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Abstract: The Lagrangian meshfree particle-based method has advantages in solving fluid dynamics
problems with complex or time-evolving boundaries for a single phase or multiple phases. A pure
Lagrangian meshfree particle method based on a generalized finite difference (GFD) scheme is
proposed to simulate time-dependent weakly compressible viscous flow. The flow is described with
Lagrangian particles, and the partial differential terms in the Navier-Stokes equations are represented
as the solution of a symmetric system of linear equations through a GFD scheme. In solving the
particle-based symmetric equations, the numerical method only needs the kernel function itself
instead of using its gradient, i.e., the approach is a kernel gradient free (KGF) method, which avoids
using artificial parameters in solving for the viscous term and reduces the limitations of using the
kernel function. Moreover, the order of Taylor series expansion can be easily improved in the meshless
algorithm. In this paper, the particle method is validated with several test cases, and the convergence,
accuracy, and different kernel functions are evaluated.

Keywords: compressible viscous flow; symmetric linear equations; generalized finite difference
scheme; kernel gradient free; Lagrangian approach

1. Introduction

Problems of weakly compressible flows have attracted much attention in aerospace and oceanic
applications, such as wind engineering problems, turbine flow, blood flow, and water wave motion.
Accurate predictions of such flows are important in computational fluid dynamics. For fluids at low
Mach numbers, the ratio between the speed of flow and the speed of sound is extremely small, and
therefore, density fluctuations are not obvious. As a result, such a situation can be called weakly
compressible flow. Generally, there are three numerical ways to model weakly compressible flow,
namely, the Eulerian approach, the Lagrangian approach, and the hybrid approach. The Eulerian
approach solves for quantities at fixed locations in space, and the Lagrangian approach uses individual
particles that move through both space and time and have their own physical properties, such
as density, velocity, and pressure, to represent the dynamically evolving fluid flow. The flow is
described by recording the time history of each fluid particle. In the present work, we propose a pure
Lagrangian meshfree particle-based method based on a meshless finite difference scheme to solve
weakly compressible flow problems.

The Lagrangian meshfree method is rapidly advancing and has been widely used in recent years
because it can be easily adapted to modeling problems with complex or time-evolving boundaries for
single or multiple phases, such as numerical simulations of dam break flow [1], hydraulic jumps [2],
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rising bubbles [3] and coalescing [4]. The ability of this method to model non-Newtonian fluid and
large scale diffuse fluids has been demonstrated in some recent works [5,6] by introducing different
symmetric models. Moreover, because the computations are based on the support domain, which is
much smaller than the complete computational region, the ill conditioned system problem is rarely
encountered. Among all Lagrangian meshfree methods, the smoothed particle hydrodynamics (SPH)
method was one of the earliest methods developed and has been widely applied in different fields.
The SPH method was first pioneered independently by Lucy [7] and Gingold and Monaghan [8] to solve
astrophysical problems in 1977. Details of the SPH method as a computational fluid dynamics method
can be found in recent reviews [9–12] and Liu and Liu’s book [13]. Some successful applications of
this method include coastal engineering, nuclear engineering, ocean engineering, and bioengineering.
However, the accuracy of the conventional SPH method is unsatisfactory, and it is not easy to achieve
an accurate high-order SPH approach.

As a meshfree Lagrangian method, the particle distribution generally tends to be irregular in
the computations, which leads to inconsistency and low accuracy [14,15]. For that reason, in some
cases, only the first-order term of the fluid dynamics equations, the Navier-Stokes equations, is
solved, and the viscous term, which contains the second-order differential, is obtained through the
artificial viscosity with artificial parameters in the SPH method. This issue can also occur in the
incompressible SPH (ISPH) method [16]. To improve the consistency and accuracy of these methods,
different modifications have been developed. After using Taylor series expansion to normalize the
kernel function, the corrective smoothed particle method (CSPM) [17,18] and the modified smoothed
particle method (MSPH) [19] were proposed. Both methods have better accuracy than the conventional
SPH method. Nevertheless, it should be noted that both methods improve accuracy by improving the
particle approximation of the kernel gradient term, which leads to more strict requirements on the
kernel function. These requirements are related to the compact condition, normalization condition,
and delta function behavior [20] and limit the selection of the kernel function, especially when the
second-order gradient of the kernel function is required.

