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Abstract: Risk assessment and emergency responses to ensure the safety of ships crossing the Arctic
have gained tremendous attention in recent years. However, asymmetry in the probability that people
will receive aid when navigating through the Arctic still exists because of the unsystematic allocation
of rescue bases in the Arctic. At the same time, no study has proposed an overall solution to the
problem of allocating rescue bases in the Arctic region to safeguard people’s interests. In this paper,
we investigated the main natural factors affecting the safety of ship navigation in the Arctic based on
the statistics of ship accidents in the Arctic from 1995 to 2004. The navigation risk of the Arctic was
then assessed based on these natural factors, reflecting the need for rescue at all locations in the Arctic.
Next, 37 cities with good infrastructure were selected among those along the Arctic as candidate
locations for rescue bases. Finally, a new model was constructed based on the Set Covering Location
Model, Double Covering Location Model, and P-Median Model to determine the optimal allocation
of rescue bases in the Arctic. The rescue bases covered all the areas in the Arctic, and minimized cost
in terms of distance and other economic factors. In addition, the constructed model ensured that two
rescue bases were allocated to the areas with high navigation risk.

Keywords: Arctic; rescue base; Set-Double Covering Median Model

1. Introduction

The sea ice in the Arctic has been melting at rapid rates due to the rising levels of global warming [1].
According to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change
(IPCC), it is highly likely that the Arctic sea ice will melt completely in late summer during the second
half of the 21st century. Indeed, these conclusions were further confirmed by analyses of the Climate
Model Intercomparison Project (CMIP) archives. This will lead to complete opening of the Arctic
passages. However, the melting of sea ice is just one of the basic conditions that promote safe navigation
in the Arctic. Given that the meteorological conditions of the Arctic are complex, there are many factors
affecting the safety of ship navigation in the Arctic apart from sea ice. All these pose risks for objects
navigating in the Arctic. Statistics indicate that more than 293 incidents occurred in the Arctic between
1995 and 2004 [2], which shows that emergency response and rescue strategies are required in the
Arctic, given that people are navigating in the Arctic regions.

Recent years have witnessed an increase in the number of studies assessing the risks of Arctic
navigation. Yet, few studies have focused on emergency response and rescue in the Arctic, especially
the allocation of rescue bases in the Arctic. Presently, the number of rescue bases in the Arctic regions is
not only small, but also each rescue base is built independently in the interests of the country building
it, which not only leads to the waste of resources, but leaves many areas in the Arctic without a rescue
bases, which in turn, causes asymmetry in the probability that people receive aid when navigating
through the Arctic. To solve this problem, this study innovatively constructed a Set-Double Covering
Median Model (SDCMM) to determine the best strategy for allocating rescue bases in the Arctic. We
allocated rescue bases that not only covered all areas of the Arctic, but also minimized costs in terms of
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distance and other economic considerations. In addition, the constructed model ensured that the two
rescue bases covered the areas with high navigation risks.

Many scholars have proposed models for allocating rescue bases; however many of them have
focused on allocating rescue bases inland with fewer in coastal areas [3]. In 1826, Von Thünen [4]
wrote the book titled, “The Isolated State”, which is regarded as the first study on the site-selection
problem. The constructed model uses distance as a constraint to analyze the interaction between cities
and land use, and explains the phenomenon of agricultural areas around cities. In 1909, Weber [5]
addressed the industrial location problem. He investigated choosing the location of a warehouse
so as to minimize the total distance between the warehouse and the customer. From then on, the
problem of industrial layout was called the Weber problem. In 1964, Hakimi [6] wrote a paper on the
P-Centre Model (PCM) for solving the challenge of minimizing the maximum distance between P
facilities and all demand locations, which marked the beginning of modern theory on site selection.
Drezner and Wesolowsky [7] proposed an algorithm to solve the PCM, which involved the numerical
integration of ordinary differential equations and was computationally superior to methods using
nonlinear programming. In 1965, Hakimi [8] proposed the P-Median Model (PMM) to minimize
the product of the distance from P facilities to all demand points, and the demand of the demand
points. Goldman [9] proposed an algorithm to solve the PMM with one server, which was based on a
reduction procedure that may also yield useful simplification of problems involving general networks.
Considering that solving the model with many servers needs too much computation, greedy algorithm
is the most commonly used method to solve the model. Although the algorithm cannot guarantee
that the obtained solution is the optimum solution, it can guarantee that the obtained solution is a
satisfactory solution for policymakers [10].

Roth [11] and Toregas et al. [12] first proposed the Set Covering Location Model (SCLM) to
choose the location of fire control centers and ambulances. This model mainly solves the problem of
minimizing the number or cost of emergency service facilities when all demand points are covered.
Roth [11] proposed one probabilistic approach to obtain optimal solutions for such large coverage
problems, and his success supports the contention that this approach “may be of general applicability to
various optimization problems”. The heart of the algorithm is obtaining independent locally optimum
solutions. Toregas et al. [12] used linear programming supplemented by the addition of a single cut
constraint to solve the SCLM. Aly and White [13] developed the SCLM where the shortest time between
the emergency facility point and the demand points is a random variable. The model mainly describes
how to determine the address of the service facility while minimizing the number of service facilities
needed, when the time from the demand point to its nearest service facility is ≤ to a specified value.

