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Abstract: In recent years, electromagnetic interference (EMI) of new energy vehicles, including
difference mode symmetric interference and common mode asymmetry interference, has attracted
the attention of many scholars. So far, EMI tests for new energy vehicles under steady conditions
cannot reflect the actual EMI of the running vehicle. The results of EMI test methods based on
fast Fourier transform (FFT) under dynamic conditions have worse frequency resolutions, and
frequency/amplitude accuracy has low precision. Therefore, this paper proposes an EMI test method
based on FFT and dot frequency scanning (DFS) for new energy vehicles under dynamic conditions.
The identification method for accelerating, sliding, and braking conditions is studied. A comprehensive
EMI key evaluation index system for new energy vehicles is built, including characteristic points
with maximum amplitude, area, ratio, and density coefficients for high-amplitude characteristic
points. Among them, the maximum amplitude is an index to evaluate extreme values. The ratio
of high-amplitude characteristic points is a comprehensive index to evaluate the overall region.
The density coefficient is an index to evaluate the local region. Finally, this method is applied to three
vehicles. With the same instruments, by reducing the FFT frequency span, the frequency resolution
and frequency accuracy increase. The results indicate that the EMI of new energy vehicles can be
tested under dynamic conditions with high accuracy according to the operable evaluation indexes.
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1. Introduction

Nowadays, new energy vehicles are rapidly developed and have become an important means of
transportation [1,2]. However, compared to other types of vehicles, new energy vehicles have more
electronic components, which are also more complex. In charging and discharging states, serious
electromagnetic interference (EMI) occurs, including difference mode symmetric interference and
common mode asymmetry interference [3]. EMI testing is one of the most important tests for new
energy vehicles. The current EMI test standards for new energy vehicles (e.g., CISPR 12:2009 [4], ECE
10.05 [5], SAE J551-5-2012 [6], GB/T 18387-2017 [7], etc.) only stipulate that the vehicle is tested under
steady conditions [8] (e.g., SAE J551-5-2012: when under BRAKE APPLIED, CREEP, and CRUISE
steady conditions, the vehicle conditions are constant). Under steady conditions, the EMI test cannot
truly reflect the EMI of the running vehicle. SAE J551-5-2012 noticed this problem and indicated that
the EMI test standard for dynamic conditions (where the driving conditions change) is still under
study [9–11]. Therefore, it is very urgent to study EMI testing technology for new energy vehicles
under dynamic conditions.
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The EMI peak test for vehicles under steady conditions usually uses frequency sweeping.
SAE J551-5-2012 specifies a minimum dwell time of 10 ms for a single frequency. It takes tens of seconds
to complete a spectrogram, and the amplitude accuracy is ±0.36 dB, which cannot satisfy dynamic
conditions. The previous study [12] used dot frequency scanning (DFS) to study the relationship
between engine conditions and EMI at a single frequency. EMI testing under dynamic conditions in
the full frequency range was not able to be covered. Another study [13] used frequency sweeping
to study conducted interference in start-up mode, idling mode, electric mode, and charging mode
of a hybrid electric vehicle. But it did not study the changing EMI in the time domain with these
conditions. Authors in [14] showed spectrograms measured in the vehicle with the vertical time axis
under different driving conditions (low and high speed, acceleration, and deceleration). However,
it did not show the speed/acceleration curves that matched the spectrograms. Considering that a fast
Fourier transform (FFT) spectrum analysis can capture transient interference, it only takes 24 ms to
complete a spectrogram at the same time. Therefore, FFT spectrum analyses are more in line with the
requirements of EMI testing under dynamic conditions. The literature [15] developed an EMI test
method based on FFT for new energy vehicles under dynamic conditions. The EMI test subsystem and
the roller subsystem worked together under computer control to form an integrated measurement
system. The amplitude accuracy was±1.31 dB, which is far larger than±0. 36 dB of frequency sweeping.
Based on the FFT spectrum analysis results of the literature [15], this paper proposes a method to
determine the characteristic points to carry out a precise sweep, consisting of both FFT spectrum
analysis and DFS (the amplitude accuracy was also ±0.36 dB). Speed and EMI of a narrower frequency
span with the time axis under different driving conditions can also be measured.

The remainder of this paper is structured as follows. In Section 2, the framework of the EMI
test, based on FFT and DFS for new energy vehicles under dynamic conditions, is introduced and
analyzed. The problem that needs to be solved is put forward. In Section 3, the dynamic conditions of
accelerating, sliding, and braking conditions are studied, and an identification method is proposed
after the speed and acceleration features of the dynamic conditions are analyzed. In Section 4, research
on the method to determine characteristic points is carried out. EMI evaluation indexes for new energy
vehicles under dynamic condition are proposed to determine the characteristic points. In Section 5,
the implementation, experimental research, and analysis of results are explained. Implementation of
the EMI test and experimental system are introduced, showing that the proposed EMI test method,
based on FFT and DFS for new energy vehicles under dynamic conditions, is correct and effective.
In Section 6, conclusions are provided, and the direction of future work is elaborated.

