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Abstract: In this study, we report the synthesis, characterization, and chiroptical properties of
azo-group-containing chiral salen type Schiff base Ni(II), Cu(II), and Zn(II) complexes absorbed
on gold nanoparticles (AuNPs) of 10 nm diameters. Induced circular dichroism (CD) around the
plasmon region from the chiral species weakly adsorbed on the surface of AuNP were observed
when there were appropriate dipole–dipole interactions at the initial states. Spectral changes were
also observed by not only cis-trans photoisomerization of azo-groups but also changes of orientation
due to Weigert effect of azo-dyes after linearly polarized UV light irradiation. Spatial features were
discussed based on dipole-dipole interactions mainly within an exciton framework.

Keywords: chirality; azobenzene; photo-isomerization; Weigert effect; Schiff base complexes; gold
nanoparticles; time-dependent density functional theory (TD-DFT)

1. Introduction

Despite having an identical chemical formula, some compounds show differences in chemical
properties or optical properties. Such molecules are called “chiral” molecules, which may be one of
the most important concepts concerning biomolecules and stereochemistry. There is no difference in
physical properties between a pair of enantiomer molecules in a mirror image relationship. In this
context, differences in the magnitude of light absorption are conventionally called circular dichroism
(CD) [1].

Recently, beyond chiral metal nanoparticles [2,3], chiral hybrid materials composed of chiral
molecules and (achiral) semiconductor or metal nanoparticles, such as gold nanoparticles (AuNP),
have been studied [3–5] and developed. The hybrid systems of AuNP and chiral metal complexes
have been investigated for biomaterials [6–8]. When chiral metal compounds are adsorbed on AuNP
(or nanostructured surface of gold substrates), interaction of the chiroptical signals between their
dipole moments may be caused by surface plasmon resonance [4,5,9]. When they have (chemically)
specific bonds, the magnitude of induced CD spectra increases or decreases depending on the direction
of the dipole moments. Some types of exciton mechanisms have been proposed for theoretical
predictions or experimental explanation [10,11]. The importance of both magnitude and direction
(phenomenologically speaking, parallel arrangement) of electric transition dipole moments (longer
molecular axis) of some chiral metal complexes and (vertical vector of) AuNP has also been investigated
experimentally [12–14].

We have investigated photofunctional hybrid materials of some (chiral/achiral) Schiff base metal
complexes and photochromic azobenzene, and their interaction with several types of topological lights
such as polarized UV light [15–20]. In addition, we have studied the theoretical interpretation of the

Symmetry 2019, 11, 1094; doi:10.3390/sym11091094 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/11/9/1094?type=check_update&version=1
http://dx.doi.org/10.3390/sym11091094
http://www.mdpi.com/journal/symmetry


Symmetry 2019, 11, 1094 2 of 19

optical properties of these materials [21–25]. In particular, we focused on the molecular orientation
due to the dipole-dipole interaction between two molecules. For example, there are some studies on
the molecular orientation of photofunctional organic molecules in polymer films [2].

In this study, azo-group-containing chiral salen-type Ni(II), Cu(II), and Zn(II) complexes were
synthesized to control the molecular interaction by small differences. To prove the roles of dipole
moment and environment, steric factors of intermolecular interaction were designed for the ligands [26].
In solutions of various complexes and colloidal AuNPs (or nanomaterials) [27–29], the influence
of photoisomerization due to azo-group on the changes of induced CD bands is investigated by
comparison to previous data. New types of molecular re-orientation could be proposed according to
the interpretation of induced CD bands in the plasmon wavelength region of AuNP. Furthermore, we
herein demonstrate that linearly polarized UV light (Weigert effect) [30,31] inducing novel motion of
the azo-compounds on the surface of AuNPs.

