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Abstract: In this paper, the analysis is centered on Noether-type first integrals in Lagrange-Hamilton
dynamics based on autonomous second-order Lagrangians. More precisely, by using the classical
Noether’s theorem and a non-standard Legendrian duality, the single-time and multi-time versions
of Noether’s result are investigated for autonomous second-order Lagrangians. A correspondence is
established between the invariances under flows and the first integrals for autonomous second-order
Lagrangians. In this way, our results extend, unify and improve several existing theorems in the
current literature.
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1. Introduction

Over time, the multi-time version associated with Lagrange-Hamilton-Jacobi dynamics has been
extensively studied by many researchers (see, for instance, Rochet [1], Motta and Rampazzo [2], Cardin and
Viterbo [3], Udrişte and Matei [4], Treanţă [5–10]). The concept of multi-time has a long story and we make a
dishonesty by mentioning only a part of the research works that contain it: Dirac et al. [11], Tomonaga [12],
Friedman [13], Saunders [14], Udrişte and Matei [4], Prepeliţă [15], Mititelu and Treanţă [16], Treanţă [5–10].

In this paper, inspired and motivated by the ongoing research in this field, we consider multi-time
evolutions and the notion multi-time is regarded as multiple parameter of evolution. For the multi-time
case, the multi-index notation introduced by Saunders [14] is used. Throughout the paper, we develop
our points of view, by developing new concepts and methods for a theory that involves single-time and
multi-time second-order Lagrangians. More exactly, by using a non-standard Legendrian duality, the main
aim of this work is to study the single-time and multi-time versions of Noether’s result for autonomous
second-order Lagrangians. We prove that there exists a correspondence between the invariances under
flows and the first integrals for autonomous second-order Lagrangians. This actually reflects Noether
type theorems between symmetries and conservation laws for dynamical systems. This work can be
an important source for many research problems and it should be of interest to engineers and applied
mathematicians. For other different but connected ideas to this subject, the reader is directed to Ma [17,18].

The present paper is structured as follows. Section 2 contains some auxiliary results including the
classical Noether’s theorem. Section 3 introduces the main results of this paper. More exactly, Noether-type
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first integrals are investigated for autonomous second-order Lagrangians. Finally, Section 4 concludes
the paper.

2. Auxiliary Results

In the classical (single-time) Lagrange-Hamilton dynamics it is well-known that if L = L (x(t), ẋ(t))
is an autonomous Lagrangian, then the associated Hamiltonian H = H (x(t), p(t)) is a first integral both
for Euler-Lagrange and Hamilton equations (see, for instance, Udrişte and Matei [4], Treanţă [5–10]).

The next result formulates the classical Noether’s theorem (for autonomous first-order Lagrangians).

Theorem 1. [Noether] Let T(t, x) be the flow generated by the C1-class vector field X(x) =
(

Xi(x)
)

, i = 1, n. If the

Lagrangian L (x(t), ẋ(t)) is invariant under this flow, where x : [t0, t1] ⊆ R→ Rn and ẋ(t) :=
d
dt

x(t), then the function

I(x, ẋ) =
∂L
∂ẋi (x, ẋ)Xi(x)

is a first integral associated with the movement generated by the Lagrangian L.

Proof. Denote xs(t) := T (s, x(t)). The invariance of L means

0 =
dL
ds

(xs(t), ẋs(t)) |s=0

=
∂L
∂ẋi (x(t), ẋ(t))

∂Xi

∂xj (x(t)) ẋj(t) +
∂L
∂xi (x(t), ẋ(t)) Xi (x(t)) .

Consequently, using derivation formulas and Euler-Lagrange equations, we get

dI
dt

(x, ẋ) =
(

d
dt

∂L
∂ẋi (x, ẋ)

)
Xi(x) +

∂L
∂ẋi (x, ẋ)

∂Xi

∂xj (x)ẋj

=

(
d
dt

∂L
∂ẋi (x, ẋ)− ∂L

∂xi (x, ẋ)
)

Xi(x) = 0

and the proof is complete.