2. Framework of the Electromagnetic Interference (EMI) Test Based on Fast Fourier Transform
(FFT) and Dot Frequency Scanning (DFS) for New Energy Vehicles under Dynamic Conditions

The framework of EMI testing, based on FFT and DFS for new energy vehicles under dynamic
conditions, is illustrated in Figure 1, which comprises an EMI test subsystem, a roller subsystem, and
a computer. The EMI test subsystem and roller subsystem work together under computer control,
forming an integrated measurement system. The EMI test subsystem includes an antenna, a signal
analyzer, and an EMI receiver. After receiving the radio-frequency (RF) signal, the cable transmits
analog voltage to the signal analyzer and EMI receiver. Then, the signal analyzer and EMI receiver
send the EMI data to the computer through a network port. The roller subsystem includes a chassis
dynamometer, an industrial personal computer (IPC), an analog to digital converter (ADC), and
a pneumatic manipulator. The chassis dynamometer contains a variety of sensors to acquire speed,
torque, and other physical quantities, whose analog voltages are transmitted to the IPC, then output to
the ADC by bayonet nut connectors (BNCs). The ADC connects the IPC and computer to convert the
analog signal into a digital signal, and the computer obtains the condition parameters, such as real-time
speed of the vehicle, through the ADC. A pneumatic manipulator is placed in the driving position of
the vehicle, and two pneumatic arms, respectively, press on the accelerator pedal and brake pedal.
The vehicle is controlled by the computer according to speed and acceleration feedback. Through the
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LabVIEW driver provided by the signal analyzer, EMI receiver, ADC, and pneumatic manipulator,
the computer uses LabVIEW to integrate them all with the ethernet port to form an integrated EMI test
system based on FFT and DFS for new energy vehicles under dynamic conditions.
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Figure 1. The framework of the electromagnetic interference (EMI) test based on fast Fourier transform
(FFT) and dot frequency scanning (DFS) for new energy vehicles under dynamic conditions. ADC,
analog to digital converter; IPC, industrial personal computer.

Figure 2 is the schematic of the EMI test based on FFT and DFS for new energy vehicles under
dynamic conditions. Figure 2a shows an analysis of the rough sweep with the FFT spectrum, and
Figure 2b shows the precise sweep process with FFT and DFS. The test includes the rough sweep and
precise sweep. The rough sweep analyzes various dynamic conditions of vehicle, including accelerating,
sliding, and braking conditions, which can be seen in the upper part of Figure 2a. The abscissa is time,
and the ordinate is speed. An analysis of the FFT spectrum of the magnetic field’s radiation emission
intensity is carried out to obtain the EMI intensity graph, which can be seen in the lower part of Figure 2a.
The abscissa is time, and the ordinate is frequency. Different colors are used to distinguish the amplitude.
The precise sweep also completes the same dynamic conditions of the vehicle as the rough sweep, which
can be seen in the upper part of Figure 2b. The abscissa is time, and the ordinate is speed. Results of the
DFS magnetic field’s radiation emission is carried out to obtain the EMI amplitude graph, which can be
seen in the lower part of Figure 2b. The abscissa is time, and the ordinate is amplitude.

The rough sweep and precise sweep are two separate processes. Only when the driving conditions
of rough sweep and precise sweep are completely consistent will the precise process be meaningful.
In the current study, the pneumatic manipulator is controlled only by the air pressure. Control
precision is not enough. Driving conditions during rough sweep and precise sweep are difficult to
equally maintain. However, condition parameters such as speed and acceleration during the precise
sweep process can be used to identify various conditions. This can make sure the precise sweep
conditions correspond to those of the rough sweep. Then, DFS is performed on the corresponding
conditions. At the same time, speed and acceleration constantly change when the vehicle accelerates,
slides, and brakes. Every frame of the FFT spectrum corresponds to different speeds and accelerations.
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The EMI is much more complicated than the steady conditions. The point with the maximum
subtraction value between the measured value and relevant standard limit in a single spectrogram is
called the characteristic point. Ideally, each characteristic point needs DFS. In fact, both identification
conditions and changing sweep frequency on the EMI receiver take some time. It is difficult to perform
DFS on every characteristic point under dynamic conditions. Choosing the characteristic points for
further sweeping from so many points is important. Therefore, in order to achieve an EMI test based on
FFT and DFS for new energy vehicles under dynamic conditions, it is necessary to study the methods
to identify dynamic conditions and determine characteristic points.Symmetry 2019, 11, x FOR PEER REVIEW 4 of 21 
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Figure 2. The schematic of the EMI test based on FFT and DFS for new energy vehicles under dynamic
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3. Identification Method for Accelerating, Sliding, and Braking Conditions

The method to identify accelerating, sliding, and braking conditions is mainly based on different
features of different dynamic conditions. Suppose there are n measured values of speed in a very short
time, tobserve. Then, we have the measured values of speed, Vmeasured = [v1, v2, . . . , vi, . . . , vn], and the
calculated values of acceleration, Acalculated =[a1, a2, . . . , ai, . . .]. The minimum speed in tobserve is vmin,
vmin = min{Vmeasured}. The minimum acceleration is amin, amin = min{Acalculated}. The maximum
acceleration is amax, amax = max{Acalculated}. Features of different dynamic conditions of new energy
vehicles are shown in Table 1. The physical significance is as follows:

(1) When the new energy vehicle is accelerating, ai > 0, and then amin > 0. To avoid misjudgments,
a small, positive threshold, aT_acc, is introduced. Therefore, ai ≥ amin > aT_acc > 0. On the other
hand, if the situation when amin > aT_acc is detected, it indicates that the new energy vehicle
is accelerating.