Considering budget constraints and other aspects, scholars further proposed the Maximum
Covering Location Model (MCLM), which is a transformation of the SCLM. Church and ReVelle [14,15]
pioneered the MCLM and explored strategies to maximize the covered demand points when the
number of facilities and coverage radius is known. The MCLM is regarded as one of the most effective
models for solving the site-selection problem. However, the key assumption of the model is that
the coverage is binary, that is, any demand point is either completely covered or not covered. This
assumption may result in some demand points not being covered. In the actual allocation of rescue
bases, a rescue base should provide service for each demand point whether the demand point is within
the specific coverage radius of the rescue base or not, otherwise greater losses may be incurred in
areas intended. To address this problem, Berman and Krass [16] proposed the Generalized Maximum
Covering Location Model (GMCLM), in which each demand point was covered, but the coverage
degree was defined to be between [0–1].

In 1997, Ogryczak [17] proposed the bi-objective model (BOM) for selecting an emergency facility
location, which takes the average distance and the maximum distance to the emergency facility into
consideration, striking a compromise between the two indicators. In 1998, Badri et et al. [18] established
a multi-objective mathematical model (MOMM) to select the location of a fire station using a goal
programming method. This model not only took the traditional time and distance into consideration,
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but also considered the cost of building the fire station. In 2011, Canbolat and von Massow [19] studied
the problem of emergency facility layout when the location of the demand point is random. The goal
was to minimize the expected maximum straight-line distance from the facility to the demand point.
In 2017, Li et al. [20] proposed the Double Covering Location Model (DCLM) to identify the location of
a rescue base. Their model was based on the characteristics of traffic flow and the statistics of maritime
traffic accidents in the Bohai Sea and used genetic algorithms to obtain the optimal locations of the
rescue bases. The model takes time, distance, double covering, and the number of bases into account,
where double covering means that each rescue base covers two demand points at most. The objective
of the model is to minimize the construction and operation costs of the marine emergency rescue
system, on the premise that it can cover all the demand points.

Based on the above description, many models have been proposed for selecting the best locations
for setting up rescue bases. The main models and their respective characteristics are shown in Table 1.
To choose the best location for a rescue base in the Arctic, this study used the PMM, SCLM, and DCLM
to comprehensively construct the Set-Double Covering Median Model (SDCMM). The constructed
model enables the determination of the number and location of rescue bases in the Arctic, under the
conditions that all demand points are within the range of rescue base and the total distance of the rescue
bases to all demand points and the total construction cost of all rescue bases are minimized. At the
same time, the model can guarantee that two rescue bases cover the sea areas with high navigation risk.

Table 1. The main models for the optimal layout of rescue bases and their characteristics.

Model Objective Function Deficiency References

PCM
Minimizing the maximum distance
from P rescue points to all demand
points

Only considers the distance, and
the number of rescue points needs
to be determined in advance.

[6]

PMM
Minimizing the product of distance
from P rescue points to demand points
and the need of all demand points.

Only considers distance and
demand, and the number of
rescue points should be
determined in advance.

[8]

SCLM
Minimizing the number or total cost
of rescue points when all emergency
points are covered

Does not take the needs of each
demand point into consideration [11,12]

MCLM

Maximizing the acceptable demand of
the rescue bases on the premise that
the number of facilities and coverage
radius are known

Does not guarantee that all
demand points can be covered [14,15]

BOM
Minimizing the average distance and
the maximum distance from the
rescue bases to demand points.

Does not consider the needs of
each demand point [17]

DCLM

The construction and operation cost of
the maritime rescue system is as low
as possible when all demand points
are covered.

Classifies the demand points into
a few emergency points and not
all demand points are covered.

[20]

Overall, the objectives of this study were to (1) construct a new model to select the location of a
rescue base, and (2) provide the optimal layout of rescue bases in the Arctic. The study is organized as
follows: Section 2 introduces the technical process and modeling idea of this study. Section 3 describes
the methods and results of the risk assessment for navigation in the Arctic. Section 4 presents the
candidate rescue bases and estimation of their construction costs. The results are provided in Section 5
and the final section (Section 6) provides the conclusions and discussion.
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2. Methods

2.1. Technical Process

To explore the main factors affecting navigation risk in the Arctic, this paper firstly describes
the types and frequency of ship accidents in the Arctic, based on the limited statistical data available.
Secondly, based on the main natural factors affecting navigation risk in the Arctic and the monthly
average data of these factors in the past 17 years (2000–2016) in the Arctic, the navigation risk is
calculated and the final risk values of each sea area are normalized. Next, the number and location of
candidate rescue bases along the Arctic coast are determined, and the costs of building each of the
bases into integrated rescue bases comprising airports, ports, and general hospitals are assessed on the
basis of existing facilities. To reduce the cost of building a rescue base, the rescue bases selected in this
paper currently have the necessary infrastructure such as airports, ports, and hospitals. Finally, based
on the principles of PMM, SCLM, and DCLM, the number and location of rescue bases along the Arctic
coast are determined. The selected bases are arrived at after considering the distance, construction
costs, and the needs of each demand point, and they cover all areas in the Arctic. The flow chart of the
technical process is shown in Figure 1.
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2.2. Set-Double Covering Median Model

