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Abstract: Lorentz symmetry is an important concept in modern physics. Precision pulsar timing
was used to put tight constraints on the coefficients for Lorentz violation in the pure-gravity sector of
the Standard-Model Extension (SME). We extend the analysis to Lorentz-violating matter-gravity
couplings, utilizing three small-eccentricity relativistic neutron star (NS)—white dwarf (WD)
binaries. We obtain compelling limits on various SME coefficients related to the neutron, the proton,
and the electron. These results are complementary to limits obtained from lunar laser ranging and
clock experiments.

Keywords: pulsar timing; Standard-Model Extension; binary pulsars

1. Introduction

The theory of general relativity (GR) and the Standard Model (SM) of particle physics represent
our contemporary condensed wisdom in the search of fundamental laws in physics. Nevertheless,
there exist various motivations to look for new physics. Among them, the possibility of Lorentz
violation is a well developed concept [1]. Lorentz violation could be resulted from a deep underlying
theory of quantum gravity [2]. At low energy, it is believed to be described by an effective field theory
(EFT). An EFT framework, the so-called Standard-Model Extension (SME), systematically incorporates
all Lorentz-covariant, gauge-invariant, energy-momentum-conserving operators that are associated
with GR and SM fields [3–5]. Field operators are sorted according to their mass dimension, and, for
some certain species, operators of arbitrary mass dimensions are classified [6–9].

The SME is supposed to be an effectively low-energy theory for the quantum gravity, thus, the
gravitational aspect of the SME is of particular interest. Kostelecký [5] presented the general structure
of the SME when the curved spacetime is considered. Bailey and Kostelecký [10] worked out different
kinds of observational phenomena associated with the minimal operators in the pure-gravity sector
of the SME, whose mass dimension d ≤ 4. After that, Kostelecký and Tasson [11] investigated in
great detail the theoretical aspects of the matter-gravity couplings, whose mass dimension d ≤ 4.
Phenomenological aspects and relevant experiments are identified. Moreover, the nonminimal SME
with gravitational operators, whose mass dimension d > 4, was studied and gained global interests
during the past few years [12–14].

Due to the advances on the theoretical side [5,10–12], phenomenological and experimental studies
of the gravitational SME became a hot topic [15–18]. Hees et al. [19] have a comprehensive summary
on this topic—see also the Data Tables for Lorentz and CPT Violation, compiled by Kostelecký and
Russell [20]. In the pure-gravity sector, binary pulsars turn out to be among the best experiments in
constraining (i) the d ≤ 4 minimal Lorentz-violating operators [21,22]; (ii) dimension-5 CPT-violating
operators [23]; as well as (iii) dimension-8 cubic-in-the-Riemannian-tensor operators, which are related
to the leading-order violation of the gravitational weak equivalence principle [24]. In a closely related
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metric-based framework, the so-called parameterized post-Newtonian formalism [25,26], binary
pulsars similarly outperform many Solar-system-based experiments [27–30].

In this work, we investigate the matter-gravity couplings in the SME and their signals in
binary pulsars [11,31]. In particular, we use small-eccentricity binary pulsars—PSRs J0348+0432 [32],
J0751+1807 [33], and J1738+0333 [34]—to put stringent constraints on various matter-gravity coupling
coefficients. The limits are compelling, and complementary to other experiments. They contribute to
the research field on the experimental examination of the SME.

The paper is organized as follows. In the next section, we review the matter-gravity couplings
in the SME [11]. Then, in Section 3, the orbital dynamics for a binary pulsar [31] are provided.
In particular, the secular change of the eccentricity vector (decomposed into the two Laplace–Lagrange
parameters [35]), and the secular change of the pulsar’s projected semimajor axis are discussed.
Constraints on the matter-gravity coupling coefficients are given in Section 4. The last section discusses
constraints from other experiments, the strong-field aspects of pulsars, and the prospects in improving
the limits on the Lorentz-violating matter-gravity couplings.