(2) When the new energy vehicle is sliding, vidling < vi and ai < 0, then vidling < vmin ≤ vi and
amax < 0. To avoid misjudgments, a small, negative threshold, −aT_slide, is introduced. Therefore,
vidling < vmin ≤ vi and amax < −aT_slide. On the other hand, if the situation when vi ≥ vmin > vidling

and amax < −aT_slide is detected, it indicates that the new energy vehicle is sliding.
(3) When the new energy vehicle is braking, ai < aslide < 0, then ai ≤ amax < aslide < 0. To avoid

misjudgments, a small, negative threshold, −aT_brake, is introduced. Therefore, ai ≤ amax <
aslide − aT_brake < 0. On the other hand, if the situation when ai ≤ amax < aslide − aT_brake is
detected, it indicates that the new energy vehicle is braking.



Symmetry 2019, 11, 1092 5 of 21

Table 1. Features of different dynamic condition of new energy vehicles.

Acceleration Sliding Braking

Features of speed and
acceleration ai ≥ amin > aT_acc > 0 vidling < vmin ≤ vi,

amax < −aT_slide

ai ≤ amax <
aslide − aT_brake < 0

Figure 3 shows the identification of results from dynamic conditions. The abscissa is time (s).
The ordinate is speed (km/h) and acceleration (m/s2). According to the features of speed and acceleration,
the dynamic conditions of the vehicle during the period from 0 to 43.5 s can be identified, which consist of
0~5.6 s (accelerating), 5.6~8.0 s (sliding), 8.0~9.2 s (braking), 9.2~12.3 s (sliding), 12.3~20.8 s (accelerating),
20.8~25.3 s (sliding), 25.3~27.0 s (braking), 27.3~30.5 s (sliding), 30.5~40.2 s (accelerating), and 40.2~43.5 s
(sliding). Based on the features of speed and acceleration, different dynamic conditions can be identified
from any group of speed and acceleration curves. In steady conditions, there is no dynamic accelerating,
sliding, and braking conditions but only idling, cruising, and steady braking conditions. EMI is more in
line with actual driving conditions under dynamic conditions for changing speed.
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4. Method to Determine Characteristic Points

Under steady conditions, v = const and a = 0. According to a spectrogram of the frequency
sweep with lower sweeping speed, a characteristic point corresponding to the maximum amplitude
can be obtained. As multiple spectrograms with faster speeds were obtained from FFT spectrum
analyses, each spectrogram is a repeated test. Every spectrogram has a characteristic point. Among all
characteristic points, the characteristic point corresponding to the maximum amplitude is the final
characteristic point.

A schematic of EMI test results based on FFT for new energy vehicles under dynamic conditions
is shown in Figure 4. The upper graph shows the speed and acceleration curves, whose x coordinate
is time and y coordinate is speed/acceleration. The lower graph shows the 3D diagram of the
FFT spectrum analysis, whose x coordinate is time, y coordinate is amplitude, and z coordinate is
frequency. It can be seen that the speed and acceleration under dynamic conditions change all the
time. The speeds/accelerations of multiple spectrograms from FFT spectrum analyses, as well as
the characteristic points, are different, which should be paid attention to under dynamic conditions.
Therefore, the method to determine characteristic points under dynamic conditions is more complicated
than the method under steady conditions with constant speed. Moreover, in applying FFT spectrum
analyses to EMI, the frequency resolution accuracy is low, and the exact characteristic points under
dynamic conditions need further research.
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4.1. Distribution Diagram of Characteristic Points

psuspect_ j
(
U j, fsuspect_ j

)
is the j-th characteristic point, where U j is the amplitude and fsuspect_ j is the

frequency of psuspect_ j
(
U j, fsuspect_ j

)
. Suppose that there are z spectrograms in a group of FFT spectrum

analysis results. The set of characteristic points is:[
psuspect_1

(
U1, fsuspect_1

)
, . . . , psuspect_ j

(
U j, fsuspect_ j

)
, . . . , psuspect_z

(
Uz, fsuspect_z

)]
(1 ≤ j ≤ z),

where Ususpect is the set of amplitudes and Ususpect =
[
U1, . . . , U j, . . . , Uz

]
. Fsuspect is the frequency set

and Fsuspect =
[

fsuspect_1, . . . , fsuspect_ j, . . . , fsuspect_z
]
.

Suppose that pmax(Umax, fU_max) is the characteristic point with maximum amplitude and Umax =

max
{
Ususpect

}
. pmin(Umin, fU_min) is the characteristic point with minimum amplitude and Umin =

min
{
Ususpect

}
.