The model established in this study is a combination of the PMM, SCLM, and DCLM, and
is therefore named SDCMM. The core of the constructed model is the PMM. The following three
conditions are required before running the PMM: the number and locations of demand points, the
number and locations of candidate rescue bases, and the number of rescue bases to be built which is
P [8]. Since this paper requires two rescue bases to be responsible for areas with high navigation risk, it
is necessary to determine the locations that the two rescue bases are responsible for by calculating
navigation risk values of each sea area in the Arctic when calculating the cost of each scheme using the
evaluation function. The evaluation function of SDCMM is defined as:

min
{∑N1

i=1

∑M

j=1
Di j ∗ y1

i j +
∑N2

i=1

∑M

j=1
Di j ∗ y2

i j +
∑M

j=1
C j ∗ x j

}
, (1)

where N1 is the number of demand points with low risk that only one rescue base is responsible for,
N2 is the number of demand points with high risk that two rescue bases are responsible for, M is the
number of candidate bases, Di j is the distance between the ith demand point and the jth rescue base,
C j is the construction cost of the jth rescue base, y1

i j and y2
i j are used to determine whether the jth
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rescue base is responsible for the ith demand point, and x j is used to determine whether to select the
jth candidate base as the final rescue base.

y1
i j or y2

i j =

{
1, The jth rescue base is responsible for the ith demand point
0, The jth rescue base is responsible for the ith demand point

. (2)

x j =

{
1, Select the jth candidate base as the final rescue base
0, Select the jth candidate base as the final rescue base

, j ∈ [1, M]. (3)

The constraints are defined as: ∑M

j=1
y1

i j = 1, (4)∑M

j=1
y2

i j = 2, (5)

y1
i j ≤ x j, i ∈ [1, N1], j ∈ [1, M], (6)

y2
i j ≤ x j, i ∈ [1, N2], j ∈ [1, M], (7)

M∑
j=1

x j = P. (8)

Formula (4) indicates the number of rescue bases allocated to a demand point with low risk that
only needs one rescue base. Formula (5) indicates the number of rescue bases responsible for a demand
point with high risk that needs two rescue bases. Formula (8) indicates that the number of the final
selected rescue bases should be P. Formulas (6) and (7) indicate that if a candidate rescue base is not
selected to be the final rescue base, the candidate rescue base will not be able to provide rescue services
for the demand points. That is, if x j = 0, then y1

i j or y2
i j = 0.

The model constructed above guarantees that, under the premise of planning to build P rescue
bases, the selected rescue bases require minimal total costs including distance and economy, and the
selected rescue bases can cover the whole Arctic sea area. To calculate the total cost of constructing
base P while considering the distance and economic changes, we calculate the total cost under different
P conditions and choose the best P with the lowest total cost as the final number of rescue bases to
be constructed.

Since the dimensions of distance and construction costs are different, it is necessary to make them
dimensionless. This is achieved using the method is shown in Formula (9). The final cost is calculated
under the assumption that distance and economic cost have the same weight. Different weights for
distance and economic cost are also considered to determine the priority objects when selecting the
location of the rescue base, which depends on the wishes of decision-makers.

Data1 =
Data−Datamin

Datamax −Datamin
, (9)

where Data1 is the dimensionless data, Data is the raw data, Datamin is the minimum value of the data
set and Datamax is the maximum value of the data set.

A greedy algorithm is useful to solve the model and the flow chart of the algorithm is shown in
Figure 2.
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3. Navigation Risk in the Arctic

3.1. Statistics on Navigation Accidents in the Arctic

Since it is difficult to obtain the statistical data on navigation accidents in the Arctic region,
this study relies on data collected between 1995 and 2004 contained in the Arctic Marine Shipping
Assessment 2009 Report issued by the Arctic Council. The data come mainly from the Lloyds MIU
(Marine Intelligence Unit) Sea Searcher database, the Canadian Hydraulics Centre Arctic Ice Regime
System database, and the Canadian Transportation Safety Board. The details of the data are shown in
Table 2.
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Table 2. Statistics on the navigation accidents that occurred between 1995 and 2004 in the Arctic.

