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Abstract: The purpose of this article is to construct generating functions for new families of special
polynomials including two parametric kinds of Eulerian-type polynomials. Some fundamental
properties of these functions are given. By using these generating functions and the Euler’s formula,
some identities and relations among trigonometric functions, two parametric kinds of Eulerian-type
polynomials, Apostol-type polynomials, the Stirling numbers and Fubini-type polynomials are
presented. Computational formulae for these polynomials are obtained. Applying a partial derivative
operator to these generating functions, some derivative formulae and finite combinatorial sums
involving the aforementioned polynomials and numbers are also obtained. In addition, some remarks
and observations on these polynomials are given.

Keywords: Apostol-type numbers and polynomials; Stirling numbers; combinatorial sum;
generating function; special functions
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1. Introduction

Special polynomials and their generating functions have important roles in many branches of
mathematics, probability, statistics, mathematical physics and also engineering. Since polynomials are
suitable for applying well-known operations such as derivative and integral, polynomials are very
useful to study real-world problems in aforementioned areas. For instance, generating functions for
special polynomials with their congruence properties, recurrence relations, computational formulae
and symmetric sum involving these polynomials has been studied by many authors in recent years
(cf. [1–27]).

In this article, by combining the Euler’s formula with generating functions for two parametric
kinds of Eulerian-type polynomials, their functional equations and partial derivative equations,
we give many formulae and relations including the Stirling numbers, Fubini-type polynomials,
two parametric kinds of Eulerian-type polynomials, and Apostol-type numbers and polynomials such
as the Apostol–Bernoulli numbers and polynomials, the Apostol–Euler numbers and polynomials,
and the Apostol–Genocchi numbers and polynomials.

Throughout this article, we use the following notations and definitions:
Let N = {1, 2, 3, ...}, N0 = N∪ {0}, Z denote the set of integers, R denote the set of real numbers

and C denote the set of complex numbers.
Furthermore, 0n = 1 if n = 0, and, 0n = 0 if n ∈ N, and (α)n denotes the Pochhammer symbol,

which is defined as follows:

(α)v =

{
α (α + 1) (α + 2) ... (α + v− 1) v = n ∈ N, α ∈ C.

1 v = 0, α ∈ C \ {0} ,
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where (0)0 = 1. Moreover,(
α

v

)
=

{
α(α−1)(α−2)...(α−v+1)

v! v ∈ N, α ∈ C,
1 v = 0

and
(α)v = (−1)v (−α)v

(cf. [1–25]).
The well-known Euler’s formula is defined as follows:

eiz = cos (z) + i sin (z) ,

where i2 = −1.
The Apostol–Bernoulli polynomials B(m)

n (x; λ) of order m are defined by

F(m)
AB (t, x; λ) =

(
t

λet − 1

)m
ext =

∞

∑
n=0
B(m)

n (x; λ)
tn

n!
, (1)

where |t| < 2π when λ = 1; |t| < |log (λ)| when λ 6= 1 and

B(m)
n (λ) = B(m)

n (0; λ),

where B(m)
n (λ) denotes the so-called Apostol–Bernoulli numbers of order m (cf. [1,21,22,24,25]).

The Apostol–Euler polynomials E (m)
n (x; λ) of order m are defined by

F(m)
AE (t, x; λ) =

(
2

λet + 1

)m
ext =

∞

∑
n=0
E (m)

n (x; λ)
tn

n!
, (2)

where |t| < π when λ = 1; |t| < |log (−λ)| when λ 6= 1 and

E (m)
n (λ) = E (m)

n (0; λ) ,

where E (m)
n (λ) denotes the so-called Apostol–Euler numbers of order m (cf. [14,21–24]).

The λ-Stirling numbers of the second kind are defined by

FS2 (t, m; λ) =

(
λet − 1

)m

m!
=

∞

∑
n=0

S2 (n, m; λ)
tn

n!
, (3)

where m ∈ N0 and λ ∈ C (cf. [15,19,21]). Substituting λ = 1 into (3), the numbers S2 (n, m; λ) reduces
to the Stirling numbers of the second kind:

S2 (n, m) = S2 (n, m; 1)

(cf. [1–25]).
Combining (2) with (3), a computation formula for the Apostol–Euler polynomials of order m is

given as follows:

E (m)
n (x; λ) = 2m

n

∑
k=0

(
n
k

)
xn−k

k

∑
j=0

(
m + j− 1

j

)
j! (−λ)j

(λ + 1)j+m S2 (k, j) (4)

(cf. [14,24]).
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The Apostol–Genocchi polynomials G(m)
n (x; λ) of order m are defined by

F(m)
AG (t, x; λ) =

(
2t

λet + 1

)m
ext =

∞

∑
n=0
G(m)

n (x; λ)
tn

n!
, (5)

where |t| < π when λ = 1; |t| < |log (−λ)| when λ 6= 1 and

G(m)
n (λ) = G(m)

n (0; λ) ,

where G(m)
n (λ) denotes the so-called Apostol–Genocchi numbers of order m (cf. [15,22,24]).

The Apostol-type Frobenius–Euler polynomialsH(m)
n (x; λ, u) of order m are defined by

F(m)
AH (t, x; λ, u) =

(
1− u

λet − u

)m
ext =

∞

∑
n=0
H(m)

n (x; λ, u)
tn

n!
, (6)

where u ∈ C with u 6= λ, λ 6= 1 and

H(m)
n (λ, u) = H(m)

n (0; λ, u) ,

where H(m)
n (λ, u) denotes the so-called Apostol-type Frobenius–Euler numbers of order m

(cf. [2,19,22,24]). Substituting u = −1 into (6), we have

H(m)
n (x; λ,−1) = E (m)

n (x; λ)

(cf. [2,19,22,24]).
Substituting λ = 1 into (6), we have

H(m)
n (x; u) = H(m)

n (x; 1, u) , (7)

where H(m)
n (x; u) denotes the so-called Frobenius–Euler polynomials of order m.