2. Matter-Gravity Couplings in the SME

In order to incorporate fermion-gravity couplings, we use the vierbein formalism [5]. In the SME,
the action for a massive Dirac fermion ψ reads [11]

Sψ =
∫

e
(

1
2

ieµ
aψΓa←→D µψ− ψMψ

)
d4x , (1)

where, for spin-independent cases,

Γa ≡ γa − cµνeνaeµ
bγb − eµeµa , (2)

M ≡ m + aµeµ
aγa . (3)

Here, e a
µ is the vierbein with e as its determinant; m is the mass of the fermion; γa is the Dirac

matrix; aµ, cµν, and eµ are species-dependent, spin-independent coefficient fields for Lorentz violation
(see Equations (7) and (8) in [11] for spin-dependent terms).

While being kept to the leading order, a field redefinition via a position-dependent component
mixing in the spinor space can be used to show that the CPT-odd coefficients aµ and eµ always appear
in the combination [11]

(aeff)µ ≡ aµ −meµ . (4)

Therefore, we shall consider only
(
aeff
)

µ
and cµν in the following.

At leading order, the point-particle action is [11],

Su =
∫

dλ

[
−m

√
−
(

gµν + 2cµν

)
uµuν − (aeff)µuµ

]
, (5)

where uµ ≡ dxµ/dλ. For a macroscopic composite object, the action Equation (5) is still applicable
with the replacements [11],

m→∑
w

Nwmw , (6)

cµν →
∑w Nwmw (cw)µν

∑w Nwmw , (7)

(aeff)µ →∑
w

Nw(aw
eff)µ , (8)

where w denotes the particle species and Nw is the number of particles of type w. We have neglected the
contribution from binding energies which could be at most ∼ 20% for neutron stars (NSs), unless some



Symmetry 2019, 11, 1098 3 of 11

unknown nonperturbative effects take place (see discussions in Section 5) [30]. In general, the role of
binding energy could further aid the analysis of signals for Lorentz violation, see Section VI B in [11]
for more details. Hereafter, for simplicity we only consider three types of fermions—(i) the electron
w = e, (ii) the proton w = p, and (iii) the neutron w = n. In Table 1, we list the estimated composition
of these three species for NSs and white dwarfs (WDs), and their corresponding composite coefficient
fields for Lorentz violation.

Table 1. Estimated composition for neutron stars (NSs) and white dwarfs (WDs). Composite coefficient
fields for Lorentz violation are estimated according to Equations (6)–(8). In the table, MNS and MWD

are the masses for NS and WD, respectively, and mn (' mp) is the mass for a neutron (proton) particle.
We define NNS ≡ MNS/mn and NWD ≡ MWD/mn.

Neutron Stars White Dwarfs

Electron number, Ne ∼ 0 1
2 NWD

Proton number, Np ∼ 0 1
2 NWD

Neutron number, Nn NNS
1
2 NWD

Composite m MNS MWD

Composite cµν cn
µν

1
2

(
cn

µν + cp
µν + 0.0005 ce

µν

)
Composite

(
aeff
)

µ
NNS

(
an

eff
)

µ
1
2 NWD

[(
an

eff
)

µ
+
(

ap
eff

)
µ
+
(
ae

eff
)

µ

]

In general, the coefficient fields,
(
aeff
)

µ
and cµν, are dynamical fields. In the Riemann–Cartan

spacetime, the Lorentz violation often needs to be spontaneous [36], instead of explicit [5]. The coefficient
fields obtain their vacuum expectation values via the Higgs-like spontaneous symmetry breaking
mechanism. We denote the vacuum expectation values of

(
aeff
)

µ
and cµν as

(
aeff
)

µ
and cµν, respectively.

The barred quantities are also known as the coefficients for Lorentz violation [20]. In asymptotically
inertial Cartesian coordinates, they are assumed to be small and satisfy [11]

∂α(aeff)µ = 0 , (9)

∂αcµν = 0 . (10)

The coefficients for Lorentz violation,
(
aeff
)

µ
and cµν [20], are the quantities that we want to

investigate with pulsar timing experiments [37,38] in this work.

3. Binary Pulsars with Lorentz-Violating Matter-Gravity Couplings

Jennings et al. [31] worked out the osculating elements for a binary system, composed of masses
M1 and M2, in the presence of the Lorentz-violating matter-gravity couplings. We consistently use the
subscript “1” to denote the pulsar; and use the subscript “2” to denote the companion which is a WD
in our study. We define q ≡ M1/M2 and M ≡ M1 + M2. To simplify some expressions, we also define
X ≡ M1/M = q/ (1 + q), then, M2/M = 1− X = 1/ (1 + q).