2. Materials and Methods

2.1. General Procedures and Preparations

Chemicals and solvents of the highest commercial grade available from Kanto Chemical (Tokyo,
Japan) for solvents, from Tokyo Chemical Industry (Tokyo, Japan) for organic compounds, from Wako
(Osaka, Japan) for metal sources, and Funakoshi (Tokyo, Japan) for AuNP (10 nm) were used as
received without further purification. Cu(II), Ni(II), and Zn(II) complexes (CuAz, NiAz, and ZnAz)
were prepared according to published methods using corresponding n-propyl compounds instead of
ethyl compounds (Figure 1) [14]. Mixed methanol solutions (1:1, v/v) for tests were prepared using
0.002 mM complexes and commercially available AuNP solutions (purchased from Funakoshi).
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Figure 1. Preparation scheme of CuAz, NiAz, and ZnAz.

2.2. Characterization of Complexes

The complexes obtained were conventionally characterized as follows. In the order of the number
of identified solvent molecules in a crystal for each complex, elemental analysis was carried out as the
corresponding hydrates.

NiAz: yield 82%. Anal. Found: C, 64.29; H, 4.84; N, 9.28%. Calc. for C48H50N6NiO10 (as
tetrahydrate) C, 64.52; H, 5.19; N, 9.40%. IR (KBr (cm−1)): 1464, 1535 (N=N), 1605 (C=N).
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CuAz: yield 83%. Anal. Found: C, 66.16; H, 4.93; N, 9.60%. Calc. for C48CuH44N6O7 (as
monohydrate) C, 66.34; H, 4.79; N, 9.67%. IR (KBr (cm−1)): 1461, 1530 (N=N), 1625 (C=N).

ZnAz: yield 79%. Anal. Found: C, 64.87; H, 5.14; N, 9.37%. Calc. for C48H48N6O9Zn (as
trihydrate) C, 64.93; H, 5.11; N, 9.46%. IR (KBr (cm−1)): 1468, 1533 (N=N), 1630 (C=N).

2.3. Physical Measurements

Elemental analysis was carried out with a Perkin-Elmer 2400II CHNS/O analyzer (Perkin-Elmer,
Waltham, USA) at Tokyo University of Science. Infrared (IR) spectra were recorded on a JASCO (Tokyo,
Japan) FT-IR 4200 spectrophotometer (JASCO, Tokyo, Japan) in the range of 4000–400 cm−1 at 298 K.
Electronic (UV-vis) spectra were measured on a JASCO V-650 spectrophotometer (JASCO, Tokyo,
Japan) equipped with polarizer in the range of 800–220 nm at 298 K. Circular dichroism (CD) spectra
were measured on a JASCO J-725 spectropolarimeter (JASCO, Tokyo, Japan) in the range of 800–200 nm
at 298 K. Photo-illumination experiments were carried out using a lamp (1.0 mW/cm2) by Hayashi
Tokei co. ltd. (Tokyo, Japan) with optical filters (UV λ = 200–400 nm) leading to a sample using optical
fibers and a polarizer through optical filters.

2.4. Computational Methods

Calculations for all complexes were performed using the Gaussian 09W software (Revision D.02,
Gaussian, Inc., Wallingford, CT, USA) [32]. All the geometries were optimized using B3LYP level of
theory and SDD as basis set. Furthermore, we performed frequency calculations on the optimized
geometry using the same level of theory and basis set.