Substituting x = 0 into (7), we have

H(m)
n (0; u) = H(m)

n (u) ,

where H(m)
n (u) denotes the so-called Frobenius–Euler numbers of order m (cf. [4,5,10,12,13,17,19,20,22–24]).

By using (6) and (7), we have

H(m)
n (x; λ, u) =

(
1− u
λ− u

)m
H(m)

n

(
x;

u
λ

)
. (8)

The polynomials Cn (x, y) and Sn (x, y) are defined respectively by

FC (t, x, y) = ext cos (yt) =
∞

∑
n=0

Cn (x, y)
tn

n!
(9)

and

FS (t, x, y) = ext sin (yt) =
∞

∑
n=0

Sn (x, y)
tn

n!
(10)

(cf. [11,16,25]).
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By using (9) and (10), we have

Cn (x, y) =
[ n

2 ]

∑
k=0

(−1)k
(

n
2k

)
xn−2ky2k

and

Sn (x, y) =
[ n−1

2 ]

∑
k=0

(−1)k
(

n
2k + 1

)
xn−2k−1y2k+1

(cf. [11,16,25]).
In [7], we defined the following generating function for the Fubini-type polynomials a(m)

n (x) of
order m

F(m)
a (t, x) =

2m

(2− et)2m ext =
∞

∑
n=0

a(m)
n (x)

tn

n!
. (11)

Substituting x = 0 into (11), we have

a(m)
n (0) = a(m)

n ,

where a(m)
n denotes the so-called Fubini-type numbers of order m (cf. [7]).

In [9], we constructed the following generating functions for two kinds of Hermite-based
r-parametric Milne–Thomson-type polynomials:

Let r-tuples −→v = (v1, v2, . . . , vr). Then, we have

B
(
t, x, y, z,−→v , r, a, b

)
= 2 (b + f (t, a))z exp (xt) M4

(
t, y,−→v , r

)
(12)

=
∞

∑
n=0

h1
(
n, x, y, z;−→v , r, a, b

) tn

n!
,

where

M4
(
t, y,−→v , r

)
= exp

(
r

∑
j=1

vjtj

)
cos (yt) =

∞

∑
n=0

Cn
(−→v , y; r

) tn

n!

and

B1
(
t, x, y, z,−→v , r, a, b

)
= 2 (b + f (t, a))z exp(xt)M5

(
t, y,−→v , r

)
(13)

=
∞

∑
n=0

h2
(
n, x, y, z;−→v , r, a, b

) tn

n!
,

where

M5
(
t, y,−→v , r

)
= exp

(
r

∑
j=1

vjtj

)
sin (yt) =

∞

∑
n=0

Sn
(−→v , y; r

) tn

n!
.

The rest of this article is briefly summarized as follows:
In Section 2, we define generating functions for two parametric kinds of Eulerian-type polynomials.

By using Euler’s formula and these generating functions with their functional equations, we give
relations and computation formulae for these polynomials. By using these formulae, we give a few
values of these polynomials. Finally, we give some relations among the Apostol–Bernoulli polynomials,
the Apostol–Euler polynomials, the Frobenius–Euler polynomials, the Apostol–Genocchi polynomials,
the Stirling numbers, the Fubini-type polynomials and these polynomials.

In Section 3, we give functional equations and differential equations of these generating
functions. By using these functional and differential equations, we derive derivative formulae and
finite combinatorial sums involving the Apostol–Bernoulli numbers, the Apostol–Euler numbers,
the Apostol–Genocchi numbers and for two parametric kinds of Eulerian-type polynomials.
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Section 4 is the conclusions section.

2. New Families of Two Parametric Kinds of Eulerian-Type Polynomials

In this section, we construct generating functions for two parametric kinds of Eulerian-type
polynomials. By combining these functions with the Euler’s formula, we give not only fundamental
properties of these polynomials, but also new identities and relations related to the Apostol–Bernoulli
numbers, the Apostol–Euler numbers, the Apostol–Genocchi numbers and for two parametric kinds
of Eulerian-type polynomials.

We define the following generating functions for two parametric kinds of Eulerian-type polynomials:

F(k1)
HC (t, x, y; λ, u) =

(
1− u

λet − u

)k1

ext cos (yt) =
∞

∑
n=0
H(C,k1)

n (x, y; λ, u)
tn

n!
, (14)

and

F(k2)
HS (t, x, y; λ, u) =

(
1− u

λet − u

)k2

ext sin (yt) =
∞

∑
n=0
H(S,k2)

n (x, y; λ, u)
tn

n!
, (15)

where k1, k2 ∈ N0.
The polynomials H(C,k1)

n (x, y; λ, u) and H(S,k2)
n (x, y; λ, u) are so-called two parametric kinds of

Eulerian-type polynomials of order k1 and k2, respectively.
Note that the symbols C and S occurring in the superscripts on the right-hand sides of

Equations (14) and (15) denote the trigonometric cosine and the trigonometric sine functions, respectively.

Remark 1. Substituting b = 0 and

f
(

t,
a
u

)
=

(
u

1− u

)
1− u

aet − u

and −→v =
−→
0 into Equations (12) and (13), we have the following identities, respectively:

h1

(
n, x, y, z;

−→
0 , r,

a
u

, 0
)
= 2

(
u

1− u

)z
H(C,z)

n (x, y; a, u)

and

h2

(
n, x, y, z;

−→
0 , r,

a
u

, 0
)
= 2

(
u

1− u

)z
H(S,z)

n (x, y; a, u) .

Remark 2. Substituting k1 = k2 = 1 into (14) and (15), we get the following generating functions, respectively:

FHC (t, x, y; λ, u) =
1− u

λet − u
ext cos (yt) =

∞

∑
n=0
H(C)

n (x, y; λ, u)
tn

n!

and

FHS (t, x, y; λ, u) =
1− u

λet − u
ext sin (yt) =

∞

∑
n=0
H(S)

n (x, y; λ, u)
tn

n!
.