A distribution diagram of characteristic points is shown in Figure 5 with the set of characteristic
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4.2. EMI Evaluation Indexes for New Energy Vehicles under Dynamic Conditions

According to Figure 5, pmax(Umax, fU_max), area Π, point ratio η, and density coefficient ρ of
high-amplitude characteristic points can be obtained. The physical significance is as follows:

(1) The characteristic point has a maximum amplitude pmax
(
Umax, fsuspect_max

)
and a set of

characteristic points, Umax = max
{
Ususpect

}
, then fU_max can be found. Umax is an index to evaluate

extreme values, indicating the maximum EMI value under these dynamic conditions. The larger Umax

is, the larger the EMI value is, and the larger EMI that is generated by new energy vehicles.
(2) Area Π and point ratio η of high-amplitude characteristic points.
Area Π of high-amplitude characteristic points is the area with the amplitude higher than the

threshold, UT. The amplitude range of the characteristic points in area Π is [UT, Umax]. Suppose that
there are NΠ characteristic points in area Π. Then, the ratio between NΠ and the total number of
characteristic points, z, is named point ratio η of high-amplitude characteristic points. η is calculated as:

η = NΠ/z. (1)

When UT is constant, the larger the η is, the larger the EMI that is generated at multiple frequencies
by new energy vehicles. Π and η are comprehensive indexes to evaluate the overall region.

(3) Density coefficient ρ of high-amplitude characteristic points.
Set a rectangular shape area as a local observation area, Π f , with left frequency boundary fleft,

frequency width w, lower amplitude boundary Udown, and amplitude length l (l = Umax −Udown).
The amplitude range of the characteristic points in area Π f is [Udown, Umax]. The frequency range of
the characteristic points in area Π f is [ fleft, fleft + w]. When Udown = UT, suppose that there are N
characteristic points in area Π f . Then, the ratio between N and wl is named the density coefficient ρ of
high-amplitude characteristic points. ρ is calculated as:

ρ = N/wl. (2)

The total number of characteristic points z increases with time, resulting in N of the same condition
and the same region also increases with time. ρ will be affected as different dynamic conditions have
different durations. In order to compare the ρ among different dynamic conditions, condition duration
t is introduced. The density per unit time ρt is calculated as:

ρt = ρ/t. (3)

When Udown and w are constant (Udown = UT), the larger the ρ is, the more EMI that is generated
by new energy vehicles, indicating a greater EMI in this area. ρ is an index to evaluate local regions.

According to the definitions of pmax(Umax, fU_max), Π, η. and ρ, EMI evaluation indexes for new
energy vehicle under dynamic conditions are shown in Figure 6.
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4.3. Method to Determine Characteristic Points Based on EMI Evaluation Indexes

A distribution diagram of characteristic points and EMI evaluation indexes is illustrated above.
Now, the problem is that the frequency resolution’s accuracy from the FFT spectrum analysis is low.
Searching all the characteristic points that effect EMI evaluation indexes the most in carrying out small
frequency range FFT and DFS helps to improve accuracy of the frequency resolution.

Umax is an index to evaluate extreme values. Π and η are comprehensive indexes to evaluate the
overall region. ρ is an index to evaluate the local region. pmax(Umax, fU_max) and ρ are EMI evaluation
indexes that the characteristic points affect the most. Therefore, the method to determine characteristic
points based on EMI evaluation indexes under dynamic conditions is as follows:

(1) pmax(Umax, fU_max), where Umax = max
{
Ususpect

}
. fU_max is a frequency concerned by the EMI

test for new energy vehicles under dynamic conditions.
(2) When Udown (Udown = UT) and w are constant, the larger ρ is, the more EMI that is generated by

new energy vehicles. Therefore, the frequencies in the area whose ρ is larger than the threshold
(especially the area whose ρ is maximum) should be included in the EMI test for new energy
vehicles under dynamic conditions.

5. Implementations and Experiments

5.1. Implementation Flow

Based on the method to identify dynamic accelerating, sliding, and braking conditions, and to
determine the characteristic points, EMI tests for new energy vehicles under dynamic conditions
can be implemented. A flow chart of an EMI test based on FFT and DFS for new energy vehicles
under dynamic conditions is shown in Figure 7, which mainly includes rough sweep based on FFT
and precise sweep based on FFT and DFS. Firstly, rough sweep obtains a distribution diagram of the
characteristic points under different dynamic conditions. Secondly, pmax(Umax, fU_max) and the area
whose ρ is maximized are calculated. Finally, precise sweep takes place. In the second step, it is very
important to select UT and w reasonably.
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dynamic conditions.

