
∞

∑
n=0

tnGn(x), G0 = 1

and

H(x)(t) =
∞

∑
n=0

tn Hn(x), H0 = 1

which also are called generating functions. From combinatorial considerations it is known ([9] p. 3) that

G(x)(t) =
1

H(−x)(t)
(2)

and

G(x)(t) = exp

(
−

∞

∑
n=1

tn Fn(−x)
n

)
= exp

(
−
∫ t

0
F (−x)(ξ)dξ

)
, (3)

where the equality holds for every x ∈ `1 and every t in the common domain of convergence. In [10] it is
shown that every complex homomorphism ϕ of Hbs(`1) is completely defined by its value on G(x)(t) and

g(t) = ϕ
(
G(t)

)
=

∞

∑
n=0

tn ϕ(Gn) (4)

is a function of exponential type with g(0) = 1. Moreover, if ϕ = δx is the point evaluation functional at
x ∈ `1 (that is δx( f ) = f (x), f ∈ Hb(`1)), then

δx
(
G(t)

)
= G(x)(t) =

∞

∏
k=1

(1 + xkt). (5)

Note that (5) is an absolutely convergent Hadamard Product—the entire function defined by its zeros
an = 1/(−xn) for xn 6= 0. Also [10,11], there is a family ψλ, λ ∈ C in the spectrum of Hb(`1) such that

ψλ

(
G(t)

)
= eλt.
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In [12] it is shown that there is a function of exponential type γ with γ(0) = 1 but which cannot be
represented as in (4). Spectra of algebras Hbs(`p) were investigated also in [13,14]. Polynomials which are
symmetric with respect to some other representations of the group of permutations of natural numbers
were considered in [15–17].

In this paper we consider a subalgebra of entire functions of bounded type which is generated by
so-called supersymmetric polynomials. Algebras of supersymmetric polynomials on finite-dimensional
spaces were considered in [18–20]. In Section 2.1 we consider some important bases in the algebra of
supersymmetric polynomials. Section 2.2 is devoted to the spectrum of the algebra of supersymmetric
analytic functions of bounded type. In particular, we show that the set of point evaluation functionals
on the algebra can be described as a metric ring which is not a linear space. Some operators on this ring
are investigated.

2. Results

2.1. Bases of Supersymmetric Polynomials

We will use N for natural numbers and Z for integers. Also, we set Z0 = Z \ 0 and denote by `1(Z0)

the Banach space of all absolutely summing complex sequences indexed by numbers in Z0. The symbol
`1 = `1(N) means the classical Banach space of absolutely summing complex sequences. Any element z in
`1(Z0) has the representation

z = (. . . , z−n, . . . , z−2, z−1, z1, z2, . . . , zn, . . .)

= (y|x) = (. . . , yn, . . . , y2, y1|x1, x2, . . . , xn, . . .)

with

‖z‖ =
∞

∑
i=−∞

|zi|,

where x = (x1, x2, . . . , xn, . . .) and y = (y1, y2, . . . , yn, . . .) are in `1, zn = xn, z−n = yn for n ∈ N and

x 7−→ (0|x1, x2, . . . , xn, . . .) and y 7−→ (. . . , y−n, . . . , y−2, y−1|0)

are natural isometric embeddings of the copies of `1 into `1(Z0).
Let us define the following polynomials on `1(Z0):

Tk(z) = Fk(x)− Fk(y) =
∞

∑
i=1

xk
i −

∞

∑
i=1

yk
i , k ∈ N.

Definition 1. A polynomial P on `1(Z0) is said to be supersymmetric if it can be represented as an algebraic
combination of polynomials {Tk}∞

k=1. In other words, P is a finite sum of finite products of polynomials in {Tk}∞
k=1

and constants. We denote by Psup the algebra of all supersymmetric polynomials on `1(Z0).

Note first that polynomials Tk are algebraically independent because Fk are so. Hence {Tk}∞
k=1 forms

an algebraic basis in Psup.
We say that z ∼ w, for some z, w ∈ `1(Z0) if Tk(z) = Tk(w) for every k ∈ N. Let us denote byM the

quotient set `1(Z0)/ ∼which is a natural domain for supersymmetric polynomials. For a given z ∈ `1(Z0),
let [z] ∈ M be the class of equivalence which contains z.
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Similarly like in [10] we introduce an operation “•” on `1(Z0):

z • w = (y • v|x • u) = (. . . , vn, yn, . . . , v1, y1|x1, u1, . . . , xn, un, . . .),

where z = (y|x) and w = (v|u). Also, we denote z− = (y|x)− = (x|y). Clearly, (z−)− = z and z • z− ∼
(0|0). These operations can be naturally defined onM by

[z] • [w] = [z • w] and [z]− = [z−]. (6)

Theorem 1. The following statements hold:

1. Tk(z • w) = Tk(z) + Tk(w) for every k ∈ N.
2. The operations in (6) are well defined, that is, they do not depend on the choice of representatives.
3. (M, •, [z] 7→ [z]−) is a commutative group with zero 0 = (0|0).
4. z ∼ 0 if and only if there are d, s ∈ `1 such that z = (d|s) and Fk(d) = Fk(s) for all k ∈ N. Equivalently, all

nonzero coordinates of d coincides with nonzero coordinates of s up to a permutation.

Proof. Assertions (1)–(3) are straightforward consequences of definitions. In [13] is proved that for given
d, s ∈ `1, Fk(d) = Fk(s) for all k ∈ N if and only if all nonzero coordinates of d coincides with nonzero
coordinates of s up to a permutation.

Let P1 and P2 be some algebras of polynomials on linear spaces X and Y respectively such that
P1 is generated by an algebraic basis {P1, P2, . . . , Pn, . . .} and P2 is generated by an algebraic basis
{Q1, Q2, . . . , Qn, . . .} with deg Pn = deg Qn = n, n ∈ N. Then the map, defined on the basic vectors
by Pn 7−→ Qn and extended to P1 by linearity and multiplicativity, obviously is an algebraic isomorphism
from P1 onto P2 which preserves degrees of polynomials.

Let us denote by Λ the isomorphism from Ps = Ps(`1) to Psup such that

Λ : Fn 7−→ Tn, n ∈ N.

Proposition 1. If {Pn}∞
n=1 is an algebraic basis in Ps, then {Λ(Pn)}∞

n=1 is an algebraic basis in Psup.