Further, in order to formulate the multi-time version for Noether-type first integrals (associated
with autonomous first-order Lagrangians), in accordance with Treanţă [5–10] and following
Udrişte and Matei [4], consider Ωt0,t1 ⊂ Rm a hyper-parallelepiped determined by diagonally opposite
points t0, t1 from Rm. If we define the partial order product on Rm, then Ωt0,t1 is equivalent with the closed
interval [t0, t1]. Also, consider the C2-class Lagrangian L (x(t), xγ(t), t), where

t = (t1, ..., tm) = (tγ) ∈ Ωt0,t1 , x = (x1, ..., xn) = (xi) : Ωt0,t1 → Rn

xγ(t) :=
∂x
∂tγ

(t), γ ∈ {1, 2, ..., m}, i ∈ {1, 2, ..., n}.

In the case of several variables of evolution (that is, the multi-time version), the Hamiltonian H (x, p, t) =

pα
i xi

α (x, p, t)− L (x, p, t) (see summation over the repeated indices and pα
i (t) :=

∂L
∂xi

α
(x(t), xγ(t), t) , α ∈

{1, 2, ..., m}, t ∈ Ωt0,t1) does not conserve, that is DαH 6= 0, where Dα is the total derivative operator, even in
autonomous case.
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In the following, let L (x(t), xγ(t)) be an autonomous C2-class Lagrangian. Introducing the multi-time
anti-trace Euler-Lagrange PDEs (for more details, see Udrişte and Matei [4])

∂L
∂xi δ

γ
β − Dβ

∂L
∂xi

γ

= 0, i = 1, n

and using Legendrian duality, we derive the multi-time anti-trace Hamilton PDEs (see δα
β as Kronecker’s symbol)

∂xi

∂tβ
(t) =

∂H

∂pβ
i

(x(t), p(t)) ,
∂pα

i
∂tβ

(t) = −δα
β

∂H
∂xi (x(t), p(t)) .

A direct computation gives us DγH = 0. Consequently, H is a first integral both for multi-time
anti-trace Euler-Lagrange PDEs and multi-time anti-trace Hamilton PDEs.

On the other hand, if we introduce energy-impulse tensor T of components

Tα
β (x, p, t) = pα

i xi
β (x, p, t)− L (x, p, t) δα

β

and Hamilton tensor
Hα

β (x, p) = pα
i xi

β (x, p)− 1
m

L (x, p) δα
β,

we get the following results:

(1) Div(T) := DαTα
β = 0 (conservation law);

(2) the trace of Hamilton tensor is the Hamiltonian H (x, p) = pα
i xi

α (x, p)− L (x, p).

Next, consider the Hamiltonian tensor field Hα
β defined by

Hα
β (x, p) = pα

i xi
β (x, p)− Lα

β (x(t), xγ(t)) ,

where x and p are the canonical variables. Here, Lα
β (x(t), xγ(t)) represents an extension of the Lagrangian

L (x(t), xγ(t)), satisfying:

(a) the trace of tensor field Lα
β is the Lagrangian L;

(b) the Lagrangian 1-forms Lα
β (x(t), xγ(t)) dtβ are completely integrable;

(c) the functions Lα
β (x(t), xγ(t)) determine the multi-time anti-trace Euler-Lagrange PDEs

∂Lα
β

∂xi δ
γ
λ − Dλ

∂Lα
β

∂xi
γ

= 0, i = 1, n. (1)

Further, we assume pα
i (t)δ

γ
β =

∂Lα
β

∂xi
γ
(x(t), xγ(t)) and that these nm3 equations define the following m

functions xγ = xγ(x, p). If Lα
β = Lδα

β, then Hα
β is exactly the classical energy-impulse tensor.