5.2. Construction of the Experimental System

According to Figure 1, the experimental system of the EMI test based on FFT and DFS for new
energy vehicles under dynamic conditions was constructed, as shown in Figure 8. The whole system
was arranged in a control room and a shielded room. The control room contained a signal analyzer,
an EMI receiver, a computer from an EMI test subsystem, an IPC, and an ADC from a roller subsystem.
The signal analyzer was N9030A PXA from Agilent. The EMI receiver was N9038A MXE from Agilent.
The computer contained a B85-HD3-A board, an i7-4790K CPU, 16 GB RAM, and Windows 10 operating
system. The velocity was transformed into voltage in the range from −10 to 10 V, which was outputted
with a BNC on an IPC. The ADC was NI 9220 from National Instrument. The shielded room contained
an antenna from the EMI test subsystem and a pneumatic manipulator, a test vehicle, and a chassis
dynamometer from roller subsystem. The pneumatic manipulator was customized by Festo AG & Co.
KG. GA5 PHEV produced by Guangzhou Automobile Group Co., Ltd., and the electric test vehicles
of Zotye Auto Co., Ltd. and BYD Co., Ltd. were chosen. The chassis dynamometer was made by
AVL List GmbH. Under the condition that the wheel and the roller do not slip relative to each other,
the vehicle speed was equal to the linear speed of the roller. The roller could handle a range of velocity
(0~200 km/h) in both front and reverse directions. Its velocity sensor had a range of accuracy of
0.05–0.1 km/h.
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5.3. Experimental Process and Results

According to Section 5.1, three experiments were carried out: (1) An experiment to identify
dynamic conditions verified the method. (2) A calculation experiment of fU_max and the area with ρmax

under different dynamic conditions discussed the results depending on different UT and w. (3) An
experiment of the EMI test based on FFT and DFS verified the entire EMI test method and evaluated
the accuracy of the measurements. Finally, the EMI test method based on FFT and DFS for new energy
vehicles under dynamic conditions was applied to the electric test vehicles of Zotye Auto Co., Ltd.
(Yongkang, China) and BYD Co., Ltd. (Shenzhen, China) to verify its effectiveness and applicability.

5.3.1. Experiments of GA5 PHEV

(1) The experiment to identify dynamic conditions.
The experiment to identify dynamic conditions used an FFT spectrum analysis to calculate EMI

data at multiple frequencies. Then, a distribution diagram of characteristic points was obtained.
According to the identification results of different dynamic conditions from speed and acceleration,
different condition distribution diagrams of characteristic points were distinguished.

The experiment processes were as follows: The test vehicle was driven on the chassis dynamometer
where the wheel and the roller coincide. The computer controlled the pneumatic manipulator to handle
the vehicle and controlled the signal analyzer to measure EMI.

A group of EMI test results, based on FFT for new energy vehicles under dynamic conditions,
is shown in Figure 9, where Figure 9a is the speed and acceleration curves, and Figure 9b is the EMI
intensity graph. According to Table 1, when the condition ai ≥ amin > aT_acc > 0 is detected, it indicates
that the test vehicle is accelerating. When the conditions vidling < vmin ≤ vi and amax < −aT_slide are
detected, it indicates that the test vehicle is sliding. When the condition ai ≤ amax < aslide − aT_brake < 0
is detected, it indicates that the test vehicle is braking. Based on experience, aT_acc = aT_slide = 0.1m/s2,
aT_brake = 0.5m/s2, and vidling = 10km/h. Then, the vehicle was identified to accelerate during
0~21.3 s, slide during 21.3~58.5 s, and brake during 90.0~96.2 s. It can be seen that the values of aT_acc,
vidling, aT_slide, aT_brake would affect the identification results.

EMI data of different conditions were obtained by combining the identification results and the
EMI test results, which is shown in Figure 9b. According to Section 4.1, distribution diagrams of
the characteristic points in different dynamic conditions are shown in Figure 10. All abscissas are
frequency (MHz), and all ordinates are amplitude (dBµV). Figure 10a–c depicts distribution diagrams
of characteristic points during acceleration, sliding, and braking, respectively.
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Using the identification results to fit the EMI data, any dynamic condition distribution diagram of
characteristic points can be obtained. The method to identify acceleration, sliding, and braking was
correct and effective.
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Figure 10. Distribution diagram of different dynamic conditions of characteristic points. (a) Distribution
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(2) Experimental calculation of fU_max and the area with ρmax under different dynamic conditions.
According to Sections 4.2 and 4.3, fU_max and the area with ρmax under different dynamic

conditions can be obtained from the distribution diagrams of characteristic points. fU_max attracts great
attention as the frequency corresponding to Umax. According to Figure 10, fU_max = 21.38 MHz under
accelerating conditions. fU_max = 22.05 MHz under sliding conditions. fU_max = 21.49 MHz under
braking conditions.

The area with ρmax relates to the values of UT and w. The analyses are as follows:
(1) Constant w and changing UT. Based on Figure 10, let w = 0.9 MHz. The relationship between

UT and ρmax is shown in Figure 11. Figure 11a–c is the relationship between UT and ρmax under
accelerating, sliding, and braking conditions, respectively, when −42.6dBµV ≤ UT ≤ −39.9dBµV.
It can be seen that different UT values correspond to different ρmax values. Among the curves in
Figure 11, the maximum of ρmax, ρmax|max, was 22.3 pt/MHz/dBµV when UT = −39.9dBµV under
sliding conditions, and the minimum of ρmax, ρmax|min, was 4.2 pt/MHz/dBµV when UT = −41.6dBµV
under braking conditions. ρmax|max and ρmax|min were largely different. If ρmax was too small, which
means that there were few points per MHz and per dBµV, this area had no practical guidance. Therefore,
UT should be selected carefully when w is constant.