Month # Vessel Type # Year # Primary Reason #

1 16 Bulk Carrier 37 1995 35 Collision 22
2 35 Container Ship 8 1996 53 Damage to Vessel 54
3 30 Fishing Vessel 108 1997 23 Fire/Explosion 25
4 6 General Cargo Ship 72 1998 19 Grounded 68
5 15 Government Vessel 11 1999 21 Machinery Damage/Failure 71
6 18 Oil/Gas Service & Supply 1 2000 19 Sunk/Submerged 43
7 39 Passenger Ship 27 2001 31 Miscellaneous 10
8 22 Pleasure Craft 0 2002 30 ———— —–
9 31 Tanker Ship 12 2003 28 ———— —–

10 35 Tug/Barge 15 2004 34 ———— —–
11 23 Unknown 2 —– —– ———— —–
12 23 ——— —– —– —– ———— —–

The data show that 293 ship accidents occurred in the Arctic during the 10-year period. Data
analysis revealed that the most accidents occurred in July and the fewest in April. The most
accident-prone vessels were fishing vessels and the least accident-prone vessels were yachts. The
highest number of accidents occurred in 1996 and the lowest number occurred in the period from 1998
to 2000. The main causes of these accidents were machinery damage and machinery failure. Table 3
illustrates the main natural factors closely associated with the causes of the above accidents. The data
reveal that the main factors affecting navigation risk in the Arctic are wind speed, atmospheric visibility,
current speed, wave height, sea ice thickness, sea ice density, air temperature, and water depth.

Table 3. The main natural factors closely associated with the causes of the above accidents.

Primary Reason Natural Factors

Collision WS, Vis, CS, WH
Damage to Vessel WS, SIT and SID

Fire/Explosion AT
Grounded Depth

Machinery Damage/Failure AT
Sunk/Submerged CS and WH

Note that WS means wind speed, Vis means atmospheric visibility, CS means current speed, WH means wave
height, SIT means sea ice thickness, SID means sea ice density, AT means air temperature and Depth means water
depth in Table 3.

3.2. Data Used to Assess the Navigation Risk in the Arctic

The data used to assess the navigation risk in the Arctic were the monthly average data of 1◦ ×
1◦ from 2000 to 2016. The data for wind speed, sea ice density, and air temperature were from the
ERA-Interim data sets retrieved from the European Centre for Medium-Range Weather Forecasts
(ECMWF); current speed data were from the global ocean reanalysis data set ORA-S4 retrieved from
the ECMWF; wave height data were from the ERA5 data sets retrieved from the ECMWF; sea ice
thickness data were from the SODA 3.4.2 data sets; and water depth data were from the ETOPO1 data
sets retrieved from the National Oceanic and Atmospheric Administration (NOAA). Given that it is
not easy to retrieve historical gridded Vis data in the Arctic, this study used an artificial neural network
(ANN) to generate the gridded Vis in the Arctic from 2000 to 2016, based on the results of Shan et al. [21].
The data used to train ANN were from the International Comprehensive Ocean-Atmosphere Data Set
(ICOADS) retrieved from the National Climate Information Centre of the United States (NCDC).

3.2.1. ERA-Interim

The ERA-Interim data is the gridded data product distributed by the ECMWF which is obtained
by reanalysis of observations and predicted products from the entire world. The ERA-Interim data is
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a third-level generation product and its quality is significantly higher compared to the second-level
generation product called ERA-40. Data cover the time period from 1979 to the present and are
constantly updated. The data set has a variety of temporal and spatial resolution products, of which
the minimum temporal resolution is 3 h and the maximum time resolution is 1 month. The minimum
and maximum grid resolutions are 0.125◦ × 0.125◦ and 3◦ × 3◦, respectively.

3.2.2. ORA-S4

Leveraging the fully-drawn lessons from global atmospheric reanalysis technology, ECMWF
organized the Global Ocean Reanalysis Program (ORA) and released a series of reanalyzed data
products. ORA-S4 is the improved version of ORA-S3. ORA-S4 assimilates satellite altimeter
observations with improved accuracy compared to prior datasets. Similarly, the ORA-S4 product
contains a collection of five assimilation results. Its horizontal resolution is 1◦ × 1◦ and it increases
to 42 layers in a vertical direction. Its depth ranges from 5 to 5350 m. The corresponding vertical
resolution dramatically changes from 10 m at the surface layer to about 300 m at the bottom layer.
ORA-S4 covers the period from September 1957 to the present (updated every 10 days with a delay
of 6 days). Currently, the time resolution of the downloadable products is presented as a monthly
average, and includes five variables: salinity, temperature, latitudinal current velocity, meridional
current velocity, and sea surface height.

3.2.3. ERA5

ERA5 is the latest generation of reanalyzed data created by Copernicus Climate Change Service
(C3S), a body funded by the European Union and operated by ECMWF. The data set is the improved
version of ERA-Interim, hence it contains more historical observation data, especially satellite data,
and advanced data assimilation, as well as model systems. The variables provided by ERA5 will be
increased to 240, including wave height, wave direction, and other variables provided by coupled
wave models. Collectively, these data will facilitate more accurate analysis of past atmospheric and
oceanic states. The spatial and temporal resolution of ERA5 are 31 km and 1 h, respectively.