Proof. The proof follows from the general fact that the range of any algebraic basis under an isomorphism
is an algebraic basis. Indeed, Λ(Pn), n ∈ N are algebraically independent because Pn, n ∈ N are so and Λ
is injective. Also, every Q ∈ Psup belongs to the algebraic combination of {Λ(Pn)}∞

n=1 because Λ−1(Q)

belongs to the algebraic combination of {Pn}∞
n=1 and Λ is surjective (cf. [13]).

Let Hsup
b be the completion of Psup with respect to the topology of uniform convergence on bounded

subsets. In other words, Hsup
b is the minimal closed subspace of Hb(`1(Z0)) which contains Psup. Elements

of Hsup
b will be called supersymmetric analytic or entire functions on `1(Z0).

Proposition 2. The map Λ−1 is continuous and can be extended to a continuous homomorphism from Hsup
b to

Hbs = Hbs(`1) with a dense range. The map Λ is discontinuous and densely defined on Hbs.

Proof. Let us observe first that Λ−1(P) is the restriction of P ∈ Psup onto the closed subspace
{(0|x) : x ∈ `1}. The operator of the restriction is obviously continuous on Hsup

b and is the extension
of Λ−1. The range of Λ−1 is dense because it contains all symmetric polynomials on `1. On the other
hand, in [10] it is proved that the homomorphism Λ− : Ps → Ps such that Λ−Fk = −Fk, k ∈ N is
discontinuous on (Ps, τb). Moreover, in [21] a function g(x) ∈ Hbs such that Λ−(g) /∈ Hbs was constructed.
If Λ is continuous, it can be extended to the whole space Hbs and so Λg(x|0) = (Λ−g)(x). It leads to
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a contradiction because on the left side we have a bounded function on all bounded subsets but on the
right side, it is not so.

For a given y ∈ `1 we denote by ΛyP(x) = (ΛP)(y|x), P ∈ Ps. It is easy to see that

ΛyP(x • y) = (ΛP)(y|x • y) = (ΛP)(0|x) = P(x).

Theorem 2. Let ΛGn = Wn. Then

Wn(y|x) =
n

∑
k=0

Gk(x)Hn−k(−y), n ∈ N (7)

and

W(y|x)(t) =
∞

∑
n=0

tnWn(y|x) =
G(x)(t)
G(y)(t) , (8)

where the equality is true on the common domains of convergence.

Proof. In [10] it is proved that

G(x • y)(t) = G(x)(t)G(y)(t), x, y ∈ `1. (9)

Hence, for a fixed y ∈ `1

Λy
(
G(x • y)(t)

)
=

∞

∑
n=0

tn(ΛGn)(y|x)
∞

∑
n=0

tnGn(y) =
∞

∑
n=0

tnWn(y|x)
∞

∑
n=0

tnGn(y).

On the other hand,

Λy
(
G(x • y)(t)

)
=

∞

∑
n=0

tnGn(x).

So
∞

∑
n=0

tnWn(y|x)
∞

∑
n=0

tnGn(y) =
∞

∑
n=0

tnGn(x). (10)

From (10) we have
W(y|x)(t)G(y)(t) = G(x)(t)

and so (8) holds. Taking into account Formula (2) we have

∞

∑
n=0

tnWn(y|x) =
∞

∑
n=0

tnGn(x)
∞

∑
n=0

tn Hn(−y) =
∞

∑
n=0

tn
n

∑
k=0

Gk(x)Hn−k(−y).

From here we have (7).

Corollary 1.
W((y|x) • (d|b))(t) =W(y|x)(t)W(d|b)(t), x, y, b, d ∈ `1.

Proof. The required statement immediately follows if we combine Formulas (9) and (8).
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Corollary 2. For every n ∈ N and x, y, b, d ∈ `1 we have

Wn((y|x) • (d|b)) =
n

∑
k=0

Wk(y|x)Wn−k(d|b),

Gn(x • b) =
n

∑
k=0

Gk(x)Gn−k(b)

and

Hn(y • d) =
n

∑
k=0

Hk(y)Hn−k(d).

Proof. From Corollary 1 we have

∞

∑
n=0

tnWn((y|x) • (d|b)) =
∞

∑
k=0

tkWk(y|x)
∞

∑
j=0

tjWj(d|b).

Taking coefficients of tn we have the first equality. The second and thirds equalities we can obtain by
the same reasoning.

It is clear that (y • a|x • a) ∼ (y|x) for all x, y, a ∈ `1. We say that (y|x) is an irreducible representative
of u ∈ M if [(y|x)] = u and for every xn 6= 0 and every k, xn 6= yk.

Proposition 3. (y|x) is irreducible if and only if G(x)(t) and G(y)(t) have no common zeros.

Proof. According to (5), for nonzero elements xk and yk the numbers (−xk)
−1 and (−yk)

−1 are zeros of
G(x)(t) and G(y)(t) respectively.

Corollary 3. Let u ∈ M. Then u is completely defined by W(u)(t) = W(y|x)(t) and W(y|x)(t)
is a meromorphic functions of the form f (t)/g(t) such that f , g are entire functions of exponential type with
f (0) = 1 and g(0) = 1, where (y|x) ∈ u. Moreover, let (αk) and βk be zeros of f and g respectively. Then both
(1/αk) and (1/βk) belong to `1,

f (t) =
∞

∏
k=1

(
1− t

αk

)
and g(t) =

∞

∏
k=1

(
1− t

βk

)
,

and (
. . . ,− 1

βn
, . . . ,− 1

β2
,− 1

β1

∣∣∣− 1
α1

,− 1
α2

, . . . ,− 1
αn

, . . .
)

is an irreducible representation of u.

Let x ∈ `1. We denote by supp x the support of x, that is,

supp x = {n ∈ N : xn 6= 0}.

Corollary 4. Let (y|x) and (y′|x′) be two irreducible representatives of u. Then there are bijections i : supp x →
supp x′ and j : supp y→ supp y′ such that xn = x′i(n) and ym = y′j(m) for all n ∈ supp x and m ∈ supp y.
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Proposition 4. For every u = [(y|x)] ∈ M the following equality holds on the common domain of convergence

W(u)(t) = exp

(
−

∞

∑
n=1

tn Tn(−u)
n

)
= exp

(
−
∫ t

0
T (−u)(ξ)dξ

)
, (11)

where −u = [(−y| − x)].