Neglecting the finite-size effects, the Newtonian relative acceleration for a binary is aN =

−GM1M2/r2r̂, where r is the relative separation and r̂ ≡ r/r. In the Newtonian gravity, a two-body
system with a negative total orbital energy forms an elliptical orbit. An elliptical orbit in the celestial
mechanics is usually described by six orbital elements—(i) the semimajor axis a; (ii) the orbital
eccentricity e; (iii) the epoch of periastron passage T0; (iv) the inclination of orbit i; (v) the longitude
of periastron ω; and (vi) the longitude of ascending node Ω. The last three angles are illustrated in
Figure 1.
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Figure 1. Pulsar orbit and the coordinate system
(

â, b̂, ĉ
)

[10,22,23].

When there is a perturbing acceleration to aN, say, δa, the orbit is changed perturbatively. In the
osculating-element approach, one assumes that at any instant moment, the orbit is still an ellipse,
but the six orbital elements become functions of the time t [39]. The time derivatives of these six
functions are derived from the extra acceleration δa [39]. In the current case, after averaging over an
orbital period Pb, the secular changes read [31]〈

da
dt

〉
= 0 , (11)〈

de
dt

〉
=

nb
M

γ

(
e2 − 2ε

e3 Aâb̂ +
nbaε

e2 Bâ

)
, (12)〈

di
dt

〉
=

nb
Mγ

(
ε

e2 Aâĉ cos ω− e2 − ε

e2 Ab̂ĉ sin ω− nbεa
e

Bĉ sin ω

)
, (13)〈

dω

dt

〉
= − nb

Mγ tan i

(
ε

e2 Aâĉ sin ω +
e2 − ε

e2 Ab̂ĉ cos ω +
nbεa

e
Bĉ cos ω

)
+

nb
M

[
e2 − 2ε

2e4

(
Ab̂b̂ − Aââ

)
+

nba (1− γ)

e3 Bb̂

]
, (14)

where we have defined γ ≡
√

1− e2, ε ≡ 1− γ = 1−
√

1− e2, and nb ≡ 2π/Pb. From Equation (11),
we can see that the energy of the orbit is conserved at leading order, which is compatible with the
action formulation of the system in the absence of gravitational waves. The expressions for 〈dΩ/dt〉
and 〈dT0/dt〉 are not important in the present context, and thus not shown. The 3-vector Bj and the
3× 3 tensor Ajl are defined as [31],

Ajl = ∑
w

2nw
7 mwcw

(jl) , (15)

Bj = −∑
w

2
[
nw

2 (aw
eff)j + (nw

6 − 2nw
8 )mwcw

(0j)

]
, (16)

where nw
i (i = 1, · · · , 8) are defined in Equation (9) of [31], and their approximated values for NS–NS

and NS–WD binaries are given in Table 2 for convenience.
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Table 2. Expressions of nw
i /N (i = 1, · · · , 8; w ∈ {n, p, e}) for NS–NS and NS–WD systems

(see Equation (9) in [31]), where N ≡ N1 + N2 ' M/mn. Results in Table 1 are adopted for the
calculation here.

Neutron Star–Neutron Star Neutron Star–White Dwarf

n p e n p e

nw
1 /N 1 0 0 1

2 (1 + X) 1
2 (1− X) 1

2 (1− X)

nw
2 /N 2X− 1 0 0 1

2 (3X− 1) − 1
2 (1− X) − 1

2 (1− X)

nw
3 /N 2 0 0 3

2
1
2

1
2

nw
4 /N 0 0 0 − 1

2
1
2

1
2

nw
5 /N 2X (1− X) 0 0 3

2 X(1− X) 1
2 X(1− X) 1

2 X(1− X)

nw
6 /N 0 0 0 − 1

2 X(1− X) 1
2 X(1− X) 1

2 X(1− X)

nw
7 /N 1 0 0 1− 1

2 X 1
2 X 1

2 X

nw
8 /N 1− 2X 0 0 1

2 X2 − 2X + 1 − 1
2 X2 − 1

2 X2

In the above two equations, only nw
i with i = 2, 6, 7, 8 are relevant. Using the results in Table 2,

we have

Ajl

M
=(2− X)cn

(jl) + X
[
cp
(jl) + 0.0005ce

(jl)

]
, (17)