3. Results and Discussion

3.1. Simulated CD Spectra with TD-DFT

First, we computationally confirmed the molecular-level chirality of the complexes. Optimized
structures for CuAz, NiAz, and ZnAz (trans-forms about azo-groups) were obtained by means of
TD-DFT calculations. Simulated CD and UV-vis spectra (Figure 2) and calculated numerical data
(Tables 1 and 2) were obtained from the optimized structures of trans-forms and utilized to assign
spectral peaks in the next section. Overall electric dipole moment would be along the metal-to-middle
point of chiral centers direction similar to the analogous chiral salen-type complexes [12]. Compared
to a previous study [14], optimized structures offer a (slightly distorted) square planar coordination
geometry with slightly steric differences due to the ligand’s terminal n-propyl-groups. Overall spectral
features and assignment of predominant peaks were also similar to other azo-containing complexes [33].
Expected spectral changes due to trans- to cis-photoisomerization by UV light irradiation appeared
below ~400 nm. Only the ZnAz complex is diamagnetic, does not show d-d transition, and may afford a
slightly distorted (compressed) tetrahedral coordination geometry. Therefore, agreement of calculated
spectra, spectral feature of visible region, and change of induced spectra (caused by adsorption form)
may differ from others. Due to ligand symmetry, the dipole moment’s direction will be kept but its
magnitude will change after azo-groups’ photoisomerization [34]. However, if photo-isomerization
is expected, the electric dipole moment of the complex will decrease. Conventionally, the optical
activity (optical rotation intensity) of chiral molecules is proportional to the imaginary part of the
inner product of the intramolecular electric (µ) and magnetic (m) transition dipole moments. Electrical
and magnetic transition dipole moments were calculated using TD-DFT theoretical calculations to
determine the optimized structure of each complex as the trans-form (Tables 1 and 2). In order to
discuss only trans-forms (differences as cis-forms and molecular orientation will be discussed later),
only the calculation results of the trans-form were compared to the experimental spectrum to confirm
the validity of structure optimization.
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Table 1. Calculated data about transition movements of visible region peaks for trans-forms of NiAz,
CuAz, and ZnAz.

Wavelength/nm Oscillator
Strength

Dipole
Strength

Electric Transition Dipole
Moment µ (x,y,z)

Magnetic Transition Dipole
Moment m (x,y,z)

NiAz

584.12 0.0006 0.0107 0.1036 0.0001 −0.0018 −0.8206 0.0002 0.0571

563.16 0.0009 0.0162 0.1273 0.0002 0.0051 −0.1091 −0.0035 0.0142

433.97 0.043 0.6148 −0.7839 0.0003 0.016 −0.0761 −0.0245 −1.5352

430.13 0 0.0002 −0.0135 −0.0026 −0.0017 0.8302 0.4876 0.0093

CuAz

589.19 0.0008 0.0154 0.1241 −0.0001 −0.0018 −0.2885 −0.0046 0.1496

496.86 0.0635 1.0390 −1.0193 0.003 0 −0.0057 −0.0153 −0.4703

470.13 0.0002 0.0034 0.0584 −0.0013 −0.0011 −0.0184 −0.0068 0.0367

456.79 0.0001 0.0012 0.0352 −0.0014 −0.0009 0.0051 0.55 0.0917

453.76 0.0207 0.3096 0.5563 −0.0005 −0.0122 0.053 −0.0644 0.6525

ZnAz

431.06 0.0002 0.0030 −0.0544 0 −0.0033 −1.2446 0.0042 0.0887

431.06 0 0.0000 0.0004 0.0058 0 0.0093 0.5579 −0.0007
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Table 2. Calculated data regarding the optical rotation intensity of predominant peaks for trans-forms
of NiAz, CuAz, and ZnAz.

Wavelength/nm Optical Rotation
Intensity µ ·m |µ| |m| |µ| |m| cosθ

NiAz

430.08 −0.03283938 0.06637402 0.07181685 0.97539311 0.070049661 −0.468801412

354.63 0.0293979 −0.05934276 1.060564534 2.911695934 3.08804144 0.009519918

CuAz

389.85 0.00701379 −0.01416759 0.062957367 0.281213673 0.017704472 0.396159224

359.29 0.03800265 −0.07681704 4.701237033 0.653232891 3.071002659 0.012374672

ZnAz

431.06 −0.0016 0.00324 0.005814 0.557977948 0.003244 −0.49445

354.56 0.15520407 −0.31356246 5.718414271 1.067998895 6.107260124 0.025413044

323.4 0.51463755 −1.03966038 1.7919 0.5802 1.03966038 0.495005446

Due to the difficulty of treating excited states by any methodsof theoretical calculations such as
DFT and semi-empirical methods of normal accuracy, simulated CD and UV-vis spectra may be reliable
in a qualitative sense. Therefore, it should be noted that there is a limit to the quantitative discussion
as well as the detailed comparison between experimental and simulated CD and UV-vis spectra.