The following result formulates the generalized Hamilton PDEs governed by first-order Lagrangians.

Theorem 2. (Generalized Hamilton PDEs, [4]) If x(·) is solution in (1) and p = (pα
i (·)) is defined as above, then

the pair (x(·), p(·)) is solution of the following generalized Hamilton PDEs:

∂xi

∂tβ
(t)δα

γ =
∂Hα

β

∂pγ
i
(x(t), p(t), t)
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∂pα
i

∂tβ
(t) = −

∂Hα
β

∂xi (x(t), p(t), t) .

Moreover, if the Lagrangian tensor field Lα
β is autonomous, then the divergence of the transposed Hamilton

tensor field Hα
β is zero, that is

m

∑
β=1

Dβ Hα
β = 0.

The next theorem formulates the multi-time version for Noether-type first integrals associated with
autonomous first-order Lagrangians.

Theorem 3. ([4]) Let T(t, x) be the m-flow generated by the C1-class vector fields Xα(x) =
(

Xi
α(x)

)
, α =

1, m, i = 1, n. If the Lagrangian L (x(t), xγ(t)) is invariant under this flow, then the function

I(x, xγ) =
∂L
∂xi

β

(x, xγ)Xi
β(x)

is a first integral of the movement generated by the Lagrangian L via multi-time anti-trace Euler-Lagrange PDEs.

Proof. The invariance of L means

0 =
∂L
∂xi (x(t), xγ(t))Xi

α (x(t)) +
∂L
∂xi

β

(x(t), xγ(t))
∂Xi

β

∂xj (x(t)) xj
α(t).

By direct computation and taking into account the multi-time anti-trace Euler-Lagrange PDEs, we get

Dα I(x, xγ) =

(
Dα

∂L
∂xi

β

(x, xγ)

)
Xi

β(x) +
∂L
∂xi

β

(x, xγ)
∂Xi

β

∂xj (x) xj
α

=

(
Dα

∂L
∂xi

β

(x, xγ)−
∂L
∂xi (x, xγ)δ

β
α

)
Xi

β(x) = 0

and the proof is now complete.

3. Main Results

This section, taking into account the aforementioned auxiliary results, introduces the main results of
this paper. More exactly, the single-time and multi-time versions of Noether’s result are investigated for
autonomous second-order Lagrangians.

Theorem 4. Let T(t, x) be the flow generated by the C2-class vector field X(x) =
(

Xi(x)
)

, i = 1, n. If the
autonomous second-order Lagrangian L (x(t), ẋ(t), ẍ(t)) is invariant under this flow, then the function

I(x, ẋ, ẍ) =
∂L
∂ẋi (x, ẋ, ẍ)Xi(x) +

∂L
∂ẍi (x, ẋ, ẍ)

∂Xi

∂xj (x)ẋj

− d
dt

(
∂L
∂ẍi (x, ẋ, ẍ)

)
Xi(x)

is a first integral of the movement generated by the Lagrangian L.
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Proof. The invariance of L means

0 =
∂L
∂xi (x(t), ẋ(t), ẍ(t)) Xi (x(t)) +

∂L
∂ẋi (x(t), ẋ(t), ẍ(t))

∂Xi

∂xj (x(t)) ẋj(t)

+
∂L
∂ẍi (x(t), ẋ(t), ẍ(t))

dẍi

dt
(t).