To avoid the solution of the gradient of the kernel function, a method with kernel gradient free
(KGF) features can be developed, as discussed in detail in [21–23]; notably, a KGF-SPH method was
proposed in 2015. When a particle method only involves the kernel function itself in kernel and particle
approximation, the kernel gradient is not necessary in the computation, and this approach is thus
referred to as a KGF method. The KGF-SPH method is used to solve for the viscous term directly
without using the artificial viscosity, and the results are good for 2D models. Another KGF method is
the consistent particle method (CPM) [24,25] for incompressible flow simulation. In the CPM, Poisson’s
equation is used in the same way as the moving-particle semi-implicit (MPS) method based on the
particle number density and the difference algorithm.

The purpose of our work is to combine a finite difference scheme and the particle method for
solving weakly compressible viscous flow problems. In the method, the flow is described with
Lagrangian particles, and the partial differential terms in the Navier-Stokes equations are represented
as the solution of a symmetric system of linear equations through a generalized finite difference (GFD)
scheme. It should be noted that this method is not a completely new method, but we will simply refer to
it as the finite difference particle method (FDPM) to simplify the description in the subsequent sections.

Meshless finite difference approximation was first discussed for fully arbitrary meshes by
Jensen [26] in 1972. Perrone and Kao [27] also contributed to the development of this method at
that time. Subsequently, a variation using the moving least squares method was proposed by Lizska
and Orkisz [28], and some recent works have been published [29–31]. The meshless finite difference
scheme or GFD approximation we used came from Benito, Urena and Gavete [32], and they provided
a discussion of the influence of several factors in the GFD scheme. A comparison between the GFD
method and the element-free Galerkin method (EFGM) in solving the Laplace equation was presented
in [33,34]. The GFD method was shown to be more accurate than the EFGM and the GFD scheme
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was used as a Eulerian meshfree method. In the present work, the GFD scheme is utilized to build a
Lagrangian meshfree particle-based method, namely, the FDPM.

The FDPM has several advantages compared with the conventional SPH. First, the method is
KGF. Only the kernel function itself and the positions of each particle are used to compute the spatial
differential through a set of symmetric linear equations. Second, the method can be easily extended to
high orders because it is based on Taylor series expansion. We show a fourth-order scheme for the
FDPM. Additionally, only a few lines of code need to change to obtain a high-order FDPM, which
is simple for users, especially when the users want to start with a low-order but fast computation.
Third, the second-order differential term can be obtained without additional limitations on the kernel
function. Thus, the viscous term in the Navier-Stokes equations can be computed directly without
introducing any artificial parameters. Fourth, the FDPM is characterized by good compatibility. Most
boundary conditions in the existing Lagrangian particle-based methods, such as the SPH and MPS
methods, can be used directly. In the present work, we focus on the evaluation of the convergence,
efficiency, and effects of the kernel function. The method is tested by modeling flow in a pipeline,
Poisseuille flow, Couette flow and flow in porous media. These classical flows are used in different
ways to solve fluid dynamics problems [35–37].

The present paper is organized as follows. In Section 2, the FDPM is given to solve the Navier-Stokes
equations. In Section 3, applications of the particle method are shown. Section 4 summarizes the
results of this work.

2. Finite Difference Particle Method for Weakly Compressible Flow

2.1. Lagrangian Form of the Governing Equations for Weakly Compressible Viscous Flow

The Lagrangian form of the Navier-Stokes equations, i.e., the continuity equation and the
momentum equation, including viscous and external forces, are defined by Equations (1) and (2),
respectively. The Lagrangian form of governing equations is as follows:

Dρ
Dt

= −ρ∇·u, (1)

Du
Dt

= −
1
ρ
∇p + vk∇

2u + F, (2)

where ρ is the density, t is the time, u is the particle velocity, p is the pressure, vk is the kinematic
viscosity, and F is an external body force, such as gravity. All these variables are related to the physical
properties of fluid particles that can move in both space and time, rather than remain at a fixed position.