Proof. From (8) and (5) it follows that W(u)(t) converges for every t ∈ C if y = 0 and in the ball
|t| < r, where

r = min
|yn |6=0

|yn|−1

if y 6= 0. Since Λ−1 is a continuous homomorphism, from (3) we have that for each t ∈ C such that
W(u)(t) converges

Λ−1W(u)(t) = G(x)(t) = exp

(
−

∞

∑
n=1

tn Fn(−x)
n

)
.

Since ‖Fn‖ = 1, the series
∞

∑
n=1

tn Fn(−x)
n

converges if |t| < ‖x‖. Also, ‖Tn‖ = 1 and the series

∞

∑
n=1

tn Tn(−u)
n

converges if |t| < ‖u‖. So in the common domain of convergence

exp

(
−

∞

∑
n=1

tn Fn(−x)
n

)

is in the domain of Λ and

W(u)(t) = ΛG(x)(t) = Λ exp

(
−

∞

∑
n=1

tn Fn(−x)
n

)
.

Also, in the domain

Λ−1 exp

(
−

∞

∑
n=1

tn Tn(−u)
n

)
= exp

(
−

∞

∑
n=1

tn Fn(−x)
n

)
.

Theorem 3. Let u ∈ M and u 6= 0. For a given λ ∈ C there is v ∈ M such that Tk(v) = λTk(u) if and only if λ

is an integer number.

Proof. Let λ = m ∈ Z. If n = 0, then v = 0. If n > 0, then v = u • · · · • u︸ ︷︷ ︸
n

. If n < 0, then v = u− • · · · • u−︸ ︷︷ ︸
n

.

Let now λ /∈ Z. According to (11)

W(v)(t) = (W(u)(t))λ.
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But it contradicts representation (8) for v.

2.2. The Spectrum of HSup
B and the Nonlinear Normed RingM

2.2.1. The Spectrum

Let us denote by Msup
b the spectrum of Hsup

b , that is, the set of all continuous nonzero complex
homomorphisms (characters) of Hsup

b . Clearly for every point u ∈ M there is a character δu ∈ Msup
b

(so-called point evaluation functional) such that δu( f ) = f (u), f ∈ Hsup
b . Moreover, if u 6= v, then δu 6= δv.

In this sense, we can say thatM⊂ Msup
b .

Since polynomials {Wn} form an algebraic basis in Hsup
b , any character ϕ ∈ Msup

b is completely
defined by its values on Wn, n ∈ N. In other words, every character ϕ can be represented by the function

ϕ(W(t)) =
∞

∑
n=0

tn ϕ(Wn). (12)

Note that if ϕ = δu for some u ∈ M, then ϕ(W(t)) can be described by Corollary 3. Using ideas
in [11,13] it is possible to construct a character which is not a point-evaluation functional. Let λ and µ be
complex numbers. Consider

un =
(

0, . . . , 0,
µ

n
, . . . ,

µ

n

∣∣∣λ
n

, . . . ,
λ

n
, 0, . . . , 0

)
.

From the compactness reasons, we have that {δun} has a cluster point ψλ,µ in Msup
b . So

ψλ,µ(W(t)) = lim
n→∞

∑∞
k=0 tkGk(λ/n, . . . , λ/n, 0, . . . , 0)

∑∞
k=0 tkGk(µ/n, . . . , µ/n, 0, . . . , 0)

.

Taking into account [10] that

lim
n→∞

∞

∑
k=0

tkGk(λ/n, . . . , λ/n, 0, . . . , 0) = eλt

we have
ψλ,µ(W(t)) = e(λ−µ)t.

Comparing the representation with Corollary 3, we can see that ψλ,µ cannot be equal to a point
evaluation functional.

2.2.2. The Normed Ring Structure ofM

We consider the setM more detailed. LetM+ = {u ∈ M : u = [(0|x)], x ∈ `1}. According to [12]
we introduce an operation ‘�’ onM+ and extend it toM.

Let x, y ∈ `1. Then x � y, we mean the resulting sequence of ordering the set {xiyj : i, j ∈ N} with
one single index in some fixed order. If u = [(0|x)] and v = [(0|y)], then u � v = [(0|x � y)]. From [12,22]
we know that the operation on M+ is commutative, associative and [y � (x • d)] = [(y � x) • (y � d)].
Finally, let u = [(y|x)] and v = [(d|b)] are inM. We define

u � v = [((y � b) • (x � d)|(y � d) • (x � b))].

Proposition 5. For every k ∈ N, Tk(u � v) = Tk(u)Tk(v), u, v ∈ M.
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Proof. From [12] we know that for all x, z ∈ `1, Fk(x � z) = Fk(x)Fk(z). Let u = [(y|x)] and v =

[(d|b)]. Then
Tk(u � v) = Fk((y � d) • (x � b))− Fk((y � b) • (x � d))

= Fk(y)Fk(d) + Fk(x)Fk(b)− Fk(y)Fk(b)− Fk(x)Fk(d) = Tk(u)Tk(v).

Theorem 4. (M, •, �) is a commutative ring with zero 0 = [(0|0)] and unity I = [(0|1, 0, . . .)].

Proof. Note first that (M, •) is a commutative group and if u = [(y|x)] ∈ M, then u− = [(y|x)−] = [(x|y)]
is the inverse of u. The associativity and commutativity of the multiplication and the distributive low were
proved in [12] for the caseM+ and can be checked for the general case by simple computations.

Note that there is an operation of multiplication by a constant on C×M:

λ[(y|x)] = [(λy|λx)], λ ∈ C, [(y|x)] ∈ M.

Clearly,

λ(u • v) = λu • λv and λ(u � v) = (λu) � v = u � (λv) λ ∈ C, u, v ∈ M.

But, in the general case,
(λ1 + λ2)u 6= λ1u • λ2u.

So (M, •, (λ, u) 7→ λu) is not a linear space over C. Hence (M, •, �) is not an algebra. In order to
topologiseM, we can use the standard norm on `1(Z0).

Definition 2. Let u ∈ M. We define a norm of u by the following way:

‖u‖ = ‖x‖+ ‖y‖ =
∞

∑
n=1
|xn|+

∞

∑
n=1
|yn|,

where (y|x) is an irreducible representative of u.