Generally, spectroscopic study in solutions is to treat compounds as they are in solutions, which is
not necessarily identical to forms as isolated in crystalline solid-state. The reasons may be including
crystalline solvents or as axial ligands in a crystal, which can be easily released when dissolved
solutions. Moreover, molecular conformation of a certain metal complex, such as the present ones
having long pendant ligands in a crystal, can flexibly change into other conformation in a solution.
From a viewpoint of heat of formation and intermolecular interactions, molecular conformation in
a solution is more stable than that in a crystal. Experimentally, however, spectra in solutions and
molecular structures distorted by crystal packing can be only obtained. Therefore, computational
simulation play an important role in discussing the (assumed) molecular forms in solutions to compare
with or discuss spectra in solutions.

3.2. CD and UV-vis Spectra before Irradiation

Figures 3–5 exhibit experimental CD and UV-vis spectra before UV light irradiation for NiAz,
CuAz, and ZnAz (and AuNP), respectively. For all UV-vis spectra, the surface plasmon peaks of AuNP
were observed at 520 nm. As for NiAz (Figure 3), CD peaks appeared at 280 nm (π-π*) and 410 nm
(n-π*), while UV-vis peaks appeared at 260 nm (π-π*) and 380 nm (n-π*). Broad and negative induced
CD peaks were observed around 525 nm corresponding to the plasmon region. As for CuAz (Figure 4),
CD peaks appeared at 300 nm (π-π*) and 410 nm (n-π*), while UV-vis peaks appeared at 250 nm (π-π*)
and 370 nm (n-π*). A positive-induced CD peak was observed around 530 nm corresponding to the
plasmon region. As for ZnAz (Figure 5), CD peaks appeared at 360 nm (π-π*) and 430 nm (n-π*),
while UV-vis peaks appeared at 255 nm (π-π*) and 380 nm (n-π*). A negative-induced CD peak was
observed around 550 nm corresponding to the plasmon region. According to previous studies [13,14],
the intensity of d-d (weak) and (induced) plasmon bands differ from each other.
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Regardless of the slight changes in ligand terminal substituent groups, the induced CD was
observed very weakly in the plasmon region (around 550 nm) of gold nanoparticles. Little differences
could be observed among three metals not for d-d bands but for the induced CD bands. Lack of
chemical groups adsorbing onto the gold surface leads to intermolecular electromagnetic interaction
between metal complexes and AuNPs, which may deny CD bands due to the direct bonding of chiral
ligands. The weak adsorption structure is predicted (Figure 6) based on the theory of angles between
dipole moments, originally evaluated using inner product of vectors (µ·m) [4]. As depicted in Figure 6,
that the complexes’ molecular planes were not completely parallel to the normal vector of the gold
surface [13,14]. If bulkier substituents prevent chemically-bonded adsorption to induce CD bands,
which may be phenomenologically improper adsorption [12,35] at least within theoretical framework
using µ·m. For example, a prominent CD peak is observed, which may be attributed to a chiral
complex itself. Adsorption structures were proposed according to CD and previous studies [13,14].
Moreover, coordination geometries, namely coordination of solvent molecules, is not clear, though
the possibility of axial coordination in the solution may be high according to conventionally known
solution paramagnetism of Schiff base (in particular Ni(II)) complexes. However, the presence of axial
ligands may not influence the experimental results of induced CD bands.



Symmetry 2019, 11, 1094 10 of 19

Symmetry 2019, 11, x FOR PEER REVIEW 9 of 19 

 

 

Figure 5. CD and UV-vis spectra for ZnAz before irradiation. 

 

Figure 6. Proposed molecular arrangement of AuNP and a metal complex with their dipole moments 
(arrows). 

3.3. CD and UV-vis Spectra after Irradiation 

Figures 7–9 show CD and UV-vis spectra after linearly polarized UV light (<350 nm) irradiation 
for 5 min for NiAz, CuAz, and ZnAz (and AuNP), respectively. According to a previous study [13,14], 
photoismerization was generally completed at least within 3 min, which was confirmed several times. 
For all UV-vis spectra, surface plasmon peaks of AuNP were also observed at 520 nm. As for NiAz 
(Figure 7), CD peaks appeared at 280 nm (π-π* of azo group) and 410 nm (n-π* of azo group), while 

-4
-3
-2
-1
0
1
2
3
4
5

200 300 400 500 600 700 800 900

θ 
/ m

de
g

ZnAz
ZnAz+AuNP
AuNP

0

0.2

0.4

0.6

0.8

1

1.2

200 300 400 500 600 700 800 900

Ab
s.