The material derivative is written as follows

D
Dt

=
∂
∂t
+u·∇. (3)

The equation of state for weakly compressible fluid flow is

Dp
Dt

= c2 Dρ
Dt

, (4)

where c is the speed of sound.

2.2. Generalized Finite Difference Scheme

In the FDPM, flow is described with Lagrangian particles, and the GFD approximation [32] is
utilized to solve for the spatial differential terms in the governing equations.

Consider a particle i surrounded by particles j = 1, 2, . . . , N, with all N + 1 of the particles in a
compact support domain, as shown in Figure 1. For a circular support domain, rs represents the radius
of the support domain, which is called the smoothing length in the SPH method. Particles j are white
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circles around particle i, which is the orange circle, and Ω represents the computational domain. The
closest nodes to particle i are selected as j particles, and these particles should be in the support domain
at the same time.Symmetry 2019, 11, x FOR PEER REVIEW 4 of 20 

 

 
Figure 1. Computational domain Ω, support domain of particle i (point circle line), radius of the 
support domain rs, and fluid particles (circles). 
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where Equation (5) is for two dimensions. x and y are the spatial coordinates of the particles, and hj = 
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where W(hj, kj, rs) is a kernel function in 2D and rs represents the size of the support domain. For W, 
different kernel functions, including Gaussian, cubic spline, and quintic spline functions, can be 
found in [13]. In the following equations, we use W for the kernel function. 
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The values of an infinitely differentiable function F at the positions of particles i and j are defined
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where Equation (5) is for two dimensions. x and y are the spatial coordinates of the particles, and hj =

xj - xi, kj = yj − yi.
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After rearranging these equations and multiplying by a kernel function W on both sides of the
equation, the sum of these expressions for all particles j is obtained:
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where W(hj, kj, rs) is a kernel function in 2D and rs represents the size of the support domain. For W,
different kernel functions, including Gaussian, cubic spline, and quintic spline functions, can be found
in [13]. In the following equations, we use W for the kernel function.
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According to Equation (7), the norm of G equals 0, so we obtain:
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where
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∂ fi
∂x + k j

∂ fi
∂y +

h2
j

2
∂2 fi
∂x2 +

k2
j

2
∂2 fi
∂y2 + h jk j

∂2 fi
∂x∂y +

h3
j

6
∂3 fi
∂x3 +

k3
j

6
∂3 fi
∂y3 +

h2
j k j

2
∂3 fi
∂x2∂y +

h jk2
j

2
∂3 fi
∂x∂y2

+
h4

j
24
∂4 fi
∂x4 +

k4
j

24
∂4 fi
∂y4 +

h3
j k j

6
∂4 fi
∂x3∂y +

h2
j k2

j
4

∂4 fi
∂x2∂y2 +

h jk3
j

6
∂4 fi
∂x∂y3 .

(10)
Equation (9) gives us the following equation:

AD = B, (11)
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D =
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∂x
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∂y
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∂x2
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∂x∂y3
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, (13)

B =
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Since matrix A is symmetrical, Equation (11) can be solved, and the solution gives the values
of the spatial derivatives in matrix D. Thus, the spatial derivatives in Equations (1) and (2) can be
obtained by solving a set of symmetric linear equations, and the material derivatives in the equations
can be integrated using a time integration scheme.
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2.3. Particle Representation for Governing Equations

Taking particle i as an example, this section gives the particle representation of the governing
equations and the solution to Equation (11). The solution includes the values of the spatial derivatives
needed in the governing equations.

The coefficients of D and B are denoted by Dm(fi) and Bm(fi), respectively, with m = 1, 2, . . . , 5.
For example, D2( fi) =

∂ fi
∂y (the second coefficient in Equation(13)), and B2( fi) =

∑N
j=1( f j− f i)k jW

2 (the
second coefficient in Equation (14)). In addition, the symmetric matrix A can be decomposed into the
upper and lower triangular matrices A = LLT. The coefficients of the matrix L are denoted by L(m, n),
with m and n = 1, 2, 3, 4, 5.