Remark 3. In ([19], p. 10), the second author defined following generating function for generalized
Eulerian-type polynomials of order m:

F(m)
λ (t, x; u, a, b, c) =

(
at − u

λbt − u

)m

cxt =
∞

∑
n=0
H(m)

n (x; u; a, b, c; λ)
tn

n!
. (16)
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Substituting a = 1, b = c = e into the above equation, we have

F(k1)
HC (t, x, 0; λ, u) = F(k1)

λ (t, x; u, 1, e, e)

and
F(k2)

HS

(
t, x,

π

2
; λ, u

)
= F(k2)

λ (t, x; u, 1, e, e) .

Theorem 1. Let n ∈ N0. Then, we have

H(m)
n (x + iy; λ, u) = H(C,m)

n (x, y; λ, u) + iH(S,m)
n (x, y; λ, u) . (17)

Proof. By combining Equations (14) and (15) with the Euler’s formula, we obtain(
1− u

λet − u

)m
e(x+iy)t =

∞

∑
n=0

(
H(C,m)

n (x, y; λ, u) + iH(S,m)
n (x, y; λ, u)

) tn

n!
.

Therefore,

∞

∑
n=0
H(m)

n (x + iy; λ, u)
tn

n!
=

∞

∑
n=0

(
H(C,m)

n (x, y; λ, u) + iH(S,m)
n (x, y; λ, u)

) tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Theorem 2. Let n ∈ N0. Then, we have

Cn (x, y) =
(

u
1− u

)k1

k1!
n

∑
j=0

(
n
j

)
S2

(
n− j, k1;

λ

u

)
H(C,k1)

j (x, y; λ, u) .

Proof. By using (3), (9) and (14), we get the following functional equation:

uk1 k1!FS2

(
t, k1;

λ

u

)
F(k1)

HC (t, x, y; λ, u) = (1− u)k1 FC (t, x, y) .

Using the aforementioned equation, we get(
1− u

u

)k1 ∞

∑
n=0

Cn (x, y)
tn

n!
= k1!

∞

∑
n=0

S2

(
n, k1;

λ

u

)
tn

n!

∞

∑
n=0
H(C,k1)

n (x, y; λ, u)
tn

n!
.

Therefore,

∞

∑
n=0

Cn (x, y)
tn

n!
=

(
u

1− u

)k1

k1!
∞

∑
n=0

n

∑
j=0

(
n
j

)
S2

(
n− j, k1;

λ

u

)
H(C,k1)

j (x, y; λ, u)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Theorem 3. Let n ∈ N0. Then, we have

Sn (x, y) =
(

u
1− u

)k2

k2!
n

∑
j=0

(
n
j

)
S2

(
n− j, k2;

λ

u

)
H(S,k2)

j (x, y; λ, u) .
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Proof. By using (3), (10) and (15), we obtain the following functional equation:

uk2 k2!FS2

(
t, k2;

λ

u

)
F(k2)

HS (t, x, y; λ, u) = (1− u)k2 FS (t, x, y) .

Using the aforementioned functional equation, we get(
1− u

u

)k2 ∞

∑
n=0

Sn (x, y)
tn

n!
= k2!

∞

∑
n=0

S2

(
n, k2;

λ

u

)
tn

n!

∞

∑
n=0
H(S,k2)

n (x, y; λ, u)
tn

n!
.

Therefore,

∞

∑
n=0

Sn (x, y)
tn

n!
=

(
u

1− u

)k2

k2!
∞

∑
n=0

n

∑
j=0

(
n
j

)
S2

(
n− j, k2;

λ

u

)
H(S,k2)

j (x, y; λ, u)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Theorem 4. Let n ∈ N0. Then, we have

H(C,k1)
n (x, y; λ, u) =

[ n
2 ]

∑
j=0

(−1)j
(

n
2j

)
H(k1)

n−2j (x; λ, u) y2j. (18)

Proof. By using (14) and (6), we obtain the following functional equation:

F(k1)
HC (t, x, y; λ, u) = F(k1)

AH (t, x; λ, u) cos (yt) .

By using the aforementioned equation, we get

∞

∑
n=0
H(C,k1)

n (x, y; λ, u)
tn

n!
=

∞

∑
n=0
H(k1)

n (x; λ, u)
tn

n!

∞

∑
n=0

(−1)n (yt)2n

(2n)!
.

Therefore,

∞

∑
n=0
H(C,k1)

n (x, y; λ, u)
tn

n!
=

∞

∑
n=0

[ n
2 ]

∑
j=0

(−1)j
(

n
2j

)
H(k1)

n−2j (x; λ, u) y2j tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Combining (18) with (8), we get the following corollary:

Corollary 1. Let n ∈ N0. Then, we have

H(C,k1)
n (x, y; λ, u) =

(
1− u
λ− u

)k1 [
n
2 ]

∑
j=0

(−1)j
(

n
2j

)
y2j H(k1)

n−2j

(
x;

u
λ

)
.

Theorem 5. Let n ∈ N. Then, we have

H(S,k2)
n (x, y; λ, u) =

[ n−1
2 ]

∑
j=0

(−1)j
(

n
2j + 1

)
H(k2)

n−1−2j (x; λ, u) y2j+1. (19)
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Proof. By using (15) and (6), we obtain the following functional equation:

F(k2)
HS (t, x, y; λ, u) = F(k2)

AH (t, x; λ, u) sin (yt) .

Using the aforementioned equation, we get

∞

∑
n=0
H(S,k2)

n (x, y; λ, u)
tn

n!
=

∞

∑
n=0
H(k2)

n (x; λ, u)
tn

n!

∞

∑
n=0

(−1)n (yt)2n+1

(2n + 1)!
.