3.2.4. SODA

Simple Ocean Data Assimilation (SODA) was first proposed by the University of Maryland
in the 1990s. SODA is an early global ocean reanalysis data research program supported by the
National Science Foundation (NSF), which is designed to provide a set of marine reanalysis products
matching atmospheric reanalysis products for climate research. Given the continuous advancement
and upgrading of the assimilation system, SODA has released several versions of its data sets. Presently,
the SODA assimilation system has been updated to the third generation, among which SODA 3.4.2 is
a widely used product. This data product includes more than ten variables, including temperature,
salinity, density, and current velocity. It also contains three different time resolution data sets: 5-day
average, 10-day average, and monthly average. The maximum spatial resolution of the data set is 0.5◦

× 0.5◦.

3.2.5. ICOADS

ICOADS archives are the largest collection of ocean surface observational data sets covering the
period from 1784 to the present, including data from ships, buoys, and coastal sites from all parts of
the world and are distributed by the NCDC. Because of the nature of the sampling, its observational
station density changes with time and location. Vis records come with a Vis level as described in
ICOADS documents and by Gultepe et al. [22].



Symmetry 2019, 11, 1073 9 of 20

3.2.6. Visibility Data from ANN

This data set is generated on the basis of the research by Shan et al. [21]. In this data set, the
relationship between visibility and its influencing factors is fitted by the BP neural network. The
data used to train ANN are from ICOADS, while data used to generate gridded visibility are from
ERA-Interim. The temporal resolution of the generated gridded visibility is one month, and its spatial
resolution is 1◦ × 1◦. Since the visibility data in ICOADS are recorded based on visibility level, the
final visibility data generated in this study are the visibility level. The rules used to classify the levels
of visibility are shown in Table 4.

Table 4. The rules for classifying the levels of visibility.

Vis Level 1 2 3 4 5 6 7 8 9 10

Vis value (km) ≤0.05 0.05~0.2 0.2~0.5 0.5~1 1~2 2~4 4~10 10~20 20~50 ≥50

The download links of these data are shown in Table 5.

Table 5. The download links of the data used.

Data Data Set Download Link

WS ERA-interim https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/

CS ORA-S4 ftp://ftp-icdc.cen.uni-hamburg.de/EASYInit/ORA-S4/monthly_1x1/

WH ERA5 https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset

SIT SODA https://www.atmos.umd.edu/~{}ocean/index_files/soda3.4.2_mn_download.htm

SID ERA-interim https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/

AT ERA-interim https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/

Depth Etopo1 http://maps.ngdc.noaa.gov/viewers/wcs-client/

3.3. Navigation Risk in the Arctic

Figure 3 shows the 17-year average of wind speed (WS), current speed (CS), wave height (WH),
sea ice thickness (SIT), sea ice density (SID), air temperature (AT) and atmospheric visibility (Vis), as
well as the depth of the Arctic (66◦ N–90◦ N). The data reveal that WS, SIT, SID, AT, Vis, and depth vary
in different Arctic sea areas. Thus, we infer that these data can be used as a reference for navigation
risk assessment in different Arctic sea areas. However, the difference in CS in different sea areas in the
Arctic is small, being below 0.1 m/s. We suggest that its impact on navigation risk can be neglected. At
the same time, it can be noted that the data for WH have many NaN values in the Arctic. Considering
the proportional relationship between WH and WS, we did not incorporate WH when assessing the
navigation risk in the Arctic. In conclusion, this study only takes WS, SIT, SID, AT, Vis, and Depth into
consideration when assessing the navigation risk in the Arctic.

https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/
ftp://ftp-icdc.cen.uni-hamburg.de/EASYInit/ORA-S4/monthly_1x1/
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
https://www.atmos.umd.edu/~{}ocean/index_files/soda3.4.2_mn_download.htm
https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/
https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/
http://maps.ngdc.noaa.gov/viewers/wcs-client/
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It is important to eliminate the dimensions of the data before calculating the navigation risk in the
Arctic. The method used to eliminate the dimensions of WS, SIT, and SID is shown in Formula (9); the
method for eliminating the dimensions of Vis and AT is shown in Formula (10).

Data1 =
Datamax −Data

Datamax −Datamin
. (10)

In this study we assume that when the depth is greater than 50 m, the influence of depth on
navigation safety can be neglected. The method used to eliminate the dimension of depth is shown in
Formula (11). 

Depth1 = 0 , Depth ≥ 50
Depth1 = 1− Depth

50 , 0 < Depth < 50
Depth1 = 1 , Depth ≤ 0

. (11)
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The method used to calculate the navigation risk in this study is derived from the research results
reported by Li et al. [23]. The contribution weight of each factor to the navigation risk refers to the
research results obtained by Yu et al. [24] (Table 6), which is a combination of the G1 method and the
entropy method.

Table 6. The contribution weight of each factor to the navigation risk.