By using the GFD scheme and Cholesky factorization to solve Equation (11), we obtain the
solutions for the Lagrangian derivative terms in Equations (1) and (2) in two-dimensional form

Dρi
Dt

= −ρiD1(ui) − ρiD2(vi), (15)

Dui

Dt
= −

1
ρi

D1(pi) + vkD3(ui), (16)

Dvi
Dt

= −
1
ρi

D2(pi) + vkD4(vi) + g, (17)

where ui and vi are the velocity of particle i in two directions and

Dm( f ) =


1

L(m,m)

[
Ym( f ) −

∑N
n=m+1 L(n, m)Dn( f )

]
m = 1, 2, 3, 4

Y( f )
L(m,m)

m = 5
, (18)

where

Ym( f ) =


bm( f )

L(m,m)
m = 1

1
L(m,m)

[
bm( f ) −

∑m−1
n=1 L(m, n)Yn( f )

]
m = 2, 3, 4, 5

. (19)

This method considers changes in density and is able to simulate flow at low Mach numbers, so it
is used to solve weakly compressible viscous flow problems. Calculations of particle motion and time
integration are performed based on second-order leapfrog integration. The equations for updating the
position and velocity of particles are

vi

(
t+

1
2

∆t
)
= vi

(
t−

1
2

∆t
)
+ ∆t

Dvi(t)
Dt

, (20)

ri(t+∆t) = ri(t) + ∆tvi(t+
1
2

∆ t), (21)

where vi(t+ 1
2 ∆ t) is the velocity of fluid particle i at time t+ 1

2 ∆t, and ∆t is the time step.

2.4. Artificial Particle Displacement

In simulations of flow in porous media (Section 3.5), artificial particle displacement is suggested as
a particle motion correction to avoid particles in the vicinity of the stagnation points of fluid flow [38]
and to avoid poor particle distributions [39]. Artificial particle displacement can be expressed as

δri= αri
2vmax∆t

∑N

j=1

ri j

r3
i j

, (22)

where ri is the position of particle i, α is a problem-dependent parameter that is usually set between
0.01 and 0.1, vmax is the maximum velocity of all particles in the computational domain, rij = ri − rj
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which is the distance between particles i and j, and ri is the average distance between the neighboring
particles of particle i:

ri =
1
N

∑N

j=1
ri j. (23)

It is noted that the problem-dependent parameter α should be selected carefully. This value should
be small enough not to affect the physics of the flow but also large enough to avoid the accumulation
of particles to form groups. In the present work, the value of artificial particle displacement is less
than 0.1% of the physical particle displacement for a given time step, which is consistent with the
magnitude in [40].

After moving the particles, the pressure and velocity components should be corrected by
Taylor expansion.

2.5. Boundary Conditions

Several layers of virtual particles are used to implement the boundary condition. Similar treatments
can be observed in the SPH and MPS simulations. On a flat wall, virtual particles are obtained by
extending the boundary particles to the outside of the computational region, and the distribution of
virtual particles is regular. The number of layers can be chosen according to the scale of the support
domain. Figure 2 is a sketch of the treatment of particles near the wall. i represents the particle number,
and ∆x is the particle spacing.
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Figure 2. A sketch of a simulation of an acoustic boundary using virtual particles. Fluid particles are
inside the computational domain and boundary particles are fixed on the boundary.

For a flat wall, both the no-slip and free-slip boundary conditions can be implemented using
virtual particles. For no-slip walls, the particle-based boundary conditions are as follows

pi+3 = pi+2 = pi+1 = pi, vi+3 = vi+2 = vi+1 = 0, (24)

For free-slip walls, the tangential velocity component of virtual particles is maintained the same as the
boundary particles.

For a round surface, virtual particles are established based on a radial distribution inside the
object domain with particle spacing ∆x. The particle distribution is shown in Figure 3.
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The boundary condition for a rigid wall satisfies the following equations.

pi+2 = pi+1 = pi, vi+3 = vi+2 = vi+1 = 0. (25)

Since the FDPM simulation is still based on the local support domain, most boundary conditions
in the existing Lagrangian particle-based methods, such as the SPH and MPS methods, can be used
directly or implemented with minor changes. The particle representation of no-slip, free-slip and
superhydrophobic surfaces [41–43] can be found in [44–46].