(2) Constant UT and changing w. Based on Figure 10, let UT = −41.6dBµV. The relationship
between w and ρmax is shown in Figure 12. Figure 12a–c is the relationship between w and ρmax under
accelerating, sliding, and braking conditions, respectively, when 0.1 MHz ≤ w ≤ 2.2 MHz.
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It can be seen that different w values correspond to different ρmax values. ρ is an index to evaluate
local regions, reflecting the level of EMI generated by new energy vehicles. When w→ 0 , ρmax would
be much larger but has little practical guidance.

Therefore, it is reasonable that UT = −41.6dBµV and w = 0.9 MHz. The ρmax and the frequency
range when UT = −41.6dBµV and w = 0.9 MHz under different conditions are shown in Table 2.

Table 2. The ρmax and the frequency range when UT = −41.6 dBµV and w = 0.9 MHz.

Parameter Acceleration Sliding Braking

ρmax (pt/MHz/dBµV) 18.9 22.3 5.1
The frequency range of the area with ρmax (MHz) 20.0~20.9 21.0~21.9 21.4~22.3

(3) EMI experimental test based on FFT and DFS.
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The experimental EMI test based on FFT and DFS identifies accelerating, sliding, and braking
conditions in real time from the speed and acceleration. Meanwhile, it uses DFS to measure the EMI of
fU_max and uses FFT spectrum analyses to measure the EMI of ρmax area. The specific experimental
ideas are analyzed as follows.

(1) In the experiment of the EMI test based on FFT and DFS, the FFT frequency span fspan = w =

0.9 MHz, the frequency resolution fresolution = 2.5 kHz, and the frequency accuracy faccuracy = ±3.7 kHz.
In the dynamic conditions identification experiment, the FFT frequency span fspan = 29.85 MHz,
the frequency resolution fresolution = 37.3 kHz, and the frequency accuracy faccuracy = ±57.5 kHz.
Therefore, by reducing fspan, fresolution and faccuracy were greatly improved with the same instruments.

(2) When the vehicle was accelerating, the FFT spectrum analysis was applied from 20.0 to
20.9 MHz with ±1.31 dB amplitude accuracy, and DFS was applied to fU_max = 21.38 MHz with
±0.36 dB amplitude accuracy. When the vehicle was sliding, the FFT spectrum analysis was applied from
21.0 to ~21.9 MHz with±1.31 dB amplitude accuracy, and DFS was applied to fU_max = 22.05 MHz with
±0.36 dB amplitude accuracy. When the vehicle was braking, the FFT spectrum analysis was applied
to 21.4 to ~22.3 MHz with ±1.31 dB amplitude accuracy, and DFS was applied to fU_max = 21.49 MHz
with ±0.36 dB amplitude accuracy.

The experiment of the EMI test based on FFT and DFS was similar to the dynamic conditions
identification experiment, with the difference that an EMI receiver was added to measure EMI.

A group of condition identification results of the EMI test based on FFT and DFS is shown in
Figure 13. According to Table 1 and experience, aT_acc = aT_slide = 0.1m/s2, aT_brake = 0.5m/s2, and
vidling = 10km/h. Then, the vehicle can be identified that it was accelerating from 0 to 30.5 s, sliding
from 30.5 to 84.0 s, and braking from 125.0 to 136.0 s.
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A group of EMI intensity graphs in ρmax area and fU_max amplitude are shown in Figure 14, where
Figure 14a–c depicts the EMI intensity graph in ρmax area and fU_max amplitude under accelerating,
sliding, and braking conditions.

A spectrogram of EMI test results based on FFT from 21.0 to 21.9 MHz with fspan = 30 MHz is
shown in Figure 15. A spectrogram of EMI test results based on FFT and DFS from 21.0 to 21.9 MHz
with fspan = 0.9 MHz is shown in Figure 16. It can be seen that there are 24 points in Figure 15 with
37.3 kHz frequency resolution and 361 points with 2.5 kHz frequency resolution in Figure 16. Therefore,
fresolution can be significantly improved by reducing fspan.
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5.3.2. Test Results of Other Test Vehicles

In order to prove the applicability and effectiveness of the method on different vehicles, the EMI
test method, based on FFT and DFS for new energy vehicle under dynamic conditions, was applied to
the electric test vehicles of Zotye Auto Co., Ltd. (hereinafter referred to as “test vehicle #1”) and BYD
Co., Ltd. (hereinafter referred to as “test vehicle #2”). Figure 17 shows the test sites of the vehicles.
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Table 3 shows the EMI evaluation indexes for different conditions of the test vehicles. The numerical
value in the boxes are emphasized. EMI tests based on FFT and DFS for test vehicles under dynamic
conditions were carried out according to the EMI evaluation indexes. Figures 19 and 20 are test results
of test vehicle #1 and test vehicle #2.
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Table 3. EMI evaluation indexes for different conditions of the test vehicles (The numerical value in the
boxes is emphasized).