Therefore,

∞

∑
n=0
H(S,k2)

n (x, y; λ, u)
tn

n!
=

∞

∑
n=0

[ n−1
2 ]

∑
j=0

(−1)j
(

n
2j + 1

)
H(k2)

n−1−2j (x; λ, u) y2j+1 tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Combining (19) with (8), we arrive at the following corollary:

Corollary 2. Let n ∈ N. Then, we have

H(S,k2)
n (x, y; λ, u) =

(
1− u
λ− u

)k2 [
n−1

2 ]

∑
j=0

(−1)j
(

n
2j + 1

)
y2j+1H(k2)

n−1−2j

(
x;

u
λ

)
.

Theorem 6. Let n ∈ N0. Then, we have

H(C,k1)
n (x, y; λ, u) =

(
1− u
λ− u

)k1 n

∑
j=0

(
n
j

)
H(k1)

j

( u
λ

)
Cn−j (x, y) . (20)

Proof. Using (8), (9) and (14), we get

∞

∑
n=0
H(C,k1)

n (x, y; λ, u)
tn

n!
=

(
1− u
λ− u

)k1 ∞

∑
n=0

H(k1)
n

( u
λ

) tn

n!

∞

∑
n=0

Cn (x, y)
tn

n!
.

Therefore,

∞

∑
n=0
H(C,k1)

n (x, y; λ, u)
tn

n!
=

(
1− u
λ− u

)k1 ∞

∑
n=0

n

∑
j=0

(
n
j

)
H(k1)

j

( u
λ

)
Cn−j (x, y)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Theorem 7. Let n ∈ N0. Then, we have

H(S,k2)
n (x, y; λ, u) =

(
1− u
λ− u

)k2 n

∑
j=0

(
n
j

)
H(k2)

j

( u
λ

)
Sn−j (x, y) . (21)

Proof. Using (8), (10) and (15), we obtain

∞

∑
n=0
H(S,k2)

n (x, y; λ, u)
tn

n!
=

(
1− u
λ− u

)k2 ∞

∑
n=0

H(k2)
n

( u
λ

) tn

n!

∞

∑
n=0

Sn (x, y)
tn

n!
.
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Therefore,

∞

∑
n=0
H(S,k2)

n (x, y; λ, u)
tn

n!
=

(
1− u
λ− u

)k2 ∞

∑
n=0

n

∑
j=0

(
n
j

)
H(k2)

j

( u
λ

)
Sn−j (x, y)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

By using (20) and (21) in which k1 = k2 = m, we have

∞

∑
n=0

(
H(C,m)

n (x, y; λ, u) + iH(S,m)
n (x, y; λ, u)

) tn

n!

=

(
1− u
λ− u

)m ∞

∑
n=0

n

∑
j=0

(
n
j

)
H(m)

j

( u
λ

) (
Cn−j (x, y) + iSn−j (x, y)

) tn

n!
.

Using the aforementioned Equation (17) and Euler’s formula, we obtain

∞

∑
n=0
H(m)

n (x + iy; λ, u)
tn

n!
=

(
1− u
λ− u

)m ∞

∑
n=0

n

∑
j=0

(
n
j

)
H(m)

j

( u
λ

)
(x + iy)n−j tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we get the
following theorem:

Theorem 8. Let n ∈ N0. Then, we have

H(m)
n (x + iy; λ, u) =

(
1− u
λ− u

)m n

∑
j=0

(
n
j

)
H(m)

j

( u
λ

)
(x + iy)n−j .

Theorem 9. Let n ∈ N0. Then, we have

H(S,k1+k2)
n (2x, 2y; λ, u) = 2

n

∑
j=0

(
n
j

)
H(C,k1)

j (x, y; λ, u)H(S,k2)
n−j (x, y; λ, u) . (22)

Proof. By using (14) and (15), we get the following functional equation:

F(k1+k2)
HS (t, 2x, 2y; λ, u) = 2F(k1)

HC (t, x, y; λ, u) F(k2)
HS (t, x, y; λ, u) .

Using the aforementioned equation, we get

∞

∑
n=0
H(S,k1+k2)

n (2x, 2y; λ, u)
tn

n!
= 2

∞

∑
n=0
H(C,k1)

n (x, y; λ, u)
tn

n!

∞

∑
n=0
H(S,k2)

n (x, y; λ, u)
tn

n!
.

Therefore,

∞

∑
n=0
H(S,k1+k2)

n (2x, 2y; λ, u)
tn

n!
= 2

∞

∑
n=0

n

∑
j=0

(
n
j

)
H(C,k1)

j (x, y; λ, u)H(S,k2)
n−j (x, y; λ, u)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.
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Theorem 10. Let n ∈ N0. Then, we have

2
n

∑
j=0

(
n
j

)
H(C,k1)

j (x, y; λ, u)H(S,k2)
n−j (x, y; λ, u) =

n

∑
j=0

(
n
j

)
H(k1)

j (x; λ, u)H(S,k2)
n−j (x, 2y; λ, u) . (23)

Proof. Combining (6), (14) with (15), we obtain the following functional equation:

2F(k1)
HC (t, x, y; λ, u) F(k2)

HS (t, x, y; λ, u) = F(k1)
AH (t, x; λ, u) F(k2)

HS (t, x, 2y; λ, u) .

From the above equation, we have

2
∞

∑
n=0
H(C,k1)

n (x, y; λ, u)
tn

n!

∞

∑
n=0
H(S,k2)

n (x, y; λ, u)
tn

n!
=

∞

∑
n=0
H(k1)

n (x; λ, u)
tn

n!

∞

∑
n=0
H(S,k2)

n (x, 2y; λ, u)
tn

n!
.

Therefore,

2
∞

∑
n=0

n

∑
j=0

(
n
j

)
H(C,k1)

j (x, y; λ, u)H(S,k2)
n−j (x, y; λ, u)

tn

n!
=

∞

∑
n=0

n

∑
j=0

(
n
j

)
H(k1)

j (x; λ, u)H(S,k2)
n−j (x, 2y; λ, u)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Theorem 11. Let n ∈ N0. Then, we have

H(C,k1)
n−k1

(x, y; λ, u) =
(

1− u
u

)k1 1
( n

k1
)k1!