Factors WS SIT SID AT Vis Depth

Weights 0.1281 0.2734 0.1940 0.0682 0.1137 0.2226

The navigation risk value obtained is normalized using the method shown in Formula (10).
Figure 4 shows the distribution of mean navigation risk in the Arctic from 2001 to 2016. It can be seen
that the risk varies in different areas of the Arctic region. The navigation risks in the Kara Sea, the
Barents Sea, the Norwegian Sea, the Greenland Sea, and the Bay of Baffin are lower than the risks in
the East Siberian Sea. In this study, we assume that the locations with risks greater than 0.5 need two
rescue bases.Symmetry 2018, 10, x FOR PEER REVIEW  11 of 20 
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4. Candidate Rescue Bases and Estimation of Their Construction Costs

4.1. Candidate Rescue Bases in the Arctic

The candidate rescue bases selected in this study were required to meet two conditions: (1) the
locations of the candidate rescue bases should be north of 60◦ N and along the Arctic Ocean; (2) the
candidate rescue bases should be cities or towns with airports, ports, and hospitals. If there were no
cities or towns meeting the facility conditions in a large area, priority was given to the cities and towns
with airports. A total of 37 cities and towns were selected to be the candidate rescue bases in the Arctic
and the details of these candidate rescue bases are shown in Table 7. Figure 5 shows the distribution of
these candidate locations. All the data shown in Table 7 were obtained from Wikipedia.
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Table 7. The details of the candidate rescue bases in the Arctic.

Order Lon (◦) Lat (◦) City Country Description

1 −166.76 68.35 Point Hope
United States

(USA)

A city with good airport and port facilities and a health clinic in
Alaska.

2 −165.4 64.5 Nome A small port city with good airport, port, and highway facilities
and a regional hospital and health center in Alaska.

3 −156.78 71.29 Barrow The northernmost city in the United States, which has good
airport and port facilities and big hospitals.

4 −148.71 70.33 Prudhoe bay An oil field in the United States, which has good airport and
port facilities and emergency medical services.

5 −133.03 69.44 Tuktoyaktuk

Canada (CAN)

A fishing village in Canada with good airport, port, and
highway facilities and a health center.

6 −125.25 71.99 Sachs Harbour A village in the northwest of Canada with good airport and port
facilities and a health center.

7 −95.88 68.63 Gjoa Haven A village in Canada with good airport and port facilities and a
medical and health care institution.

8 −94.83 74.7 Resolute One of Canada’s northernmost communities, with good airport
and port facilities, and a health center.

9 −92.1 62.81 Rankin Inlet A small village in Canada with good airport and port facilities
and a medical center.

10 −86.24 66.52 Naujaat A small village in Canada with airport and port facilities and a
medical center.

11 −85.94 79.99 Eureka One permanent Research Community with an airport.

12 −83.16 64.14 Coral Harbour A community in Canada with good airport and port facilities
and a health center.

13 −75.65 62.2 Salluit A community in Canada with good airport and port facilities
and a hospital.

14 −68.52 63.75 lqaluit A city in Canada with good airport, port, and highway facilities,
a general hospital, and a family clinic.

15 −65.7 66.15 Pangnirtung A small village in Canada with good port and airport facilities
and a medical center.

16 −62.34 82.5 Alert Permanent residence in the northernmost part of the world,
with airport facilities.

17 −56.15 72.79 Upernavik

Greenland (GL)

The thirteenth largest city in Greenland with good port and
airport facilities and big hospitals.

18 −53.67 66.94 Sisimiut The second largest city in Greenland with good airports, ports,
and road facilities, and hospitals.

19 −52.87 68.71 Aasiaat The fifth largest city in Greenland with good airports, ports, and
road facilities, and a hospital.

20 −52.13 70.67 Uummannaq The eleventh largest city in Greenland with good airports, ports,
and road facilities, and a hospital.

21 −51.74 64.18 Nuuk The capital of Greenland, with good airports, ports, highways,
and a large hospital.

22 −23.13 66.08 Isafjorzur

Iceland (ISL)

A small town in Northwest Iceland with good airports, ports,
highways, and a hospital.

23 −21.93 64.13 Reykjavik The capital of Iceland, with good airports, ports, highway
facilities, and large hospitals.

24 −18.1 65.68 Akureyri The fifth largest city in Iceland, with good airports, ports, and
highway facilities, and a large hospital.

25 −15.21 64.25 Hofn The second largest town in southeastern Iceland, with good
airports, ports, highways, and two hospitals.

26 14.38 67.28 Bodo
Norway (NOR)

The capital and largest city of Norland, Norway. It has good
airport and port facilities and many hospitals.

27 18.94 69.68 Tromssa The 18th largest city in Norway, with good airport and port
facilities and a large hospital.

28 23.68 70.66 Hammerfest The 130th largest city in Norway, with good airport and port
facilities and two hospitals.
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Table 7. Cont.

Order Lon (◦) Lat (◦) City Country Description

29 33.08 68.97 Murmansk

Russia (RUS)

The capital of the Molmansk in Russia, with good airports,
ports, roads, railways, and many large hospitals.

30 40.53 64.53 Arkhangelsk The capital of Alhangersk in Russia, with good airports, ports,
roads and railways, and a number of general hospitals.

31 44.23 65.85 Mezen A city in Russia with good airport and port facilities and a clinic.

32 61.66 69.76 Amderma A village in Russia with airport and port facilities.

33 72.07 71.3 Sabetta A village in Russia with good airports, ports, and railway
facilities.

34 80.52 73.5 Dikson A city in Russia with good airport and port facilities and a
hospital.