Wavelength / nm

ZnAz

ZnAz+AuNP

AuNP

Figure 6. Proposed molecular arrangement of AuNP and a metal complex with their dipole
moments (arrows).

3.3. CD and UV-vis Spectra after Irradiation

Figures 7–9 show CD and UV-vis spectra after linearly polarized UV light (<350 nm) irradiation
for 5 min for NiAz, CuAz, and ZnAz (and AuNP), respectively. According to a previous study [13,14],
photoismerization was generally completed at least within 3 min, which was confirmed several times.
For all UV-vis spectra, surface plasmon peaks of AuNP were also observed at 520 nm. As for NiAz
(Figure 7), CD peaks appeared at 280 nm (π-π* of azo group) and 410 nm (n-π* of azo group), while
UV-vis peaks appeared at 260 nm (π-π* of azo group) and 360 nm (n-π* of azo group). A broad and
negative induced CD peak was observed around 520 nm corresponding to the plasmon region. As for
CuAz (Figure 8), CD peaks appeared at 300 nm (π-π* of azo group) and 410 nm (n-π* of azo group),
while UV-vis peaks appeared at 255 nm (π-π* of azo group) and 365 nm (n-π* of azo group). A broad
and positive induced CD peak was observed around 540 nm corresponding to the plasmon region.
As for ZnAz (Figure 9), CD peaks appeared at 370 nm (π-π* of azo group) and 440 nm (n-π* of azo
group), while UV-vis peaks appeared at 245 nm (π-π* of azo group) and 375 nm (n-π* of azo group). A
negative induced CD peak was also observed around 550 nm corresponding to the plasmon region.
Inter-ligand transitions (n-π* and π-π*) associated with azobenzene are quite strong bands, thus change
in induced CD bands may be weak with different wavelengths. In addition, if photoisomerization can
happen smoothly, induced CD bands strongly depend on adsorption structures of chiral complexes.
Which are in agreement with the previous studies [13,14]. As suspension-like situations rather than
clear solutions, UV-vis spectra are less sensitive than CD spectra (intense induced plasmon region) for
detecting conformational changes of chiral metal complexes.

In order to clarify these differences before and after UV irradiation, Figure 10 summarizes the
different spectra for the three complexes. Only for CuAz exhibited negative change (decreasing) of
intensity for CD peaks, though spectral shapes (induced CD bands) were not similar to each other
regardless of the identical ligand. Which may be attributed to the initial adsorption forms as well
as slight differences in the coordination environments of metal complexes. As depicted in Figure 11
schematically, trans- to cis-photoisomerization of salen-type complexes resulted in different steric
features of chiral complexes and their adsorption forms, as well as different electrostatic properties
(decreasing of dipole moment). In contrast, trans-type Schiff base complexes may keep them or at least
exhibit small differences because of their symmetry. Regardless, no complexes indicated CD bands
before and after UV light irradiation for the present systems.
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4. Discussion

4.1. Proposed Contacting Features between AuNP and Chiral Complexes

To begin a full interpretation of the possible behavior of chiral metal complexes and their
relationship between AuNP and material-light interactions, experimental facts should be summarized
again with the proposed mechanism. The fact that decrease or increase in the CD bands around the
plasmon region could be observed may be attributed to the angles of magnetic dipole moment (AuNP)
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and electric dipole moment (chiral complexes). Considering weakly, namely, non-fixed connection,
and weak induction of CD bands, and the lack of bonding groups for the identical ligands support
non-bonded interactions, play a predominant role in inducing CD bands. According to the theoretical
treatments, perpendicular and parallel arrangements of normal AuNP vector and dipole moments of
complexes ascribe to the decrease or increase in the induced CD bands for NiAz (ZnAz) and CuAz,
respectively. Slight difference in the coordination geometries may result in such different alignment of
molecules at the initial state. In both cases, the intensity of induced CD bands was not strong, which
may support the assumption.