From Corollary 4 it follows that the definition of norm ‖ · ‖ does not depend on the irreducible
representative. The next proposition shows that, like in a linear space, the norm has natural properties.

Proposition 6. Let u, v ∈ M, λ ∈ C The following properties hold:

1. ‖u‖ ≥ 0 and ‖u‖ = 0 if and only if u = 0.
2. ‖λu‖ = |λ|‖u‖.
3. ‖u • v‖ ≤ ‖u‖+ ‖v‖.
4. ‖u � v‖ ≤ ‖u‖‖v‖.
5. ‖u−‖ = ‖u‖.
6. ‖u‖ = min

(y|x)∈u
(‖x‖+ ‖y‖).

Proof. We need to prove just item (6). Let (y|x) be a representation of u. We can write up to a permutation
that (y|x) = (y′ • a|x′ • a) for some a ∈ `1 and irreducible (y′|x′). So

‖u‖ = ‖x′‖+ ‖y′‖ ≤ ‖x‖+ ‖y‖
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for ever (y|x) ∈ u.

We define a metric ρ onM, associated with the norm by the natural way. Let u, v ∈ M. Set

ρ(u, v) = ‖u • v−‖.

It is easy to check that ρ is a metric using the same arguments as in the classical case of linear
normed spaces.

Proposition 7. The multiplication by λ ∈ C, λ 7→ λu for a fixed u ∈ M is discontinuous in general at each
nonzero point in C and continuous at zero. Here we consider the standard topology on C and the topology onM,
generated by ρ.

Proof. Let εn be a sequence in C such that εn 6= 0, εn → 0 as n→ ∞, λ 6= 0 and u = [(. . . , 0, y1|x1, 0, . . .)],
where x1 6= 0 or y1 6= 0 and x1 6= y1. Then

ρ(λ(1 + εn)u, λu) = ‖[(. . . , 0, λy1, λ(1 + εn)x1|λx1, λ(1 + εn)y1, 0, . . .)]‖

= ‖λx1‖+ ‖λy1‖+ ‖λ(1 + εn)x1‖+ ‖λ(1 + εn)y1‖ > |λ|‖u‖ > 0

while λ(1 + εn)→ λ as n→ ∞.
Let now λ = 0, u ∈ M and (y|x) be an irreducible representation of u. Then

ρ(εnu, 0) = ‖εnu‖ = |εn|‖x‖+ |εn|‖y‖ → 0.

Theorem 5. The operations ‘•’ and ‘�’ are jointly continuous on (M, ρ).

Proof. It is easy to check that if ρ(u, u′) < ε1 and ρ(v, v′) < ε2, then

ρ(u • v, u′ • v′) < ‖(u • v) • (u′ • v′)−‖ < ε1 + ε2

and
ρ(u � v, u′ � v′) < ε1‖u||+ ε2‖v‖+ ε1ε2.

Proposition 8. The metric space (M, ρ) is nonseparable.

Proof. Let us consider the following set

S1 = {uλ = λI = (0|λ, 0, 0 . . .) : λ ∈ C, |λ| = 1}.

If λ1 6= λ2, then
ρ(uλ1 , uλ2) = ‖(. . . , 0, 0, λ2|λ1, 0, 0 . . .)‖ = 2.

So the unit sphere of (M, ρ) contains an uncountable set S1 such that the distance between each pair
of distinct points of S1 is equal to 2.

Theorem 6. The metric space (M, ρ) is complete.
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Proof. Let u and v be inM and ρ(u, v) = ‖u • v−‖ < ε and (y|x) be an irreducible representations of u.
Then there is an irreducible representation (d|b) of v such that ‖(y|x)− (d|b)‖ < ε. Indeed the inequality
‖u • v−‖ < ε implies that there is w ∈ M such that u = u′ • w, v = v′ • w and ‖u′‖+ ‖v′‖ < ε. Let us
consider a representation (d|b) of v such that the element w in (d|b) is represented by the same vector
that in (y|x). Let (y′|x′) be the irreducible representation of u′ in (y|x) and (d′|b′) be the irreducible
representation of v′ in (d|b). Then

‖(y|x)− (d|b)‖ = ‖(y′|x′)− (d′|b′)‖ ≤ ‖u′‖+ ‖v′‖ < ε.

Let u(m), m ∈ N be a Cauchy sequence in (M, ρ). Taking a subsequence, if necessary, we can assume
that if n ≥ N and m ≥ N, then ρ(u(m), u(n)) < 1/2N+1. Let us chose irreducible representations (y(m)|x(m))

of u(m) such that
‖(y(m+1)|x(m+1))− (y(m)|x(m))‖ = ρ(u(m+1), u(m)) < 1/2m+1.

So if n ≥ N and m ≥ N, then

‖(y(m)|x(m))− (y(n)|x(n))‖ < 1/2N .

Hence, (y(m)|x(m)), m ∈ N is a Cauchy sequence in `1(Z) and so it has a limit point z(0) = (y(0)|x(0)).
Let z(m)

i be the ith coordinate of z(m) = (y(m)|x(m)), i ∈ Z0, that is, z(m)
i = x(m)

i if i > 0 and z(m)
i = y(m)

−i if

i < 0. Clearly that z(m)
i → z(0)i as m→ ∞. We claim that if z(0)i = c 6= 0 then there is a number N such that

for every m > N, z(m)
i = c. Indeed, it it is not so, then for every n, m > N, ρ(u(m), u(n)) > c and we have

a contradiction.
For a given ε > 0 we denote by zε a vector in `1(Z0) such that zε has a finite support, zε

i = z(0)i or
zε

i = 0 and

ρ(zε, z(0)) <
ε

3
.

Note that for this case ρ(zε, z(0)) = ‖zε− z(0)‖. Let N be a number such that for every n > N, zε
i = z(n)i

for all i ∈ supp zε and ‖z(n) − z(0)‖ < ε
3 . So

ρ(z(n), zε) = ‖zε − z(n)‖ ≤ ‖zε − z(0)‖+ ‖z(n) − z(0)‖ < 2
3

ε.

Thus
ρ(z(n), z(0)) ≤ ρ(z(n), zε) + ρ(zε, z(0)) < ε.