35 128.87 71.65 Tiksi A city in Russia with good airport and port facilities and a
hospital.

36 170.28 69.7 Pevek The northernmost town in Russia, with good airports, ports,
and highways, and a hospital.

37 −179.42 68.89 Mys Shmidta A city in Russia with good airports, ports, and highways.
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4.2. Estimation of the Construction Cost of Each Candidate Rescue Base

Given the complexity of estimating the construction cost of each candidate rescue base, we utilized
the level evaluation approach to evaluate the construction cost of each rescue base. The steps used
were as follows:

Step 1: Assessment of airport facilities, port facilities, and medical conditions of each candidate
rescue base was performed. For example, if the candidate rescue base did not have airport facilities,
the level of the airport facilities for such a base was 1; if the base had airport facilities but the conditions
of the airport facilities were not good, the level of the airport facilities for such a base was 2; if the
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base had good airport facilities, then the level of the airport facilities for such a base was 3. A similar
approach was used for the conditions of port facilities and hospitals in each candidate rescue base. The
level was determined on the basis of the description of each candidate rescue base in Wikipedia.

Step 2: Assessment of the construction cost of each candidate rescue base. For example, if the
level of airport facilities of the base was 1, then the construction cost of such facilities was 2. If the level
of the airport facilities of the base was 2, then the construction cost of such facilities was 1. If the level
of the airport facilities of the base was 3, then the construction cost of such facilities was 0. Similar
assessments were performed for the construction cost of port facilities and hospitals in each candidate
rescue base. The total construction cost of each candidate rescue base was the sum of its airport, port,
and hospital construction costs.

Since the construction cost of each candidate base was also normalized in this study, the final
result of the construction cost of each rescue base is reasonable. Table 8 shows the level of infrastructure
and the total construction cost for each candidate base.

Table 8. The level of infrastructure and the total construction cost for each candidate base.

Order City Level of
Airport

Level of
Port

Level of
Hospital

Construction
Cost

Normalized
Construction Cost

1 Point Hope 3 3 2 1 0.25
2 Nome 3 3 3 0 0
3 Barrow 3 3 3 0 0
4 Prudhoe bay 3 3 2 1 0.25
5 Tuktoyaktuk 3 3 2 1 0.25
6 Sachs Harbour 3 3 2 1 0.25
7 Gjoa Haven 3 3 2 1 0.25
8 Resolute 3 3 2 1 0.25
9 Rankin Inlet 3 3 2 1 0.25
10 Naujaat 3 3 2 1 0.25
11 Eureka 3 1 1 4 1
12 Coral Harbour 3 3 2 1 0.25
13 Salluit 3 3 3 0 0
14 lqaluit 3 3 3 0 0
15 Pangnirtung 3 3 2 1 0.25
16 Alert 3 1 1 4 1
17 Upernavik 3 3 3 0 0
18 Sisimiut 3 3 3 0 0
19 Aasiaat 3 3 3 0 0
20 Uummannaq 3 3 3 0 0
21 Nuuk 3 3 3 0 0
22 Isafjorzur 3 3 3 0 0
23 Reykjavik 3 3 3 0 0
24 Akureyri 3 3 3 0 0
25 Hofn 3 3 3 0 0
26 Bodo 3 3 3 0 0
27 Tromssa 3 3 3 0 0
28 Hammerfest 3 3 3 0 0
29 Murmansk 3 3 3 0 0
30 Arkhangelsk 3 3 3 0 0
31 Mezen 3 3 2 1 0.25
32 Amderma 3 3 1 2 0.5
33 Sabetta 3 3 1 2 0.5
34 Dikson 3 3 3 0 0
35 Tiksi 3 3 3 0 0
36 Pevek 3 3 3 0 0
37 Mys Shmidta 3 3 3 0 0
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5. Results

5.1. Performance of Greedy Algorithm

Since the greedy algorithm is a local search algorithm and the result of each iteration is to find the
local optimal solution, the final result of the greedy algorithm is likely to be the local optimal solution.
At the same time, when using the greedy algorithm to solve the model constructed here, this paper
assumed that all candidate bases were selected as the final result first, and then removed the candidate
bases one by one, which minimized the added cost in each iteration until the number of remaining
bases equaled the number of bases that needed be built (Figure 2). Therefore, the convergence speed of
the greedy algorithm to solve the model depended on the number of bases that needed be built, which
was the value of P. The time needed to obtain the optimal solution using the greedy algorithm with
different P is shown in Figure 6. This shows that the calculation speed of the greedy algorithm is very
fast, although it cannot guarantee that the obtained solution is the best solution. Note that the central
processing unit of the computer used was i3-3227U (Intel Corporation, Santa Clara, CA, USA) and the
random access memory capacity of the computer was 4G. The calculation is based on MATLAB 2104a
software (MathWorks, Natick, MA, USA).
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5.2. Results of SDCMM