Bj

M
=

1− X
mn

[(
ap

eff

)
j
+ (ae

eff)j

]
+

1− 3X
mn (an

eff)j

+
(

X2 − 7X + 4
)

cn
(0j) − X(1 + X)

[
cp
(0j) + 0.0005ce

(0j)

]
. (18)

We can easily obtain the following conclusion from the above two equations. (I) The sensitivity
to ce

(jl) and ce
(0j) (compared with cp

(jl) and cp
(0j), respectively) is suppressed by the mass ratio of the

electron to the proton (me/mp ' 0.0005), while the sensitivity to
(
ae

eff
)

j (compared with
(

ap
eff

)
j
) is not

suppressed. (II) We have no sensitivity to
(
aw

eff
)

0 nor cw
00 (w ∈ {n, p, e}) from binary pulsars in this

simplified situation. This is similar to the case of s00 (the time–time component of the Lorentz-violating
field sµν) in the pure-gravity sector of the SME with dimension 4 operators [10,21], nevertheless, these
coefficients can be probed with the help of the “boost effect” introduced by the systematic velocity of
the binary (vsys/c ∼ 10−3) with respect to the Solar system [22]. We defer the investigation along this
line to future studies.

In Equations (11)–(14), Bj and Ajl are projected to the coordinate system
(

â, b̂, ĉ
)

[10,22,23], where
â is the unit vector points from the center of binary towards the periastron, ĉ is the unit vector points
along the orbital angular momentum, and b̂ ≡ ĉ× â (see Figure 1).

We are interested in the small-eccentricity binaries. In the limiting case of small eccentricity e→ 0,
we have

γ = 1− 1
2

e2 − 1
8

e4 +O
(

e6
)

, (19)

ε =
1
2

e2 +
1
8

e4 +O
(

e6
)

. (20)
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Therefore, Equations (12)–(14) are simplified to〈
de
dt

〉
'

n2
ba

2M
Bâ , (21)〈

di
dt

〉
' nb

2M
(

Aâĉ cos ω− Ab̂ĉ sin ω
)

, (22)〈
dω

dt

〉
'

n2
ba

2eM
Bb̂ . (23)

We can convert the derivatives of e, i, and ω into derivatives of the projected semimajor axis of
the pulsar orbit xp, and the Laplace–Lagrange parameters, η ≡ e sin ω and κ ≡ e cos ω into〈

dxp

dt

〉
=

M2 cos i
2M2 (GMnb)

1/3 (Aâĉ cos ω− Ab̂ĉ sin ω
)

, (24)〈
dη

dt

〉
=

nb
2M

(GMnb)
1/3 (Bâ sin ω + Bb̂ cos ω

)
, (25)〈

dκ

dt

〉
=

nb
2M

(GMnb)
1/3 (Bâ cos ω− Bb̂ sin ω

)
, (26)

where we have used nba = (GMnb)
1/3.

4. Bounds on the SME Coefficients

We use the time derivatives of xp, η, and κ in Equations (24)–(26) to constrain the coefficients
for Lorentz violation. It is clear that the more relativistic the binary (namely, the larger nb), the better
the tests. Therefore, we use three well-timed NS–WD binaries whose orbital periods are shorter than
half a day [32–34]. Relevant parameters of these binaries are collected in Table 3. Due to the binary
interaction and matter exchange in the evolutionary history, these NS–WD binaries have small orbital
eccentricity e ≤ 10−6, thus, Equations (24)–(26) are sufficient to perform the tests.

Table 3. Relevant parameters for PSRs J0348+0432 [32], J0751+1807 [33], and J1738+0333 [34].
Parenthesized numbers represent the 1-σ uncertainty in the last digit(s) quoted. The parameter η

is the intrinsic value, after subtraction of the contribution from the Shapiro delay [35]. Masses are
derived without using information related to

〈
dxp/dt

〉
, 〈dη/dt〉, nor 〈dκ/dt〉 for consistency.

For PSRs J0348+0432 and J1738+0333, masses were derived independently of gravity theories [32,34],
while for PSR J0751+1807 we have used observed quantities related to the Shapiro delay and orbital
decay, assuming the validity of general relativity (GR) [33].