2.2.3. Invertibility and Homomorphisms

If u ∈ M has an inverse with respect to the multiplication ‘�’ we denote it by u−1 = u�(−1), that is,

u � u−1 = u−1 � u = I.

Proposition 9. Let u ∈ M and ‖u‖ < 1. Then I • u− is invertible inM.

Proof. It is easy to check that the proof for classical Banach algebras can be literally repeated for this case.
In particular,

(I • u−)−1 =
∞•

n=0
u�n,
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where u�0 = I, u�n = u � · · · � u︸ ︷︷ ︸
n

and the series on the right converges inM.

Next we consider ring homomorphisms and subrings ofM. In sequel we do not assume that ring
homomorphisms preserve the multiplication by constants. Note that an element x of a commutative
Banach algebra A is invertible if and only if ϕ(x) 6= 0 for every character ϕ of A. The situation inM is
different. Let I•n = I • · · · • I︸ ︷︷ ︸

n

= (0| 1, . . . , 1︸ ︷︷ ︸
n

, 0, . . .).

Proposition 10. Let ϕ be a nonzero ring homomorphism fromM to C. Then ϕ(I•n) = n but I•n is non invertible
for n > 1.

Proof. Clearly, ϕ(I•n) = nϕ(I) = n. On the other hand, I•n � u = u•n 6= I for every u ∈ M.

Example 1. The following maps are ring homomorphisms fromM to C.

1. Polynomials Tn, n ∈ N are (continuous) complex valued ring homomorphism ofM but only T1 preserves the
multiplication by constants.

2. Let u = [(y|x)] ∈ M. We define

Θ(u) =
∞

∑
n=1
|xn| −

∞

∑
n=1
|yn|.

Clearly, Θ is well defined. The additivity and multiplicativity will be proved for more general case.

As usualR is a subring ofM if it is a subset ofM and a ring with respect to ‘•’ and ‘�’. For example,
let M00 consists of all elements u = [(y|x)] such that if (y|x) is irreducible, then supp x and supp y
are finite sets. Then M00 is a dense subring of M. We consider some nontrivial examples of closed
subrings ofM.

Example 2. LetM∆,MS andM1 be defined by

M∆ = {u ∈ M : |xj| ≤ 1, |yj| ≤ 1 ∀ irreducible representations (y|x) ∈ u},

MS = {u ∈ M : |xj| = 1 or 0, |yj| = 1 or 0 ∀ irreducible representations (y|x) ∈ u} ∪ {0},

M1 = {u ∈ M : xj = 1 or 0, yj = 1 or 0 ∀ irreducible representations (y|x) ∈ u} ∪ {0}.

Clearly,M∆,MS andM1 are subrings ofM and

M∆ ⊃MS ⊃M1.

Also,M1 is isomorphic to the ring Z of integer numbers and the restriction of the topology of (M, ρ) toMS
andM1 coincides with the discrete topology. In the general case, let U be a subset of C. We denote by

MU = {u ∈ M : xj ∈ U, yj ∈ U ∀ irreducible representations (y|x) ∈ u} ∪ {0}.

ThenMU is a subring ofM if U is closed with respect to the multiplication in C and 1 ∈ U.

Proposition 11. Let γ(t) be a function of one variable which is well defined and multiplicative on a subset U ∈ C.
We define

Θγ(u) =
∞

∑
n=1

γ(xn)−
∞

∑
n=1

γ(yn), u ∈ M,
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where (y|x) ∈ u. If U is closed with respect to the multiplication and 1 ∈ U, then Θγ is a complex valued ring
homomorphism ofMU .

Proof. Note first that Θγ(u) does not depend of the choice of a representative. Thus

Θγ((y|x) • (d|b)) = Θγ(y • d|x • b)

=
∞

∑
n=1

γ(xn) +
∞

∑
n=1

γ(bn)−
∞

∑
n=1

γ(yn)−
∞

∑
n=1

γ(dn) = Θγ(y|x) + Θγ(d|b).

By the multiplicativity of γ we have

Θγ((0|x) � (0|b)) =
∞

∑
n=i,j

γ(xi)γ(bj) =
∞

∑
n=i

γ(xi)
∞

∑
n=j

γ(bj)

and Θγ(x|0) = −Θγ(0|x). So

Θγ((y|x) � (d|b)) = Θγ((y � b) • (x � d)|(x � b) • (y � d))

=
∞

∑
n=i

γ(xi)
∞

∑
n=j

γ(bj) +
∞

∑
n=i

γ(yi)
∞

∑
n=j

γ(dj)−
∞

∑
n=i

γ(yi)
∞

∑
n=j

γ(bj)−
∞

∑
n=i

γ(xi)
∞

∑
n=j

γ(dj)

= Θγ(y|x)Θγ(d|b).

Example 3. Let us consider some examples of complex valued homomorphisms of subrings ofM.

1. Let g be a multiplicative function from N → C. In Number Theory such functions are called completely
multiplicative arithmetic functions. Then for γ = |g|, Θγ is a complex valued ring homomorphisms ofMS
andM1.

2. Let ε < 1 and ε∆ be the closed disk in C of radius ε, centered at zero. ThenMε∆ is an ideal inM1. Let

χC\ε∆(t) =

{
0 if |t| ≤ ε

1 if |t| > ε,

then ΘχC\ε∆ is a complex valued ring homomorphisms ofM1. Note that if u ∈ M1 \Mε∆ and v ∈ Mε∆,
then ρ(u, v) ≥ ε. From here we have that ΘχC\ε∆ is continuous.

We do not know whether or not every complex valued homomorphism ofM or its closed subring
is continuous.

2.2.4. Additive Operator Calculus

Let Φ : M→M be an additive map. Since it is a homomorphism of the additive group (M, •) to
itself, Φ is continuous at every point if and only if it is continuous at a point inM. Let γ : C→ C be an
arbitrary function. Then it is well defined the following additive map fromM00 to itself:

Φγ(u) = (. . . , γ(yn), . . . , γ(y1)|γ(x1), . . . , γ(xn), . . .). (13)
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Proposition 12. If there are constants C > 0 and m ∈ N such that |γ(t)| ≤ C|t|m, then Φγ is continuous,
additive and well defined onM.