[ n
2 ]

∑
j=0

(−1)j
(

n
2j

)
B(k1)

n−2j

(
x;

λ

u

)
y2j. (24)

Proof. Combining (1) with (14), we get the following functional equation:

F(k1)
HC (t, x, y; λ, u) =

(
1− u

ut

)k1

F(k1)
AB

(
t, x;

λ

u

)
cos (yt) .

By using the aforementioned equation, we get

tk1
∞

∑
n=0
H(C,k1)

n (x, y; λ, u)
tn

n!
=

(
1− u

u

)k1 ∞

∑
n=0
B(k1)

n

(
x;

λ

u

)
tn

n!

∞

∑
n=0

(−1)n (yt)2n

(2n)!
.

Therefore,

∞

∑
n=0

(
n
k1

)
k1!H(C,k1)

n−k1
(x, y; λ, u)

tn

n!
=

(
1− u

u

)k1 ∞

∑
n=0

[ n
2 ]

∑
j=0

(−1)j
(

n
2j

)
B(k1)

n−2j

(
x;

λ

u

)
y2j tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Theorem 12. Let n ∈ N. Then, we have

H(S,k2)
n−k2

(x, y; λ, u) =
(

1− u
u

)k2 1
( n

k2
)k2!

[ n−1
2 ]

∑
j=0

(−1)j
(

n
2j + 1

)
B(k2)

n−1−2j

(
x;

λ

u

)
y2j+1. (25)
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Proof. Combining (1) with (15), we obtain the following functional equation:

F(k2)
HS (t, x, y; λ, u) =

(
1− u

ut

)k2

F(k2)
AB

(
t, x;

λ

u

)
sin (yt) .

Using the above functional equation, observe that proof of the assertion of (25) follows precisely
along the same lines as that proof of the assertion of (24), and so we omit it.

Theorem 13. Let n ∈ N0. Then, we have

H(C,k1)
n−k1

(x, y; λ, u) =
(

u− 1
2u

)k1 1
( n

k1
)k1!

[ n
2 ]

∑
j=0

(−1)j
(

n
2j

)
G(k1)

n−2j

(
x;−λ

u

)
y2j. (26)

Proof. Combining (5) with (14), we have the following functional equation:

F(k1)
HC (t, x, y; λ, u) =

(
u− 1
2ut

)k1

F(k1)
AG

(
t, x;−λ

u

)
cos (yt) .

Using the aforementioned equation, we get

tk1
∞

∑
n=0
H(C,k1)

n (x, y; λ, u)
tn

n!
=

(
u− 1

2u

)k1 ∞

∑
n=0
G(k1)

n

(
x;−λ

u

)
tn

n!

∞

∑
n=0

(−1)n (yt)2n

(2n)!
.

Therefore,

∞

∑
n=0

(
n
k1

)
k1!H(C,k1)

n−k1
(x, y; λ, u)

tn

n!
=

(
u− 1

2u

)k1 ∞

∑
n=0

[ n
2 ]

∑
j=0

(−1)j
(

n
2j

)
G(k1)

n−2j

(
x;−λ

u

)
y2j tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Theorem 14. Let n ∈ N. Then, we have

H(S,k2)
n−k2

(x, y; λ, u) =

(
u−1
2u

)k2

( n
k2
)k2!

[ n−1
2 ]

∑
j=0

(−1)j
(

n
2j + 1

)
G(k2)

n−1−2j

(
x;−λ

u

)
y2j+1. (27)

Proof. By using (5) and (15), we derive the following functional equation:

F(k2)
HS (t, x, y; λ, u) =

(
u− 1
2ut

)k2

F(k2)
AG

(
t, x;−λ

u

)
sin (yt) .

From the above equation, observe that proof of the assertion of (27) follows precisely along the
same lines as that proof of assertion of (26), and so we omit it.

Theorem 15. Let n ∈ N0. Then, we have

H(C,k1)
n (x, y; λ, u) =

(
u− 1

2u

)k1 [
n
2 ]

∑
j=0

(−1)j
(

n
2j

)
E (k1)

n−2j

(
x;−λ

u

)
y2j. (28)
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Proof. By using (2) and (14), we derive the following functional equation:

F(k1)
HC (t, x, y; λ, u) =

(
u− 1

2u

)k1

F(k1)
AE

(
t, x;−λ

u

)
cos (yt) .

Using the aforementioned equation, we get

∞

∑
n=0
H(C,k1)

n (x, y; λ, u)
tn

n!
=

(
u− 1

2u

)k1 ∞

∑
n=0
E (k1)

n

(
x;−λ

u

)
tn

n!

∞

∑
n=0

(−1)n (yt)2n

(2n)!
.

Therefore,

∞

∑
n=0
H(C,k1)

n (x, y; λ, u)
tn

n!
=

(
u− 1

2u

)k1 ∞

∑
n=0

[ n
2 ]

∑
j=0

(−1)j
(

n
2j

)
E (k1)

n−2j

(
x;−λ

u

)
y2j tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Combining (28) with (4), we have the following theorem:

Theorem 16. Let n ∈ N0. Then, we have

H(C,k1)
n (x, y; λ, u) =

(
u− 1
u− λ

)k1 [
n
2 ]

∑
j=0

(−1)j
(

n
2j

)
y2j (29)

×
n−2j

∑
l=0

(
n− 2j

l

)
xn−2j−l

l

∑
v=0

(
k1 + v− 1

v

)
v!
(

λ

u− λ

)v
S2 (l, v) .