Pulsar J0348+0432 J0751+1807 J1738+0333

Observational span, Tobs (year) ∼3.7 ∼17.6 ∼10.0
Orbital period, Pb (day) 0.102424062722(7) 0.263144270792(7) 0.3547907398724(13)
Pulsar’s projected semimajor axis, xp (lt-s) 0.14097938(7) 0.3966158(3) 0.343429130(17)
η ≡ e sin ω (10−7) 19(10) 33(5) −1.4(11)
κ ≡ e cos ω (10−7) 14(10) 3.8(50) 3.1(11)
Time derivative of xp, ẋp – (−4.9± 0.9)× 10−15 (0.7± 0.5)× 10−15

NS mass, m1 (M�) 2.01(4) 1.64(15) 1.46+0.06
−0.05

WD mass, m2 (M�) 0.172(3) 0.16(1) 0.181+0.008
−0.007

From Table 3, we see that the time derivatives of η and κ are not reported in literature, as well
as the time derivative of xp for PSR J0348+0432. The reason is usually the following. In fitting the
times of arrival of pulse signals, these quantities would be measured to be consistent with zero if
they were included in the timing formalism. To have a simpler timing model, these quantities are
considered unnecessary for a good fit. Actually, the insignificance of these quantities is consistent with
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the spirit of our tests to put upper limits on the Lorentz violation. We estimate the upper limits for
these quantities using Ẋ ∼

√
12σX/Tobs (X ∈

{
xp, η, κ

}
) [21], where σX is the measured uncertainty

for the quantity X and Tobs is the observational span of the data from where these quantities were
derived. The factor “

√
12” approximately takes a linear-in-time evolution of the quantity X into

account [21]. It is verified that this approximation works reasonably well [21,23]. For PSRs J0751+1807
and J1738+0333,

〈
dxp/dt

〉
was measured to be nonzero. As the proper motion of the binary in the

sky could contribute to a nonzero
〈
dxp/dt

〉
for nearby pulsars [37,40], we use the measured value of〈

dxp/dt
〉

as an upper limit for the effects from Lorentz violation. For nearby pulsars, the contribution
to
〈
dxp/dt

〉
from the proper motion depends sinusoidally on Ω [37,40]—although Ω is not measured,

we do not expect the Nature’s conspiracy in assigning certain values of Ω case-by-case to different
binary pulsars, in order to hide the Lorentz symmetry breaking. Therefore, we believe the above
treatments introduce uncertainties no larger than a multiplicative factor of a few.

In order to use Equations (24)–(26), one also needs the absolute geometry of the orbit to properly
project the vector Bj and the tensor Ajl onto the coordinate system

(
â, b̂, ĉ

)
. In general, the longitude

of the ascending node Ω is not observable in pulsar timing [37]. Nevertheless, the procedure to
randomize the value of Ω ∈ [0, 360◦) and to systematically project vectors and tensors onto

(
â, b̂, ĉ

)
was worked out in [21]. It was successfully applied to binary pulsars in previous studies [21–24]. Since
here (i) we have already introduced an uncertainty with a factor of a few, and (ii) we are interested
in the “maximal-reach” limits in absence of the Lorentz violation, we take a simplified approach
and treat these projections as O(1) operators. The “maximal-reach” approach [18] assumes that
only one component of Lorentz-violating coefficients is nonzero in a test. We think our approach is
reasonable at the stage of setting upper limits to the coefficients for Lorentz violation. Nevertheless,
when people start to discover some evidence for the Lorentz violation, it is absolutely needed to take into
account more sophisticated analysis, for example, to use the 3-D orientation of the orbit (possibly in a
probabilistic way with an unknown Ω) as was done in [21–24]. In addition, if one wants to explore the
correlation between different coefficients for Lorentz violation, more sophisticated analysis is needed
as well. These improvements lay beyond the scope of this work.

In Table 4, we list the “maximal-reach” [18] limits on the coefficients for Lorentz violation with
matter-gravity couplings obtained from binary pulsars. As we can see, the best limits on cw

jk (w ∈ {n, p, e})
come from PSR J1738+0333 due to its very good measurement on the ẋp [34]. For cw

0k and
(
aw

eff
)

k, the best
limits come from PSR J0751+1807 due to its good measurement of the Lagrange–Laplace parameters [33].