Proof. For every u ∈ M

‖Φγ(u)‖ =
∞

∑
n=1
‖γ(xn)‖+

∞

∑
n=1
‖γ(yn)‖ ≤ C

∞

∑
n=1

(|xn|m + |yn|m) < ∞.

If ‖u‖ < ε < 1, then ‖Φγ(u)‖ < Cε and so Φγ is continuous at zero. Thus it is continuous.

Example 4. (Power operators.) Let m ∈ N. Then γ(t) = tm satisfies Proposition 12 and so the map Φm : u 7→ um,
where u = [(y|x)] ∈ M and

um = (. . . , ym
n , . . . , ym

1 |xm
1 , . . . , xm

n , . . .)

is a continuous additive operator onM.
Let k ∈ N and

k
√

a = (a)1/k = (a(1/k,1), a(1/k,2), . . . , a(1/k,k)), a ∈ C

be the multi-valued kth power root function. Let us consider

(a(1/k,1), a(1/k,2), . . . , a(1/k,k)) = (a(1/k,1), a(1/k,2), . . . , a(1/k,k), 0, 0 . . .)

as an element in `1. Then, for every u ∈ M such that for an irreducible representation (y|x) of u

∞

∑
n=1

(|xn|1/k + |yn|1/k) < ∞

we can define
Φ1/k(u) = u1/k = (· · · • y1/k

n • · · · • y1/k
1 |x

1/k
1 • · · · • x1/k

n • · · · ).

The map Φ1/k for k > 1 is a discontinuous additive operator, defined on a dense subset ofM. But if m > k,
then we can define an additive operator

Φ1/k ◦Φm

which is continuous onM. Note that Φ1/k ◦Φk 6= Φ1 if k > 1 because Φ1 is the identical operator while

Φ1/k ◦Φk(u) = u • · · · • u︸ ︷︷ ︸
k

= u � I•k.

We say that a map A : M → M is a linear operator if it is additive, preserves multiplications by
constants, that is, A(λu) = λA(u), λ ∈ C and if A(u−) = (A(u))− for all u ∈ M. From Proposition 12
it follows that there are a lot of additive operators. Linear operators, in contrast, can be described in
a simple way.

Theorem 7. Let A be a continuous linear operator fromM to itself. Then there exists an element v ∈ M such that

A(u) = v � u, u ∈ M.
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Proof. Let u = I = [(0|1, 0, . . .)] and A(u) = [(b|a)] ∈ M. Set v = [(b|a)]. Let now u be an element inM
which can be represented by a vector (y|x) with finite support

(y|x) = (. . . , 0, ym, . . . , y1|x1, . . . , xn, 0, . . .).

Then we can write
[(y|x)] = y1I− • · · · • ymI− • x1I • · · · xnI

and so
A(u) = y1u− • · · · • ymu− • x1u • · · · xnu = v � u.

Since the setM00 of elements with finite supports is dense inM and A is continuous, A = v � u for
every u ∈ M.

We denote by Av(u) the operator u 7→ v � u, u ∈M. Let us prove some natural properties of operators Av.

Proposition 13. 1. The operator Av is bijective if and only if v is invertible inM.
2. If the operator Av is surjective, then it is bijective.
3. The operator Av is injective if and only if ker Av = 0.
4. If u ∈ ker Av for some u 6= 0, then Tn(v) = 0 for some n ∈ N.
5. If Tn(v) = 0 for some n ∈ N, then Av is not surjective.

Proof. (1) If v is invertible, then Av−1 = A−1
v so Av is a bijection. Let now B = A−1

v . Then from the Open
Map theorem for complete metric groups (see [23]) it follows that B is continuous. From Theorem 7 we
have that B = Aw for some w ∈ M. Since

Av ◦ Aw = Av�w = AI,

w = v−1.
(2) Let Av be surjective. Then there exists u ∈ M such that Av(u) = v � u = I. So v is invertible and

Au = A−1
v .

(3) If Av is injective, then ker Av = 0. Conversely, If there are u, w ∈ M, u 6= w such that Av(u) =
Av(w), then Av(u • w−) = 0 and so ker Av is nontrivial.

(4) If u ∈ ker Av, then v � u = 0 and so

Tk(v � u) = Tk(v)Tk(u) = 0, k ∈ N.

Since u 6= 0, there exists a number n ∈ N such that Tn(u) 6= 0. So Tn(v) = 0.
(5) If Av is surjective, then it is bijective and so v is invertible. But

1 = Tn(I) = Tn(v � v−1) = Tn(v)Tn(v−1) = 0,

a contradiction.

Note that for v = Im the operator Av is not surjective but it is injective because

Av(u) = u • · · · • u︸ ︷︷ ︸
m

, u ∈ M

and Tk(v) = m > 0 for every k. On the other hand for v = (. . . , 0, 1, 2|3, 0 . . .), T1(v) = 0 and so Av is
not surjective but it is injective. Indeed, it is easy to check that Tk(v) 6= 0 for k > 1. So, if v � u = 0 for
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some u = (y|x) ∈ M, then Fk(x) = Fk(y) for k > 1. But from [13] it follows that also F1(x) = F1(y) and so
Tk(u) = 0 for all k ∈ N, that is u = 0. Finally, for v = (. . . , 0,−1|1, 0 . . .), Av has a nontrivial kernel which
contains u = (. . . , 0|1,−1, 0 . . .).

3. Discussion

According to Gelfand’s theory, every commutative semi-simple algebra Fréchet A can be represented
as an algebra of continuous functions on its spectrum M(A) (see e.g., [24] p. 217, p. 231). If A consists of
analytic functions on a Banach space X, then for every x ∈ X the point evaluation functional δx belongs to
M(A). The map x 7→ δx is one-to-one if and only if A separates points of X, for example, if A = Hb(X)

is the algebra of all analytic functions of bounded type on X. Investigations of the spectrum of Hb(X)

were started by Aron, Cole and Gamelin in their fundamental work [2]. Note that, in the general case,
Mb = M(Hb(X)) has complicated topological and algebraic structures (see [5,25]) which can be described
only implicitly involving such tools as the Aron-Berner extension, topological tensor products, StoneC̆ech
compactification, ect. On the other hand, it is convenient for applications to have algebras of analytic
functions of infinite many variables whose spectra admit explicit descriptions. If a subalgebra A of Hb(X)

has an algebraic basis of polynomials P1, P2, . . . , Pn, . . . , then every ϕ ∈ M(A) is completely defined by its
values on this basis, ξ1 = ϕ(P1), ξ2 = ϕ(P2), . . . , ξn = ϕ(Pn), . . . . So we can describe M(A) as a subset of
a sequence space {(ξ1, . . . , ξn, . . .) : ξ j ∈ C}. Moreover, if ‖Pn‖ = 1 and deg Pn = n, then it is not difficult
to check that sequences (ξn) should satisfy the following condition

sup
n
|ξn|1/n < ∞. (14)