By using the associated Euler-Lagrange ODEs formulated as follows

∂L
∂xi −

d
dt

∂L
∂ẋi +

d2

dt2
∂L
∂ẍi = 0, i ∈ {1, 2, ..., n},

it results
dI
dt

=
d
dt

(
∂L
∂ẋi Xi(x) +

∂L
∂ẍi

∂Xi

∂xj (x)ẋj − d
dt
(

∂L
∂ẍi )Xi(x)

)

=
d
dt

(
∂L
∂ẋi Xi(x) +

∂L
∂ẍi

∂Xi

∂xj (x)ẋj
)
− d

dt

(
d
dt
(

∂L
∂ẍi )Xi(x)

)

=
d
dt

(
∂L
∂ẋi

)
Xi(x) +

∂L
∂ẋi

∂Xi

∂xj (x)ẋj +
d
dt

(
∂L
∂ẍi

)
∂Xi

∂xj (x)ẋj

+
∂L
∂ẍi

dẍi

dt
− d

dt

(
d
dt
(

∂L
∂ẍi )Xi(x)

)

=
d
dt

(
∂L
∂ẋi

)
Xi(x)− ∂L

∂xi Xi(x)− ∂L
∂ẍi

dẍi

dt
+

d
dt

(
∂L
∂ẍi

)
∂Xi

∂xj (x)ẋj

+
∂L
∂ẍi

dẍi

dt
− d

dt

(
d
dt
(

∂L
∂ẍi )Xi(x)

)

= − ∂L
∂xi Xi(x) +

d
dt

(
∂L
∂ẋi

)
Xi(x)− d2

dt2

(
∂L
∂ẍi

)
Xi(x) +

d2

dt2

(
∂L
∂ẍi

)
Xi(x)

+
d
dt

(
∂L
∂ẍi

)
∂Xi

∂xj (x)ẋj − d
dt

(
d
dt
(

∂L
∂ẍi )Xi(x)

)

=

(
− ∂L

∂xi +
d
dt

∂L
∂ẋi −

d2

dt2
∂L
∂ẍi

)
Xi(x) +

d2

dt2

(
∂L
∂ẍi

)
Xi(x)

+
d
dt

(
∂L
∂ẍi

)
∂Xi

∂xj (x)ẋj − d
dt

(
d
dt
(

∂L
∂ẍi )Xi(x)

)

=

(
− ∂L

∂xi +
d
dt

∂L
∂ẋi −

d2

dt2
∂L
∂ẍi

)
Xi(x) +

d
dt

(
d
dt
(

∂L
∂ẍi )Xi(x)

)

− d
dt

(
d
dt
(

∂L
∂ẍi )Xi(x)

)
=

(
− ∂L

∂xi +
d
dt

∂L
∂ẋi −

d2

dt2
∂L
∂ẍi

)
Xi(x) = 0.

In consequence, the function I(x, ẋ, ẍ) is a first integral of the movement generated by the autonomous
second-order Lagrangian Lagrangian L. The proof is complete.

The following two corollaries establish some more restrictive results.



Symmetry 2019, 11, 1088 6 of 8

Corollary 1. Let T(t, x) be the flow generated by the C2-class vector field X(x) =
(

Xi(x)
)

, i = 1, n. If the

autonomous second-order Lagrangian L (x(t), ẋ(t), ẍ(t)) is invariant under this flow and
d
dt

(
∂L
∂ẍi (x, ẋ, ẍ)

)
Xi(x)

is constant, then the function

I (x, ẋ, ẍ) =
∂L
∂ẋi (x, ẋ, ẍ)Xi(x) +

∂L
∂ẍi (x, ẋ, ẍ)

∂Xi

∂xj (x)ẋj

is a first integral of the movement generated by the Lagrangian L.

Proof. The invariance of L means

0 =
∂L
∂xi (x(t), ẋ(t), ẍ(t)) Xi (x(t)) +

∂L
∂ẋi (x(t), ẋ(t), ẍ(t))

∂Xi

∂xj (x(t)) ẋj(t)

+
∂L
∂ẍi (x(t), ẋ(t), ẍ(t))

dẍi

dt
(t).