3. Applications of the Finite Difference Particle Method

3.1. Fundamental Definition

Several test cases are simulated with the FDPM based on second-order Taylor series expansion.
The numerical accuracy is evaluated by the root mean square errors (εRMS) and the maximum errors
(εMAX), which are defined as

εRMS(S) =

√
1

NT
∑NT

k=1

∣∣∣Snum(k)−Sana(k)
∣∣∣2√

1
NT

∑NT
k=1

∣∣∣Sana(k)
∣∣∣2 , (26)

εMAX(S) = max
1�k�NT

∣∣∣Snum(k)−Sana(k)
∣∣∣, (27)

where Snum(k) and Sana(k) are the numerical and analytical results of variable k, respectively. k could be
the velocity or pressure.

The convergence rate of the FDPM is evaluated based on the root mean square error convergence
rate (RERMS) and the maximum error convergence rate (REMAX) as follows:

RERMS =

∣∣∣∣∣∣ ln(εRMS(NTmax))− ln(εRMS(NTmin))

ln(NTmax)− ln(NTmin)

∣∣∣∣∣∣, (28)

REMAX =

∣∣∣∣∣∣ ln(εMAX(NTmax))− ln(εMAX(NTmin))

ln(NTmax)− ln(NTmin)

∣∣∣∣∣∣. (29)
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3.2. Unsteady Flow in a Pipeline

Unsteady flow field in the pipeline is simulated to verify the FDPM method. The theoretical
solutions of unsteady flow in a 1D pipeline (chapter 3 in book [47]) are

u =
2

γ+ 1
x
t
+ C1, (30)

p = C3

γ− 1
C3γ

−1
2

(
C1 +

2x
(γ+ 1)t

)2

+
C2

1(γ+ 1)

2(γ− 1)
+

C2(γ− 3)
γ+ 1

t
2−2γ
γ+1 +

x2

(γ+ 1)t2

γ/(γ−1)

, (31)

ρ =

γ− 1
C3γ

−1
2

(
C1 +

2x
(γ+ 1)t

)2

+
C2

1(γ+ 1)

2(γ− 1)
+

C2(γ− 3)
γ+ 1

t
2−2γ
γ+1 +

x2

(γ+ 1)t2

1/(γ−1)

, (32)

c2 =

(
γ− 1
γ+ 1

−C1

)2

−
3− γ
γ+ 1

(γ− 1)C2t−2(γ−1)(γ+1), (33)

where u0 is the flow velocity distribution and x is the coordinate along the length of the pipeline.
The coefficients (the unit can be obtained from dimensional analysis) C1 = 30.0, C2 = –1.0 × 106,
C3 = 82571.0, and γ = 1.4; moreover, the initial time is 12.5 s, and the pipe length x is 700 m.

The FDPM algorithm with a second-order Taylor truncation is used, and the time step (∆t) is
0.0029 s. The effect of viscosity in the process of fluid motion is not considered. Dirichlet boundary
conditions are used at both ends of the boundary. The velocity, pressure and density of four particles
at both ends are set based on theoretical values.

The space of the initial particle (∆x) is 5.0 m, and rs is 3.2 times ∆x. The cubic spline kernel function
is used in the calculations. Table 1 provides data for comparing the numerical velocity and theoretical
solution of a particular particle at different times and positions. Notably, although the particle moves
from x = 2.48 m to x = 25.64 m, the FDPM results agree well with the theoretical values, and this result
verifies the algorithm.

Table 1. FDPM results and theoretical solutions of the position and velocity of a particle (particle
number: 70) at different times.

Time (s) Particle Method:
x (m)

Theoretical Solution:
u (m/s)

Particle Method:
u (m/s)

Error
(10−8)

0.25 2.48 30.16201462 30.16201544 2.74
0.50 10.08 30.64615858 30.64615942 2.75
0.75 17.80 31.11956025 31.11956110 2.75
1.00 25.64 31.58265402 31.58265470 2.13

The convergence verification of the FDPM method for unsteady flow in a pipeline is shown in
Figure 4. The numerical error curves at three different moments are given using different ∆x values,
and rs is 3.2 times ∆x in the computation.
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Figure 4. Convergence curves of the FDPM method for 1D unsteady flow simulation: (a) Root mean
square error, see Equation (26), of FDPM simulation using different particle spacing ∆x at different
time; (b) maximum error, see Equation (27), of FDPM simulation using different particle spacing ∆x at
different time.