For k1 = 1, 2, 3 and n = 1, 2, 3, by using Equation (29), we compute a few values of the polynomials
H(C,k1)

n (x, y; λ, u) as follows:
For k1 = 1, we have

H(C,1)
0 (x, y; λ, u) =

u− 1
u− λ

,

H(C,1)
1 (x, y; λ, u) =

u− 1
u− λ

(
λ

u− λ
+ x
)

,

H(C,1)
2 (x, y; λ, u) =

u− 1
u− λ

(
2λ2

(u− λ)2 +
λ (1 + 2x)

u− λ
+ x2 − y2

)
,

H(C,1)
3 (x, y; λ, u) =

u− 1
u− λ

(
6λ3

(u− λ)3 +
6λ2 (1 + x)

(u− λ)2 +
λ
(
1 + 3x + 3x2 − 3y2)

u− λ
+ x3 − 3xy2

)
.

For k1 = 2, we have

H(C,2)
0 (x, y; λ, u) =

(
u− 1
u− λ

)2
,

H(C,2)
1 (x, y; λ, u) =

(
u− 1
u− λ

)2 ( 2λ

u− λ
+ x
)

,

H(C,2)
2 (x, y; λ, u) =

(
u− 1
u− λ

)2
(

6λ2

(u− λ)2 +
2λ (1 + 2x)

u− λ
+ x2 − y2

)
,

H(C,2)
3 (x, y; λ, u) =

(
u− 1
u− λ

)2
(

24λ3

(u− λ)3 +
18λ2 (1 + x)

(u− λ)2 +
2λ
(
1 + 3x + 3x2 − 3y2)

u− λ
+ x3 − 3xy2

)
.
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For k1 = 3, we have

H(C,3)
0 (x, y; λ, u) =

(
u− 1
u− λ

)3
,

H(C,3)
1 (x, y; λ, u) =

(
u− 1
u− λ

)3 ( 3λ

u− λ
+ x
)

,

H(C,3)
2 (x, y; λ, u) =

(
u− 1
u− λ

)3
(

12λ2

(u− λ)2 +
3λ (1 + 2x)

u− λ
+ x2 − y2

)
,

H(C,3)
3 (x, y; λ, u) =

(
u− 1
u− λ

)3
(

60λ3

(u− λ)3 +
36λ2 (1 + x)

(u− λ)2 +
3λ
(
1 + 3x + 3x2 − 3y2)

u− λ
+ x3 − 3xy2

)
.

Theorem 17. Let n ∈ N. Then, we have

H(S,k2)
n (x, y; λ, u) =

(
u− 1

2u

)k2 [
n−1

2 ]

∑
j=0

(−1)j
(

n
2j + 1

)
E (k2)

n−1−2j

(
x;−λ

u

)
y2j+1. (30)

Proof. Using (2) and (15), we derive the following functional equation:

F(k2)
HS (t, x, y; λ, u) =

(
u− 1

2u

)k2

F(k2)
AE

(
t, x;−λ

u

)
sin (yt) .

From the above equation, observe that proof of the assertion of (30) follows precisely along the
same lines as that proof of the assertion of (28), and so we omit it.

Combining (30) with (4), we have the following theorem:

Theorem 18. Let n ∈ N0. Then, we have

H(S,k2)
n (x, y; λ, u) =

(
u− 1
u− λ

)k2 [
n−1

2 ]

∑
j=0

(−1)j
(

n
2j + 1

)
y2j+1 (31)

×
n−1−2j

∑
l=0

(
n− 1− 2j

l

)
xn−1−2j−l

l

∑
v=0

(
k2 + v− 1

v

)
v!
(

λ

u− λ

)v
S2 (l, v) .

For k2 = 1, 2, 3 and n = 1, 2, 3, by using Equation (31), we compute a few values of the polynomials
H(S,k2)

n (x, y; λ, u) as follows:
For k2 = 1, we have

H(S,1)
0 (x, y; λ, u) = 0,

H(S,1)
1 (x, y; λ, u) =

u− 1
u− λ

y,

H(S,1)
2 (x, y; λ, u) =

u− 1
u− λ

(
2λy

u− λ
+ 2xy

)
,

H(S,1)
3 (x, y; λ, u) =

u− 1
u− λ

(
6λ2y

(u− λ)2 +
3λ (y + 2xy)

u− λ
+ 3x2y− y3

)
.
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For k2 = 2, we have

H(S,2)
0 (x, y; λ, u) = 0,

H(S,2)
1 (x, y; λ, u) =

(
u− 1
u− λ

)2
y,

H(S,2)
2 (x, y; λ, u) =

(
u− 1
u− λ

)2 ( 4λy
u− λ

+ 2xy
)

,

H(S,2)
3 (x, y; λ, u) =

(
u− 1
u− λ

)2
(

18λ2y

(u− λ)2 +
6λ (y + 2xy)

u− λ
+ 3x2y− y3

)
.

For k2 = 3, we have

H(S,3)
0 (x, y; λ, u) = 0,

H(S,3)
1 (x, y; λ, u) =

(
u− 1
u− λ

)3
y,

H(S,3)
2 (x, y; λ, u) =

(
u− 1
u− λ

)3 ( 6λy
u− λ

+ 2xy
)

,

H(S,3)
3 (x, y; λ, u) =

(
u− 1
u− λ

)3
(

36λ2y

(u− λ)2 +
9λ (y + 2xy)

u− λ
+ 3x2y− y3

)
.

Theorem 19. Let n ∈ N0. Then, we have

H(C,2k1)
n (x, y; 1, 2) =

1
2k1

[ n
2 ]

∑
j=0

(−1)j
(

n
2j

)
a(k1)

n−2j (x) y2j. (32)

Proof. By using (11) and (14), the following functional equation is obtained:

F(2k1)
HC (t, x, y; 1, 2) =

1
2k1

F(k1)
a (t, x) cos (yt) .