Table 4. “Maximal-reach” limits from binary pulsars on the coefficients for Lorentz violation with
matter-gravity couplings, where only one component is assumed to be nonzero at a time. The limits on cw

jk
(w ∈ {n, p, e}) come from

〈
dxp/dt

〉
; while the limits on cw

0k and
(
aw

eff
)

k come from 〈dη/dt〉 or 〈dκ/dt〉,
and only the stronger one is listed in the table. For each row, the strongest limit is shown in boldface.

SME Coefficients PSR J0348+0432 PSR J0751+1807 PSR J1738+0333

cn
jk 3× 10−11 2× 10−10 1 × 10−11

cp
jk 4× 10−11 2× 10−10 1 × 10−11

ce
jk 8× 10−8 4× 10−7 3 × 10−8

cn
0k 3× 10−8 1 × 10−8 7× 10−8

cp
0k 2× 10−8 1 × 10−8 6× 10−8

ce
0k 5× 10−5 2 × 10−5 1× 10−4(
an

eff
)

k 2× 10−8 GeV 1 × 10−8 GeV 6× 10−8 GeV(
ap

eff

)
k

5× 10−7 GeV 2 × 10−7 GeV 8× 10−7 GeV(
ae

eff
)

k 5× 10−7 GeV 2 × 10−7 GeV 8× 10−7 GeV
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5. Discussion

Besides the streamlined theoretical analysis, the maximal-reach limits in Table 4 are the main
results of this paper. As far as we are aware, Altschul [41] was the first to put preliminary limits on the
SME neutron-sector coefficients with pulsar rotations. The pure-gravity sector of the SME at different
mass dimensions was systematically tested with binary pulsars in [21–24]. Early limits on

(
aw

eff
)

k were
given with K/He magnetometer and torsion-strip balance [42,43], but these limits, while constraining
different linear combinations of the Lorentz violating coefficients, are rather weak. Later, the
maximal-reach limits on

(
aw

eff
)

k were obtained systematically with superconducting gravimeters [44]
and lunar laser ranging (LLR) experiments [45]. The former got

(
aw

eff
)

k ≤ O
(
10−5 GeV

)
; while the

latter got
(
aw

eff
)

k ≤ O
(
10−8 GeV

)
. Our best limits from PSR J0751+1807 for the proton and the electron

are weaker than the LLR limits, while our limit for the neutron is slightly better. There is also a limit
from the observation of gravitational waves, but being weaker than our limits by almost 30 orders of
magnitude [46]. The limits on

(
aw

eff
)

0 were cast by analyzing nuclear binding energy, Cs interferometer,
torsion pendulum, and weak equivalence principle experiments [11,47–49]. The analysis with binary
pulsars in this work could not bound these SME coefficients. The limits on c̄w

µν from other experiments
(e.g., clock experiments [50]) are much better than the limits from binary pulsars [20]. However, our
limits are the best ones from gravitational systems. In a short summary, our limits are compelling,
and complementary to limits obtained from other experiments.

In using the SME, we have assumed the validity of the effective field theory (EFT) and the
smallness of the Lorentz violation. This is true for most ordinary objects. However, we shall be aware
of a caveat for NSs, because of the possible nonperturbative behaviors which might be triggered
by their strongly self-gravitating nature [38]. It was shown explicitly that, in a class of scalar-tensor
theories, highly nonlinear phenomena are possible within NSs and they may result in large deviations
from GR [51,52]. Although the nonperturbative behaviors were constrained tightly with binary pulsars
and the binary neutron star inspiral GW170817 [34,53,54], the possibility is not completely ruled out
yet [55–57]. With this caveat in mind, conservatively speaking, the tests in this paper are basically
testing the strong-field counterparts of the weak-field SME coefficients. Usually, when the strong-field
effects are considered, the constraints become even tighter. Therefore, we treat the limits here as
conservative ones [30].

The tests of Lorentz violation with binary pulsars improve with a longer baseline for data [21].
Specifically, even pessimistically assuming no advance in the quality of binary-pulsar observation for
the future, the tests in Equations (24)–(26) improve as T−1.5

obs , where Tobs is the total observational span.
In reality, the quality of observation improves rapidly, especially with the newly built and upcoming
telescopes, like the Five-hundred-meter Aperture Spherical Telescope (FAST), the MeerKAT telescope,
and the Square Kilometre Array (SKA) [58–61]. Therefore, we expect better tests than the T−1.5

obs scaling
in testing the Lorentz violation in the future.
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