Figure 4 shows that the FDPM method displays good convergence at different times. When
t = 1.0 s, the convergence curve yields a RERMS value of 1.7 and REMAX value of 1.8.

Given that the FDPM is a KGF method, the effect of the type of kernel function on this method
is evaluated. Four types of kernel functions, including 1

r3 , Gaussian, cubic spline and quintic spline
functions, are compared through two types of errors with different rs conditions, as shown in Figure 5.
The figure shows that the maximum error of the Gaussian kernel function is larger than that of the
other methods. The errors of other types of functions are similar.Symmetry 2019, 11, x FOR PEER REVIEW 10 of 20 
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3.3. Poisseuille Flow

Steady, axisymmetric Poisseuille flow between two infinite plates is a classical test model in
hydrodynamics. In this section, the model is used to verify the governing equations and the rigid wall
boundaries. Assuming that the distance between two infinite plates is L, the volume force F is loaded
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on the fluid between plates in the x direction from time t = 0. The theoretical solution of the velocity
distribution of the flow at a given time [48] is as follows.

u(y, t) =
F
vk

y(y− L) +
∑
∞

n=0

4FL2

vkπ3(2n + 1)3 sin
[πy

L
(2n + 1)

]
exp

− (2n + 1)2
π2vk

L2 t

. (34)

The numerical simulation for Poisseuille flow is obtained under weakly compressible (Ma = 0.0125)
conditions. Based on reference [48], the parameters of the Poisseuille field are chosen as υk = 10−6 m2s−1,
L = 10−3 m, ρ = 103 kgm−3, and F = 10−4 ms−2, so the maximum velocity is 1.25 × 10−5 ms−1 and the
Reynold number is Re = 1.25 × 10−2. The plate boundaries at the upper and lower ends are established
using rigid walls. One layer of boundary particles and three layers of virtual particles are used.
The FDPM with second-order Taylor truncation is utilized to perform the computation. The speed
of sound c is taken as 0.001 m/s, as suggested in [49], and the time step ∆t is 3.0 × 10−4 s. The initial
particle spacings ∆x and ∆y are both set as 5 × 10−5 m, rs is 3.2 times ∆x, and the kernel function is
selected as a cubic spline function.

A comparison of the numerical and theoretical solutions of the velocity of the flow field in
the x direction at different times is shown in Figure 6. The particle velocity is obtained by bilinear
interpolation. As time increases, the positions of particles gradually change until the uniformly
distributed particles at the initial stage are completely mixed in disorder. At this time, the numerical
solution of the particle velocity is still consistent with the theoretical solution.
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Figure 6. Velocity profiles of the FDPM results (stars) and theoretical solutions (lines) at different times
along the y direction (from the bottom plate to the top plate).

During the computation, the particle velocity remains symmetrically distributed and gradually
increases at different times before reaching a steady state. The velocity of particles in the middle of the
two plates is the largest due to the viscous force, and the velocity is small near the plates. The FDPM
solution is in good agreement with the theoretical solution.

Figure 7 shows the numerical error curves of the FDPM method at different times and is used to
analyze the convergence of the FDPM method. During the computation, rs remains 3.2 times ∆x.
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Figure 7 shows that εRMS and εMAX decrease as ∆x decreases, which indicates that the numerical
accuracy converges with the initial particle spacing at different times. εRMS is on the order of 10−3,
indicating that the computational results agree well with the theoretical solutions. For different error
evaluation indexes, the RERMS and REMAX values of the FDPM method are approximately 1.7 and 1.8,
respectively, with good convergence at t = 1.0 s. Since the second-order Taylor expansion-based FDPM
is implemented in the test, the convergence rate is reasonable.

An error analysis of the four different types of kernel functions is conducted to analyze the
sensitivity of the FDPM method to the kernel function, as shown in Figure 8.Symmetry 2019, 11, x FOR PEER REVIEW 12 of 20 
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Figure 8 shows that different types of kernel functions can be used in the FDPM method and
that the differences in the calculation errors are insignificant. The calculation errors of the four types
of kernel functions from large to small exhibit the following order: Gaussian, r−3, cubic spline, and
quantic spline.