Using the aforementioned equation, we get

∞

∑
n=0

H(C,2k1)
n (x, y; 1, 2)

tn

n!
=

1
2k1

∞

∑
n=0

[ n
2 ]

∑
j=0

(−1)j
(

n
2j

)
a(k1)

n−2j (x) y2j tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Theorem 20. Let n ∈ N. Then, we have

H(S,2k2)
n (x, y; 1, 2) =

1
2k2

[ n−1
2 ]

∑
j=0

(−1)j
(

n
2j + 1

)
a(k2)

n−1−2j (x) y2j+1. (33)

Proof. By using (11) and (15), we derive the following functional equation:

F(2k2)
HS (t, x, y; 1, 2) =

1
2k2

F(k2)
a (t, x) sin (yt) .

From the above equation, observe that proof of the assertion of (33) follows precisely along the
same lines as that proof of the assertion of (32), and so we omit it.
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3. Partial Derivative Equations of Generating Functions for Two Parametric Kinds of Eulerian-Type Polynomials

In this section, by applying partial derivative operator to Equations (14) and (15), we give some
derivative formulae and finite combinatorial sums for the two parametric kinds of Eulerian-type
polynomials.

3.1. Partial Derivative Formulas for the PolynomialsH(C,k1)
n (x, y; λ, u)

Here, partial derivative equations of generating functions for the polynomialsH(C,k1)
n (x, y; λ, u)

are given. By applying partial differential operator to Equation (14), we derive derivative formulae and
finite combinatorial sums related to the polynomialsH(C,k1)

n (x, y; λ, u), the Apostol–Bernoulli numbers
of higher order, the Apostol–Euler numbers of higher order, and the Apostol–Genocchi numbers of
higher order.

Theorem 21. Let n, m ∈ N. Then, we have

∂m

∂xm

{
H(C,k1)

n (x, y; λ, u)
}
=

(
1− u

u

)m n

∑
j=0

(
n
j

)
B(m)

j

(
λ

u

)
H(C,k1−m)

n−j (x, y; λ, u) . (34)

Proof. By applying the derivative operator ∂m

∂xm to Equation (14), we get

∞

∑
n=0

∂m

∂xm

{
H(C,k1)

n (x, y; λ, u)
} tn

n!
=

(
1− u

u

)m ∞

∑
n=0
B(m)

n

(
λ

u

)
tn

n!

∞

∑
n=0
H(C,k1−m)

n (x, y; λ, u)
tn

n!
.

Therefore,

∞

∑
n=0

∂m

∂xm

{
H(C,k1)

n (x, y; λ, u)
} tn

n!
=

(
1− u

u

)m ∞

∑
n=0

n

∑
j=0

(
n
j

)
B(m)

j

(
λ

u

)
H(C,k1−m)

n−j (x, y; λ, u)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Theorem 22. Let n, m ∈ N. Then, we have

∂m

∂xm

{
H(C,k1)

n (x, y; λ, u)
}
=

(
u− 1

2u

)m n

∑
j=0

(
n
j

)
G(m)

j

(
−λ

u

)
H(C,k1−m)

n−j (x, y; λ, u) . (35)

Proof. By applying the derivative operator ∂m

∂xm to Equation (14), we get

∞

∑
n=0

∂m

∂xm

{
H(C,k1)

n (x, y; λ, u)
} tn

n!
=

(
u− 1

2u

)m ∞

∑
n=0
G(m)

n

(
−λ

u

)
tn

n!

∞

∑
n=0
H(C,k1−m)

n (x, y; λ, u)
tn

n!
.

Therefore,

∞

∑
n=0

∂m

∂xm

{
H(C,k1)

n (x, y; λ, u)
} tn

n!
=

(
u− 1

2u

)m ∞

∑
n=0

n

∑
j=0

(
n
j

)
G(m)

j

(
−λ

u

)
H(C,k1−m)

n−j (x, y; λ, u)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.
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Theorem 23. Let n, m ∈ N with n ≥ m. Then, we have

∂m

∂xm

{
H(C,k1)

n (x, y; λ, u)
}
=

(
u− 1

2u

)m (n
m

)
m!

n−m

∑
j=0

(
n−m

j

)
E (m)

j

(
−λ

u

)
H(C,k1−m)

n−m−j (x, y; λ, u) . (36)

Proof. By applying the derivative operator ∂m

∂xm to Equation (14), we obtain

∞

∑
n=0

∂m

∂xm

{
H(C,k1)

n (x, y; λ, u)
} tn

n!
=

(
u− 1

2u

)m
tm

∞

∑
n=0
E (m)

n

(
−λ

u

)
tn

n!

∞

∑
n=0
H(C,k1−m)

n (x, y; λ, u)
tn

n!
.

Therefore,

∞

∑
n=0

∂m

∂xm

{
H(C,k1)

n (x, y; λ, u)
} tn

n!

=

(
u− 1

2u

)m ∞

∑
n=0

n−m

∑
j=0

(
n−m

j

)(
n
m

)
m!E (m)

j

(
−λ

u

)
H(C,k1−m)

n−m−j (x, y; λ, u)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Combining (34) and (35) with (36), we arrive at the following theorem:

Theorem 24. Let n, m ∈ N0 with n ≥ m. Then, we have

n

∑
j=0

(
n
j

)
B(m)

j

(
λ

u

)
H(C,k1−m)

n−j (x, y; λ, u) =
m!

(−2)m

(
n
m

) n−m

∑
j=0

(
n−m

j

)
E (m)

j

(
−λ

u

)
H(C,k1−m)

n−m−j (x, y; λ, u) ,

n

∑
j=0

(
n
j

)
B(m)

j

(
λ

u

)
H(C,k1−m)

n−j (x, y; λ, u) =
1

(−2)m

n

∑
j=0

(
n
j

)
G(m)

j

(
−λ

u

)
H(C,k1−m)

n−j (x, y; λ, u) ,

and

n

∑
j=0

(
n
j

)
G(m)

j

(
−λ

u

)
H(C,k1−m)

n−j (x, y; λ, u) =
(

n
m

)
m!

n−m

∑
j=0

(
n−m

j

)
E (m)

j

(
−λ

u

)
H(C,k1−m)

n−m−j (x, y; λ, u) .