Figure 7 shows the total construction cost under different P. It can be seen that the least total
construction cost appears when P = 35. At the same time, when P is less than 35, the total cost
decreases with P. However, when P is more than 35, the total cost increases with P. The result is related
to the value of the construction cost of each candidate rescue base and the weight of the distance cost
and construction cost.Symmetry 2018, 10, x FOR PEER REVIEW  16 of 20 
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Note that when P = 35, the selected rescue base “Reykjavik” is responsible for no need points, which
is due to the construction cost for “Reykjavik” being 0. Since the approach used to calculate construction
cost of each candidate rescue base in this paper is the simplified level evaluation method—which is not
entirely reasonable because the construction cost of each candidate rescue base cannot be 0—the final
number of selected rescue bases in this paper is 34, which does not include “Reykjavik”. The locations
of the selected rescue bases and their rescue coverage are shown in Figure 8. The serial number of each
rescue base is shown in Table 8.
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The need points that require two rescue bases to be responsible for them are shown in Figure 9
and details can be found in the Supplementary Materials.
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6. Conclusions and Discussion

As the Arctic passages gradually open, it is important to study the locations of Arctic rescue
bases for countries around the Arctic region. In this study, a total of 37 candidate rescue bases were
determined by consulting a large number of data sets. The SDCMM was innovatively constructed
based on PMM, SCLM, and DCLM to determine the final locations of the rescue bases in the Arctic.
The constructed model not only ensures that the selected rescue bases can cover all areas in the Arctic
region, it also minimizes the total distance cost and the total construction cost of the rescue base from
each demand point. In addition, two rescue bases are allocated to cover each demand point with a
high navigation risk.

Although this study provides innovative methods to address the problem of allocating rescue
bases in the Arctic, the following issues still exist:

(1) This study only considers the natural factors when assessing the navigation risk in the Arctic;
however, this is incomplete as other non-natural factors may also affect the navigation risk.
Moreover, the data used to calculate the risk value were the average of 17 years from 2001 to
2016, which may lead to neutralization for some areas with high risk. Therefore, it is important to
assess the navigation risk by calculating the frequency of various extreme weather occurrences
in each sea area to solve this problem. Additionally, statistical data on ship accidents should be
integrated into the calculated risk data for each sea area. In this case, the risk value of the sea area
where the accident occurred is expected to be high.

(2) The method used to estimate the construction cost of each candidate base in this study was
relatively simple. Although the method reflects the current situation of each rescue base, the
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difference in construction costs determined by this method is not significant. Hence, the estimated
construction cost does not express the current situation of each candidate base sufficiently. Next,
the construction standard and calculation of the construction cost of each rescue base should be
discussed with relevant professionals in detail.

(3) The weights of economic cost and distance cost in the evaluation function of this study are the
same. The next step is to explore the optimal layout of the rescue base under different weights for
the two costs. The weights of the two costs will depend on the intention of the decision-maker.

(4) The algorithm to solve SDCMM is based on the idea of a greedy algorithm, which cannot
guarantee that the obtained solution is the optimum solution. At the same time, although many
new algorithms, such as genetic algorithms [20], can be used to solve conditioning optimization
problems, it is also hard for them to obtain the optimum solution in a reasonable time in large-scale
instances, and these algorithms also do not guarantee the accuracy of the solution theoretically [25].
With the development of artificial intelligence in recent years, deep learning has been used to
solve many problems, such as conditioning optimization problems. Shoma et al. [25] applied
deep learning and reinforcement learning to the “Traveling Salesman Problem” and obtained
good results. Therefore, the next step is to apply deep learning and reinforcement learning to
find the best solution with different P of the model constructed in this paper.

Overall, in this study, we innovatively constructed a SDCMM based on PMM, SCLM, and DCLM
to determine the final locations of rescue bases in the Arctic. The study is of great significance in the
context of global warming. Although there are some shortcomings in this study, we have discussed
how to solve these limitations in the future. The authors plan to solve the shortcomings of this study
and improve the allocation of rescue bases in the Arctic.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/11/9/1073/s1,
Table S1: the details of the need points that need 2 rescue bases be responsible for.
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Abbreviations

AT air temperature
ANN artificial neural network
AR5 Fifth Assessment Report
BOM bi-objective model
CS current speed
C3S Copernicus Climate Change Service
CMIP Climate Model Intercomparison Project
Depth water depth
DCLM Double Covering Location Model
ECMWF European Centre for Medium-Range Weather Forecasts
GMCLM Generalized Maximum Covering Location Model
IPCC Intergovernmental Panel on Climate Change
ICOADS International Comprehensive Ocean-Atmosphere Data Set
MCLM Maximum Covering Location Model
MOMM Multi-Objective Mathematical Model
MIU Marine Intelligence Unit
NOAA National Oceanic and Atmospheric Administration
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NCDC National Climate Information Centre of the United States
NSF National Science Foundation
ORA Ocean Reanalysis Program
PMM P-Median Model
PCM P-Centre Model
SDCMM Set-Double Covering Median Model
SCLM Set Covering Location Model
SIT sea ice thickness
SID sea ice density
SODA Simple Ocean Data Assimilation
Vis atmospheric visibility
WS wind speed
WH wave height
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