Note that for the algebra of symmetric analytic functions of bounded type on L∞[0, 1] condition (14) is
sufficient [14] but for the algebra Hbs(`1) is not [12]. In the present paper we use this approach for Hsup

b
which is a subalgebra of Hb(`1(Z0)) generated by polynomials T1, T2, . . .. We can see that Hb(`1(Z0)) is
quite different than Hbs(`1). For example, the homomorphism defined by Tk 7→ −Tk is continuous in
Hb(`1(Z0)), while Fk 7→ −Fk is discontinuous in Hbs(`1). On the other hand, the homomorphism defined
by Tk 7→ λTk is discontinuous for λ /∈ Z and so the set of sequences ξ1 = ϕ(T1), ξ2 = ϕ(T2), . . . , ξn =

ϕ(Tn), . . . , ϕ ∈ Msup
b does not support multiplications by constants. From here we have that condition (14)

is not sufficient for description of Msup
b .

The results of Section 2.2 show that the spectrum of Hsup
b admits an interesting algebraic structure of

commutative ring with respect to operations ‘•’ and ‘�’ which play roles of addition and multiplication.
Using these operations and the `1-norm we introduced a natural metric ρ onM, and proved that (M, ρ)

is a complete metric space. We studied homomorphisms ofM and described all linear operators ofM to
itself. So obtained results may be interesting in the theory of commutative topological algebras and for
algebras of analytic functions on Banach spaces as well.

Supersymmetric polynomials and analytic functions are applicable in other branches of Mathematics
and in Physics. Note first that supersymmetric polynomials of several variables were studied by many
authors and in [18–20] we can find analogs of Formulas (7) and (8) for these cases (with using some
different notations). Here we proved such results for infinite many variables and due to `1-topology we
can claim thatW(y|x)(t) is a rational function, where the numerator and the denominator are functions
of exponential type for every fixed (y|x) ∈ `1(Z0). But an important difference between finite- and
infinite-dimensional case is that in the finite-dimensional case we can not to use the operations ‘•’ and ‘�’
because they do not preserve the dimension of the underlying space. Some applications of supersymmetric
polynomials for Brauer groups are described in [26]. It seems to be that Hsup

b can be applied for infinite
generated Brauer groups in a similar way. Another application can be obtained for Statistical Mechanics.
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In [27] we can find an approach to how classical symmetric polynomials can be used to modeling the
behavior of ideal gas. According to this approach and using our notations, independent variables x1, x2, . . .
correspond to abstract energy levels which particles of ideal gas may occupy; symmetric monomials

∑
i1<···<in

xk1

i1 · · · x
kn

in

correspond to occupation these energy levels by particles; generating functions G(x)(t) and H(x)(t)
correspond to grand canonical partition functions for bosons and fermions respectively, and Equation (2)
is modeling the Bose-Fermi symmetry law. From this point of view and taking into account (7),
supersymmetric polynomials may be useful for the description of ideal gas consisting of both type particles:
bosons, and fermions. Moreover, the Bose-Fermi symmetry in our notations means just [(x|x)] = 0.

Note that Statistical Mechanics work with the situation when the number of particles, N tends to
infinity. The fact that we consider the closure of polynomials in a metrizable topology allows us to proceed
with limit values as N → ∞. The `1-topology of the underlying space `1(Z0) is guarantying that all abstract
supersymmetric polynomials are well defined on this space. For example, if we will use `2(Z0) instead of
`1(Z0), then T1 will be not defined. Finally, we can expect that the algebraic operations ‘•’ and ‘�’ may
have a physical meaning in the proposed approach. But such kind of problems is outside of the topic of
our article.

4. Conclusions

In this article, we considered the algebra Hsup
b of analytic functions of bounded type generated by

supersymmetric polynomials on `1(Z0). We have described some algebraic bases of the subalgebra of
supersymmetric polynomials and corresponding generating functions. Such a description is important
in order to study the spectrum (the set of complex homomorphisms) of Hsup

b . In particular, it is shown
that every point evaluation complex homomorphism can be represented as a ratio of two entire functions
of exponential type. Also, we constructed an example of complex homomorphism which is not a point
evaluation functional. However, we have not a complete description of the spectrum of Hsup

b . In particular,
it is unclear under which conditions a meromorphic function is of the form (12) for some ϕ ∈ Msup

b ?
Note that such kind of problem is also open for the algebra Hbs(`1) [10,12].

Our goal is establishing the structure of a complete metric commutative ring on the setM of point
evaluation functionals of Hsup

b . The algebraic structure ofM is very close to the Banach algebra structure
butM is not a Banach algebra because it is not a linear space. So we have a natural question: which
Banach algebras properties can be extended to the ringM? For example, we can see that if an element
is closed to the unity, then it is invertible. But we do not know: doM admits a discontinuous complex
homomorphisms? Also, we investigated homomorphisms ofM, its subrings and additive operators ofM.
The role of obtained results in the theory of algebras of analytic functions on Banach spaces and possible
applications in Physics are discussed.

Author Contributions: These authors contributed equally to this work.

Funding: The second author was partially supported by Ministry of Education and Science of Ukraine Grant
0119U100063.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2019, 11, 1111 18 of 19

References

1. Dineen, S. Complex Analysis in Infinite Dimensional Spaces; Springer: London, UK, 1999.
2. Aron, R.M.; Cole, B.J.; Gamelin, T.W. Spectra of algebras of analytic functions on a Banach space. J. Reine

Angew. Math. 1991, 415, 51–93.
3. Aron, R.M.; Cole, B.J.; Gamelin, T.W. Weak-star continuous analytic functions. Can. J. Math. 1995, 47, 673–683.