3.2. Partial Derivative Formulas for the PolynomialsH(S,k2)
n (x, y; λ, u)

Here, partial derivative equations for generating functions of the polynomialsH(S,k2)
n (x, y; λ, u)

are given.
By applying the partial differential operator to Equation (15), we give derivative formulae and

finite combinatorial sums related to the polynomialsH(S,k2)
n (x, y; λ, u), the Apostol–Bernoulli numbers

of higher order, the Apostol–Euler numbers of higher order, and the Apostol–Genocchi numbers of
higher order.

Theorem 25. Let n, m ∈ N. Then, we have

∂m

∂xm

{
H(S,k2)

n (x, y; λ, u)
}
=

(
1− u

u

)m n

∑
j=0

(
n
j

)
B(m)

j

(
λ

u

)
H(S,k2−m)

n−j (x, y; λ, u) . (37)
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Proof. By applying the derivative operator ∂m

∂xm to Equation (15), we have

∞

∑
n=0

∂m

∂xm

{
H(S,k2)

n (x, y; λ, u)
} tn

n!
=

(
1− u

u

)m ∞

∑
n=0
B(m)

n

(
λ

u

)
tn

n!

∞

∑
n=0
H(S,k2−m)

n (x, y; λ, u)
tn

n!
.

Therefore,

∞

∑
n=0

∂m

∂xm

{
H(S,k2)

n (x, y; λ, u)
} tn

n!
=

(
1− u

u

)m ∞

∑
n=0

n

∑
j=0

(
n
j

)
B(m)

j

(
λ

u

)
H(S,k2−m)

n−j (x, y; λ, u)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, we arrive at the
desired result.

Theorem 26. Let n, m ∈ N. Then, we have

∂m

∂xm

{
H(S,k2)

n (x, y; λ, u)
}
=

(
u− 1

2u

)m n

∑
j=0

(
n
j

)
G(m)

j

(
−λ

u

)
H(S,k2−m)

n−j (x, y; λ, u) . (38)

Proof. By applying the derivative operator ∂m

∂xm to Equation (15), we get

∞

∑
n=0

∂m

∂xm

{
H(S,k2)

n (x, y; λ, u)
} tn

n!
=

(
1− u
−2u

)m ∞

∑
n=0
G(m)

n

(
−λ

u

)
tn

n!

∞

∑
n=0
H(S,k2−m)

n (x, y; λ, u)
tn

n!
.

Therefore,

∞

∑
n=0

∂m

∂xm

{
H(S,k2)

n (x, y; λ, u)
} tn

n!
=

(
1− u
−2u

)m ∞

∑
n=0

n

∑
j=0

(
n
j

)
G(m)

j

(
−λ

u

)
H(S,k2−m)

n−j (x, y; λ, u)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, after some
elementary calculations, we arrive at the desired result.

Theorem 27. Let n, m ∈ N with n ≥ m. Then, we have

∂m

∂xm

{
H(S,k2)

n (x, y; λ, u)
}
=

(
u− 1

2u

)m (n
m

)
m!

n−m

∑
j=0

(
n−m

j

)
E (m)

j

(
−λ

u

)
H(S,k2−m)

n−m−j (x, y; λ, u) . (39)

Proof. By applying derivative operator ∂m

∂xm to Equation (15), we obtain

∞

∑
n=0

∂m

∂xm

{
H(S,k2)

n (x, y; λ, u)
} tn

n!
=

(
1− u
−2u

)m
tm

∞

∑
n=0
E (m)

n

(
−λ

u

)
tn

n!

∞

∑
n=0
H(S,k2−m)

n (x, y; λ, u)
tn

n!
.

Therefore,

∞

∑
n=0

∂m

∂xm

{
H(S,k2)

n (x, y; λ, u)
} tn

n!

=

(
1− u
−2u

)m ∞

∑
n=0

(
n
m

)
m!

n−m

∑
j=0

(
n−m

j

)
E (m)

j

(
−λ

u

)
H(S,k2−m)

n−m−j (x, y; λ, u)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the aforementioned equation, after some
elementary calculations, we arrive at the desired result.

Combining (37) and (38) with (39), we arrive at the following theorem:
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Theorem 28. Let n, m ∈ N0 with n ≥ m. Then, we have

n

∑
j=0

(
n
j

)
B(m)

j

(
λ

u

)
H(S,k2−m)

n−j (x, y; λ, u) =
m!

(−2)m

(
n
m

) n−m

∑
j=0

(
n−m

j

)
E (m)

j

(
−λ

u

)
H(S,k2−m)

n−m−j (x, y; λ, u) ,

n

∑
j=0

(
n
j

)
B(m)

j

(
λ

u

)
H(S,k2−m)

n−j (x, y; λ, u) =
1

(−2)m

n

∑
j=0

(
n
j

)
G(m)

j

(
−λ

u

)
H(S,k2−m)

n−j (x, y; λ, u) ,

and

n

∑
j=0

(
n
j

)
G(m)

j

(
−λ

u

)
H(S,k2−m)

n−j (x, y; λ, u) =
(

n
m

)
m!

n−m

∑
j=0

(
n−m

j

)
E (m)

j

(
−λ

u

)
H(S,k2−m)

n−m−j (x, y; λ, u) .

4. Conclusions

In this article, we defined new families of two parametric kinds of Eulerian-type polynomials
with their generating functions. Combining the Euler’s formula with these generating functions,
their functional equations and partial derivative equations, we investigated some properties of
these polynomials. We also derived new identities and relations involving Apostol-type numbers
and polynomials, the Stirling numbers, Fubini-type polynomials, combinatorial sums and also the
aforementioned new families of polynomials. Thus, the aforementioned results have the potential
to motivate the curious researchers and readers for future research on these special numbers and
polynomials. Consequently, the results of this article may potentially be used in mathematics,
in mathematical physics and in engineering.
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