Parameter
Test Vehicle #1 Test Vehicle #2

Accelerating
(0~9.3 s)

Sliding
(17.7~33.7 s)

Braking
(12.5~17.7 s)

Accelerating
(0s~35 s)

Sliding
(35~62 s)

Braking
(90~97 s)

fU_max (MHz) 29.59 20.10 29.51 16.66 16.85 16.78
Umax (dBµV) −32.54 −32.94 −30.51 −2.72 −7.82 −6.86

η 0.78 0.67 0.90 0.94 0.87 0.87
The frequency range

of the area with
ρmax (MHz)

29.0~30.0 20.1~21.1 29.0~30.0 19.8~20.8 20.0~21.0 16.5~17.5

ρmax/t
(pt/MHz/dBµV/min) 91.6 30.8 132.7 32.1 27.8 48.9

Symmetry 2019, 11, x FOR PEER REVIEW 17 of 21 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 19. A group of EMI test results based on FFT and DFS for test vehicle #1 under dynamic 
conditions. (a) Identification results of the EMI test based on FFT and DFS; (b) EMI intensity graph in 

maxρ  area and U _ maxf  amplitude under accelerating conditions; (c) EMI intensity graph in maxρ  area 

and U _ maxf  amplitude under sliding conditions; and (d) EMI intensity graph in maxρ  area and 

U _ maxf  amplitude under braking conditions. 

 
(a) 

Figure 19. A group of EMI test results based on FFT and DFS for test vehicle #1 under dynamic
conditions. (a) Identification results of the EMI test based on FFT and DFS; (b) EMI intensity graph in
ρmax area and fU_max amplitude under accelerating conditions; (c) EMI intensity graph in ρmax area
and fU_max amplitude under sliding conditions; and (d) EMI intensity graph in ρmax area and fU_max

amplitude under braking conditions.



Symmetry 2019, 11, 1092 18 of 21

Symmetry 2019, 11, x FOR PEER REVIEW 17 of 21 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 19. A group of EMI test results based on FFT and DFS for test vehicle #1 under dynamic 
conditions. (a) Identification results of the EMI test based on FFT and DFS; (b) EMI intensity graph in 

maxρ  area and U _ maxf  amplitude under accelerating conditions; (c) EMI intensity graph in maxρ  area 

and U _ maxf  amplitude under sliding conditions; and (d) EMI intensity graph in maxρ  area and 

U _ maxf  amplitude under braking conditions. 

 
(a) 

Symmetry 2019, 11, x FOR PEER REVIEW 18 of 21 

 
(b) 

 
(c) 

 
(d) 

Figure 20. A group of EMI test results based on FFT and DFS for test vehicle #2 under dynamic 
conditions. (a) Condition identification result of the EMI test based on FFT and DFS; (b) EMI intensity 
graph in maxρ  area and U _ maxf  amplitude under accelerating conditions; (c) EMI intensity graph in 

maxρ  area and U _ maxf  amplitude under sliding conditions; and (d) EMI intensity graph in maxρ  area 

and U _ maxf  amplitude under braking conditions. 

Table 3. EMI evaluation indexes for different conditions of the test vehicles. (The numerical value in 
the boxes is emphasized.). 

Parameter 
Test vehicle #1 Test vehicle #2 

Accelerating 
(0~9.3 s) 

Sliding 
(17.7~33.7 s) 

Braking 
(12.5~17.7 s) 

Accelerating 
(0s~35 s) 

Sliding 
(35~62 s) 

Braking 
(90~97 s) 

U _ maxf (MHz) 29.59 20.10 29.51 16.66 16.85 16.78 

maxU (dBμV) −32.54 −32.94 −30.51 −2.72 −7.82 −6.86 

η 0.78 0.67 0.90 0.94 0.87 0.87 
The frequency range of the area 

with maxρ  (MHz) 29.0~30.0 20.1~21.1 29.0~30.0 19.8~20.8 20.0~21.0 16.5~17.5 

maxρ /t 

(pt/MHz/dBμV/min) 
91.6 30.8 132.7 32.1 27.8 48.9 

The following can be seen from Table 3: 
(1) The U _ maxf  values of test vehicle #1 under accelerating, sliding, and braking conditions were 

29.59, 20.10, and 29.51 MHz. The U _ maxf  values of test vehicle #2 under accelerating, sliding, and 

braking conditions were 16.66, 16.85, and 16.78 MHz, which were lower than the U _ maxf  values of 

test vehicle #1. However, the maxU  of test vehicle #1 under different conditions was smaller than the 

maxU  of test vehicle #2. Therefore, as for the index to evaluate extreme values, maxU , the EMI 
performance of test vehicle #1 was better than that of test vehicle #2. 