Consequently, we get
dI
dt

=
d
dt

(
∂L
∂ẋi Xi(x) +

∂L
∂ẍi

∂Xi

∂xj (x)ẋj
)

=
d
dt

(
∂L
∂ẋi

)
Xi(x) +

∂L
∂ẋi

∂Xi

∂xj (x)ẋj +
d
dt

(
∂L
∂ẍi

)
∂Xi

∂xj (x)ẋj +
∂L
∂ẍi

dẍi

dt

=
d
dt

(
∂L
∂ẋi

)
Xi(x)− ∂L

∂xi Xi(x)− ∂L
∂ẍi

dẍi

dt
+

d
dt

(
∂L
∂ẍi

)
∂Xi

∂xj (x)ẋj +
∂L
∂ẍi

dẍi

dt

= − ∂L
∂xi Xi(x) +

d
dt

(
∂L
∂ẋi

)
Xi(x)− d2

dt2

(
∂L
∂ẍi

)
Xi(x) +

d2

dt2

(
∂L
∂ẍi

)
Xi(x)

+
d
dt

(
∂L
∂ẍi

)
∂Xi

∂xj (x)ẋj

=

(
− ∂L

∂xi +
d
dt

∂L
∂ẋi −

d2

dt2
∂L
∂ẍi

)
Xi(x) +

d2

dt2

(
∂L
∂ẍi

)
Xi(x) +

d
dt

(
∂L
∂ẍi

)
∂Xi

∂xj (x)ẋj

=

(
− ∂L

∂xi +
d
dt

∂L
∂ẋi −

d2

dt2
∂L
∂ẍi

)
Xi(x) +

d
dt

(
d
dt
(

∂L
∂ẍi )Xi(x)

)
= 0.

Thus, the function I(x, ẋ, ẍ) is a first integral and the proof is complete.

Corollary 2. For any autonomous regular second-order Lagrangian L (·) := L (x(t), ẋ(t), ẍ(t)), the Hamiltonian

H
(

xi(t),
∂L
∂ẋi (·),

∂L
∂ẍi (·)

)
:= ẋi(t)

∂L
∂ẋi (·) + ẍi(t)

∂L
∂ẍi (·)− L(·)

is conserved along to any extremal curve, c(t) :=
(

xi(t)
)

, i ∈ {1, 2, ..., n}, solution of the Euler-Lagrange equations

∂L
∂xi −

d
dt

∂L
∂ẋi +

d2

dt2
∂L
∂ẍi = 0, i ∈ {1, 2, ..., n},

if ẋi(t)
d
dt

(
∂L
∂ẍi (·)

)
= ct.
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Remark 1. As with the first-order Lagrangians, in the case of multiple variables of evolution (that is, the multi-time
version), the Hamiltonian

H (x, p, q, t) = xi
γ (x, p, q, t)

∂L
∂xi

γ

(
x, xi

γ(x, p, q, t), xi
αβ(x, p, q, t), t

)

+
1

n(α, β)
xi

αβ (x, p, q, t)
∂L

∂xi
αβ

(
x, xi

γ(x, p, q, t), xi
αβ(x, p, q, t), t

)
−L

(
x, xi

γ(x, p, q, t), xi
αβ(x, p, q, t), t

)
,

(multi-time second order non-standard Legendrian duality) or, shortly,

H = xi
γ pγ

i + xi
αβqαβ

i − L,

(see summation over the repeated indices) with

pγ
i (t) :=

∂L
∂xi

γ

(
t, x(t), xγ(t), xαβ(t)

)
, t ∈ Ωt0,t1 ,

qαβ
i (t) :=

1
n(α, β)

∂L
∂xi

αβ

(
t, x(t), xγ(t), xαβ(t)

)
, t ∈ Ωt0,t1 ,

does not conserve, even in autonomous case (for more details, see Treanţă [8]).

4. Conclusions

In this paper, motivated and inspired by the ongoing research in this area, single-time and multi-time
versions for Noether-type first integrals in Lagrange-Hamilton dynamics associated with autonomous
second-order Lagrangians have been investigated. More exactly, by using a non-standard Legendrian
duality, the results derived in this paper have extended and improved several existing theorems in the
current literature.
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