[CrossRef]
4. Mujica, J. Ideals of holomorphic functions on Tsirelson’s space. Arch. Math. 2001, 76, 292–298. [CrossRef]
5. Zagorodnyuk, A. Spectra of Algebras of Entire Functions on Banach Spaces. Proc. Amer. Math. Soc. 2006,

134, 2559–2569. [CrossRef]
6. Aron, R.; Galindo, P.; Pinasco, D.; Zalduendo, I. Group-symmetric holomorphic functions on a Banach space.

Bull. Lond. Math. Soc. 2016, 48, 779–796. [CrossRef]
7. García, D.; Maestre, V.; Zalduendo, I. The spectra of algebras of group-symmetric functions. Proc. Edinb. Math. Soc.

2019, 62, 609–623. [CrossRef]
8. Gonzaléz, M.; Gonzalo, R.; Jaramillo, J. Symmetric polynomials on rearrangement invariant function spaces.

J. London Math. Soc. 1999, 59, 681–697. [CrossRef]
9. Macdonald, I.G. Symmetric Functions and Orthogonal Polynomials; University Lecture Serie 12; AMS: Providence,

RI, USA, 1997.
10. Chernega, I.; Galindo, P.; Zagorodnyuk, A. The convolution operation on the spectra of algebras of symmetric

analytic functions. J. Math. Anal. Appl. 2012, 395, 569–577. [CrossRef]
11. Chernega, I.; Galindo, P.; Zagorodnyuk, A. Some algebras of symmetric analytic functions and their spectra.

Proc. Edinb. Math. Soc. 2012, 55, 125–142. [CrossRef]
12. Chernega, I.; Galindo, P.; Zagorodnyuk, A. A multiplicative convolution on the spectra of algebras of symmetric

analytic functions. Rev. Mat. Complut. 2014, 27, 575–585. [CrossRef]
13. Alencar, R.; Aron, R.; Galindo, P.; Zagorodnyuk, A. Algebra of symmetric holomorphic functions on `p. Bull. Lond.

Math. Soc. 2003, 35, 55–64. [CrossRef]
14. Galindo, P.; Vasylyshyn, T.; Zagorodnyuk, A. The algebra of symmetric analytic functions on L∞. Proc. Roy. Soc.

Edinburgh Sect. A. 2017, 147, 743–761. [CrossRef]
15. Jawad, F. Note on separately symmetric polynomials on the Cartesian product of `1. Mat. Stud. 2018, 50, 204–210.
16. Kravtsiv, V. Algebraic basis of the algebra of block-symmetric polynomials on `1

⊕
`∞. Carpathian Math. Publ. 2019, 11,

89–95. [CrossRef]
17. Kravtsiv, V.; Vasylyshyn, T.; Zagorodnyuk, A. On Algebraic Basis of the Algebra of Symmetric Polynomials on

`p(Cn). J. Funct. Spaces 2017, 2017, 4947925.
18. Olshanski, G.; Regev, A.; Vershik, A.; Ivanov, V. Frobenius-Schur Functions. In Studies in Memory of Issai Schur.

Progress in Mathematics; Joseph, A., Melnikov, A., Rentschler, R., Eds.; Birkhäuser: Boston, MA, USA, 2003;
Volume 210, pp. 251–299.

19. Sergeev, A.N. On rings of supersymmetric polynomials. J. Algebra 2019, 517, 336–364. [CrossRef]
20. Stembridge, J.R. A Characterization of Supersymmetric Polynomials. J. Algebra 1985, 95, 439–444. [CrossRef]
21. Chernega, I.; Zagorodnyuk, A. Unbounded symmetric analytic functions on `1. Math. Scand. 2018, 122, 84–90.

[CrossRef]
22. Chernega, I.V. A semiring in the spectrum of the algebra of symmetric analytic functions in the space `1.

J. Math. Sci. 2016, 212, 38–45. [CrossRef]
23. Brown, L.G. Topologically complete groups. Proc. Amer. Math. Soc. 1972, 35, 593–600. [CrossRef]
24. Mujica, J. Complex Analysis in Banach Spaces; Elsevier: Amsterdam, The Netherlands, 1986.
25. Aron, R.M.; Galindo, P.; Garcia, D.; Maestre, M. Regularity and algebras of analytic functions in infinite

dimensions. Trans. Am. Math. Soc. 1996, 348, 543–559. [CrossRef]

http://dx.doi.org/10.4153/CJM-1995-035-1
http://dx.doi.org/10.1007/s000130050571
http://dx.doi.org/10.1090/S0002-9939-06-08260-8
http://dx.doi.org/10.1112/blms/bdw043
http://dx.doi.org/10.1017/S0013091518000603
http://dx.doi.org/10.1112/S0024610799007164
http://dx.doi.org/10.1016/j.jmaa.2012.04.087
http://dx.doi.org/10.1017/S0013091509001655
http://dx.doi.org/10.1007/s13163-013-0128-0
http://dx.doi.org/10.1112/S0024609302001431
http://dx.doi.org/10.1017/S0308210516000287
http://dx.doi.org/10.15330/cmp.11.1.89-95
http://dx.doi.org/10.1016/j.jalgebra.2018.10.003
http://dx.doi.org/10.1016/0021-8693(85)90115-2
http://dx.doi.org/10.7146/math.scand.a-102082
http://dx.doi.org/10.1007/s10958-015-2647-3
http://dx.doi.org/10.1090/S0002-9939-1972-0308321-0
http://dx.doi.org/10.1090/S0002-9947-96-01553-X


Symmetry 2019, 11, 1111 19 of 19

26. Jung J.H.; Kim, M. Supersymmetric polynomials and the center of the walled Brauer algebra. arXiv 2017,
arXiv:1508.06469.

27. Schmidt, H.J.; Schnack, J. Symmetric Polynomials in Physics; Gazeau, J.-P., Kerner, R., Antoine, J.-P., Métens, S., Thibon.,
J.-Y., Eds.; IOP: Bristol, UK; Philadelphia, PA, USA, 2003; Volume 173, pp. 147–152.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Preliminaries
	Results
	Bases of Supersymmetric Polynomials
	The Spectrum of HSupB and the Nonlinear Normed Ring M
	The Spectrum
	The Normed Ring Structure of M
	Invertibility and Homomorphisms
	Additive Operator Calculus


	Discussion
	Conclusions
	References