Symmetry 2019, 11, 1086 13 of 21

3.4. Couette Flow

Couette flow considers the fluid flow between a stationary plate and a sliding plate. To accurately
solve the flow distribution, the viscous term and boundary flow must be solved correctly. Initially, the
two plates and the fluid between them remain stationary. At a constant speed, the upper plate begins
to slide parallel to the lower plate. Assuming that the plate spacing is L and the sliding velocity is u0,
the theoretical solution of the flow velocity over time in the direction perpendicular to the plate [48] is
as follows:

u(y, t) =
u0

L
y+

∑
∞

n=1

2u0

nπ
(−1)nsin(

nπ
L

y) exp(−
n2π2vk

L2 t). (35)

Couette flow is numerically simulated under weakly compressible (Ma = 0.0125) conditions.
The parameters for Couette flow are vk = 106 m2s−1, L = 10−3 m, ρ= 103 kgm−3, and u0 = 1.25 × 10−5 m/s.

The plate boundaries at the upper and lower ends are obtained using rigid walls, and the
upper plate is set with a constant velocity u0. One layer of boundary particles and three layers of
virtual particles are used. The FDPM with second-order Taylor truncation is utilized to perform the
computation. The speed of sound c is taken as 0.001 m/s, and the time step ∆t is 5.0 × 10−5 s. The initial
particle spacings ∆x and ∆y are both set as 2.5 × 10−5 m, rs is 3.2 times ∆x, and the kernel function
selected is the cubic spline function. Figure 9 shows a comparison between the FDPM method and the
theoretical solution for the flow velocity at different times.
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Figure 9. Comparison of the FDPM result (stars) and the theoretical solution (lines) for the flow velocity
at different times along the y direction (from the stationary plate to the sliding plate).

Before reaching a steady state, the particle velocity near the upper plate rapidly increases due to
the viscous force, and that near the lower plate increases in a relatively slow manner. The velocity
distribution of the particles between the two plates is nonlinear.

The velocity error (εRMS and εMAX) at different times and at different ∆x values is used to evaluate
the convergence of the FDPM, as shown in Figure 10.

From the numerical results, both error indexes gradually decrease with decreasing ∆x, which
suggests that the numerical accuracy converges with the initial particle spacing at different times.
εRMS is on the order of 10−2, indicating that the computational results agree well with the theoretical
solution. When t = 1.0 s, the two errors result in an RERMS value of 1.7 and REMAX value of 1.8. Since
the second-order Taylor expansion-based FDPM is implemented in the test, the convergence rate
is reasonable.
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To analyze the sensitivity of the FDPM method to the kernel function, four different types of
kernel functions with different rs/∆x values are applied, as shown in Figure 11. Different types of
kernel functions can be used in the FDPM method, and the calculation error of the Gaussian kernel
function is larger than that of the other methods.Symmetry 2019, 11, x FOR PEER REVIEW 14 of 20 
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3.5. Flow in Porous Media

In this section, the FDPM algorithm is used to simulate the flow in a simplified model of porous
media [50]. The simplified model can be seen as flow around a circular cylinder, as shown in Figure 12,
and four sides of the domain are periodic boundaries.
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The size of the computational domain L = 0.1 m, the kinematic viscosity vk = 10−6 m2s−1, the
cylindrical radius R = 2 × 10−2 m, the volume force F0 = 1.5 × 10−7 ms−2, and the speed of sound
c = 5.77 × 10−4 ms−1. ∆x and ∆y are 0.003 m, rs is 3.2 times ∆x, ∆t = 1.04 s with 2000 steps, and the
coefficient of artificial particle displacement is 0.05. A rigid wall boundary is used for the cylindrical
boundary, and a periodic boundary is used on the four sides of the computational domain. One layer of
boundary particles and three layers of virtual particles are used. The FDPM with second-order Taylor
truncation is utilized to perform the computations. The particle distribution and velocity contours at
the initial time and the final steady state are shown in Figure 13.

At the initial time, the particle distribution is regular. Then, the fluid begins to flow, and particles
are gradually scattered and evenly distributed in the computational domain.