(2) The point ratio η of test vehicle #1 under braking conditions was 0.90. The point ratio η of test 
vehicle #2 under accelerating conditions was 0.94. This indicates that there were many characteristic 
points exceeding the respective TU . As for the comprehensive index to evaluate the overall region, 

Figure 20. A group of EMI test results based on FFT and DFS for test vehicle #2 under dynamic
conditions. (a) Condition identification result of the EMI test based on FFT and DFS; (b) EMI intensity
graph in ρmax area and fU_max amplitude under accelerating conditions; (c) EMI intensity graph in
ρmax area and fU_max amplitude under sliding conditions; and (d) EMI intensity graph in ρmax area
and fU_max amplitude under braking conditions.

The following can be seen from Table 3:
(1) The fU_max values of test vehicle #1 under accelerating, sliding, and braking conditions were

29.59, 20.10, and 29.51 MHz. The fU_max values of test vehicle #2 under accelerating, sliding, and
braking conditions were 16.66, 16.85, and 16.78 MHz, which were lower than the fU_max values of test
vehicle #1. However, the Umax of test vehicle #1 under different conditions was smaller than the Umax

of test vehicle #2. Therefore, as for the index to evaluate extreme values, Umax, the EMI performance of
test vehicle #1 was better than that of test vehicle #2.

(2) The point ratio η of test vehicle #1 under braking conditions was 0.90. The point ratio η of test
vehicle #2 under accelerating conditions was 0.94. This indicates that there were many characteristic
points exceeding the respective UT. As for the comprehensive index to evaluate the overall region, η,
it was necessary to pay special attention to the characteristic points under braking conditions of test
vehicle #1 and accelerating conditions of test vehicle #2.



Symmetry 2019, 11, 1092 19 of 21

(3) The maximum ρt (29.0~30.0 MHz) of test vehicle #1 was 132.7 pt/MHz/dBµV/min under
braking conditions. The maximum ρt (16.5~17.5 MHz) of test vehicle #2 under braking conditions
was 48.9 pt/MHz/dBµV/min. As for the index to evaluate the local region ρt, it was necessary to pay
attention to the concentrated characteristic points between 29.0 and 30.0 MHz of test vehicle #1 and the
characteristic points between 16.5 and 17.5 MHz of test vehicle #2 under braking conditions.

Through the EMI test based on FFT and DFS for test vehicles under dynamic conditions,
the dynamic conditions can be identified. And the dynamic EMI can be measured with higher accuracy.
The harshest cases can be judged from Umax. The amplitude range of characteristic points can be
judged from η. The regions with concentrated characteristic points can be judged from ρt. These help
us to evaluate and improve the vehicle’s EMI performance.

5.4. Comparison Among Different EMI Test Methods

The results of different EMI test methods are shown in Figure 21. Figure 21a–d depicts the
test results from previous studies [12–14] and this paper. We marked the elements with numbers
as follows: (1) driving conditions (e.g., speed/torque); (2) frequency span; (3) amplitude; (4) time; and
(5) characteristic points. Figure 21a includes driving conditions, amplitude and time, which constitute
the result of DFS. Figure 21b includes frequency span and amplitude, which constitute the result of
frequency sweeping. Figure 21c includes frequency span, amplitude, and time, which constitute the
result of FFT. The test results of this paper shown in Figure 21d include elements (1)–(4). In addition,
characteristic points were calculated out for more precise measurement.
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6. Conclusions and Prospects

This paper proposes an EMI test method based on FFT and DFS for new energy vehicles under
dynamic conditions, which makes full use of FFT’s rapidity and DFS’s accuracy to effectively expand
their applications, making EMI testing under dynamic conditions possible.

Based on the features of accelerating, sliding, and braking conditions, a method to identify
accelerating, sliding, and braking conditions was proposed. Different dynamic conditions can be
identified from any group of speed and acceleration curves, realizing the automation of identifying
dynamic conditions during vehicle the measurement process.

A comprehensive EMI key evaluation index system for new energy vehicles was built, including
characteristic points of maximum amplitude pmax

(
Umax, fsuspect_max

)
, area Π, ratio η, and density

coefficient ρ of high-amplitude characteristic points. Umax is an index to evaluate extreme values.
η is a comprehensive index to evaluate the overall region. And ρ is an index to evaluate the local
region. The calculation formula of each index is deduced, while the physical significance of each index
is expounded.

The EMI test method, based on FFT and DFS for new energy vehicle under dynamic conditions,
was applied to GA5 PHEV, produced by Guangzhou Automobile Group Co., Ltd., and the electric test
vehicles of Zotye Auto Co., Ltd. and BYD Co., Ltd. The results indicate that the EMI of new energy
vehicles can be tested under dynamic conditions with high accuracy, and the evaluation indexes are
operable. With the same instruments, by reducing fspan from 29.85 to 0.9 MHz, fresolution improves
from 37.3 to 2.5 kHz, and faccuracy improves from ±57.5 kHz to ±3.7 kHz. DFS is used in the EMI test
with a ±0.36 dB amplitude accuracy.

In the future, more experiments will be carried out to develop EMI test standards and specifications
for new energy vehicles under dynamic conditions.
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