4.2. Proposed Changes Due to Trans- to Cis-Photoisomerization

After (linearly polarized or at least non-polarized, namely natural) UV light irradiation, ligand
azo-groups undergo photoisomerization to the cis-form accompanied by drastic change in the steric
factors of chiral complexes. In addition to the intermolecular contacts caused by molecular shapes,
this photoisomerization can result in drastic change in UV-vis and CD spectra around π-π* and n-π*
bands. Indeed, three chiral complexes exhibited intense π-π* and n-π* bands and their changes
for typical azo-compounds. However, such spectral changes cannot be regarded as characteristic
proof of change of induced CD, because chiral metal complexes can exhibit spectral changes when
they are permitted by sufficient space (free volume) or electronic states (typically “lacking” highly
electron-withdrawing groups) for photoisomerization. Furthermore, photoisomerization potentially
results in changes (decreasing) in the magnitude of dipole moment for chiral complexes. For direct
contact and electrostatic dipole-dipole interaction mechanism, CD spectral changes can be proposed
after photoisomerization, although only the latter influence (change of dipole moment) can be in
agreement with the situation. Thus, the cis-form must be the predominant species on AuNPs after UV
light irradiation.

4.3. Weigert Effect Caused by Linearly Polarized UV Light

Contrary to the previous study with natural UV light [13], we employed linearly polarized UV
light in this study. Similar to organic-inorganic composite materials containing a metal complex
and azobenzene methyl methacrylate polymer (PMMA) cast films [36–40], anisotropic alignment
of azo-compounds and coexisting molecules (Weigert effect [41,42]) can also be induced by linearly
polarized UV light. By alternate irradiation of UV and visible light, selected photoisomerization
resulted in anisotropic alignment of molecular long axis perpendicular to the electric vector of polarized
light (Figure 12, left) [43–46]. Beyond the original Weigert effect, helical alignment of azo-compounds
to induce CD bands of supramolecular chirality can be induced by circularly polarized UV light [47].
Hence, when chiral metal complexes (cis-forms) can be rotated on the surface of AuNP without changing
angles between angles of AuNP (normal vector) and complexes (dipole moment) (Figure 12, right).

It should be mentioned that (even if they are achiral) some dyes in crystalline materials can
emerge or cancel induced CD bands when these dye molecules align properly on the surface of the
materials [48,49]. The fact suggests that in-plane rotational displacement of mutual arrangement
for complexes can result in the appearance of induced CD bands accompanying the Weigert effect.
However, the surface of AuNP is not flat but spherical, and the transition moments of complexes are
impossible to align appropriately to appear such as induced CD signals.
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plane AuNP’s surface, while another vector (AuNP) is fixed, because of its permanent nature, to
approximately keep their orthogonality. However, “orthogonality” was still kept, treatment within the
exciton framework can reasonably describe the spatial relationship and their spectral changes before
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5. Conclusions

In summary, we prepared new chiral Schiff base NiAz, CuAz, and ZnAz complexes having
azo-groups and n-propyl terminals. Weakly (positive and negative) induced CD bands in the plasmon
region of AuNP suggest out-of-parallel arrangement of two dipole moments. After linearly polarized
UV light irradiation, changes in induced CD spectra can be elucidated by separating the contribution
of cis-trans photoisomerization and Weigert effect of azobenzene moiety. The resulting CD spectral
changes and the initial adsorption features allowed us to estimate the two vectors of dipoles and
chiroptical behavior, which are in agreement with the treatment of the exciton framework.

In-plane rotation of chiral complexes to align on a surface [57,58] is deduced in this study.
However, on the surface of gold nanoparticles, proximity field light by helical light has been previously
reported [59–61]. As in helical axisymmetric in the crystal, the effect of light with chirality in the third
axial direction (along the propagation vector of light) will be induced to azobenzene [62–64]. If it
can be combined with the surface of the metal nanomaterial, it would be possible to discuss various
free operations.
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