The velocity distributions along lines 1 and 2 (dotted-dashed lines in Figure 12) are shown in
Figure 14. Both the FDPM results and finite element method (FEM) results are given to evaluate the
accuracy of the numerical method. The FEM results come from the data of figure 6 in [48].
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Figure 14. Velocity distributions along observation lines 1 and 2 (dotted-dashed lines in Figure 12):
(a) Observation line 1 and (b) observation line 2. Lines are FEM results and solid points are FDPM
results with different particle spacing ∆x.

When ∆x > 0.004, the computation is not sufficiently stable and can easily collapse, so this condition
is not shown in Figure 14. When ∆x = 0.0038 m, the FDPM calculation results and the FEM results at
x = 0 and 0.1 m produce significant differences. When ∆x = 0.002 m, the FDPM results are similar to
the FEM results. After convergence is obtained, the results of the FDPM method are consistent with
the FEM results, which verifies the correctness of the numerical method and the boundary conditions.

A comparison of the FDPM results (∆x = 0.002 m) with different kernel functions and the FEM
reference results is shown in Figure 15. The figure shows that the FDPM results with different types of
kernel functions are comparable to the reference results and exhibit only minor differences.
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3.6. Lid-Driven Cavity Flow

The lid-driven cavity flow is widely used as a benchmark test case and the model in [51] is used
to verify the method. The case is in a square cavity with a sliding plate on the upper side and three
fixed rigid walls around, as shown in Figure 16. Initially, the fluid in the cavity remain stationary. At a
constant speed, the upper plate begins to slide horizontally and the simulation is at Re = 100.
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Figure 16. Schematic of the lid-driven cavity flow. The solid circle is a circular cylinder and four sides
of the domain are periodic boundaries. L is the size of the computational domain, R is the cylindrical
radius, and F0 is the volume force.

Rigid wall boundary condition is used for four sides of the cavity, and the upper plate is set
with a constant velocity u0. The size of the cavity L = 1.0 m, the kinematic viscosity vk = 0.01 m2s−1,
the sliding velocity u0 = 1.0 m/s, and the speed of sound c = 10.0 ms−1. ∆x and ∆y are 0.025 m, rs

is 2.7 times ∆x, ∆t = 0.001 s with 3000 steps, the coefficient of artificial particle displacement is 0.05,
and the kernel function selected is the cubic spline function. One layer of boundary particles and
three layers of virtual particles are used. The FDPM with second-order Taylor truncation is utilized to
perform the computations. The particle distribution and velocity contours at the initial time and the
final steady state are shown in Figure 17.
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Figure 17. Particle distribution (solid circles) and velocity contours from the initial time to the steady
state: (a) t = 0, (b) t = 1.0 s, (c) t =2.0 s and (d) t = 3.0 s.

At the initial time, the particle distribution is regular. Then, the fluid begins to flow, and particles
are gradually scattered and evenly distributed in the computational domain.

Horizontal velocity component profiles along horizontal and vertical geometric centerlines at
t = 3.0 s, respectively, are shown in Figure 18. Although the present FDPM computation employed
only 2/5 particles in the work [51], these profiles are in good agreement with the reference results.
The particle distribution shows the method works well in geometries with corners.Symmetry 2019, 11, x FOR PEER REVIEW 18 of 20 
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4. Conclusions

In this paper, a particle method based on the GFD scheme is proposed to simulate weakly
compressible viscous flow. This approach represents the partial differential terms in the Navier-Stokes
equations as the solution of a symmetric system of linear equations. The convergence and accuracy
of the symmetric particle-based method are tested by modeling flow in a pipeline, Poisseuille flow,
Couette flow, flow in porous media, and lid-driven cavity flow. The numerical results exhibit close
agreement with the theoretical solutions and finite element results. The particle method utilizes the
kernel function itself instead of its gradient, which avoids using artificial parameters to solve for the
viscous term and reduces the limitations on the choice of kernel function. Moreover, the order of the
Taylor series expansion can easily be improved in the meshless algorithm. The convergence rate of the
particle-based calculations with second-order Taylor truncation is approximately 1.7 in the tests, and
four different kernel functions are tested and determined to be reliable.
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