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Abstract: The utilization of gradient information is a key issue in building Scale Invariant Feature
Transform (SIFT)-like descriptors. In the literature, two types of gradient information, i.e., Gradient
Magnitude (GM) and Gradient Occurrence (GO), are used for building descriptors. However, both of
these two types of gradient information have limitations in building and matching local image
descriptors. In our prior work, a strategy of combining these two types of gradient information was
proposed to intersect the keypoint matches which are obtained by using gradient magnitude and
gradient occurrence individually. Different from this combination strategy, this paper explores novel
strategies of weighting these two types of gradient information to build new descriptors with high
discriminative power. These proposed weighting strategies are extensively evaluated against gradient
magnitude and gradient occurrence as well as the combination strategy on a few image registration
datasets. From the perspective of building new descriptors, experimental results will show that each
of the proposed strategies achieve higher matching accuracy as compared to both GM-based and
GO-based descriptors. In terms of recall results, one of the proposed strategies outperforms both
GM-based and GO-based descriptors.
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1. Introduction

Local image features [1] are of vital importance in the field of image processing and have been
widely studied in various applications such as object recognition [2], image retrieval [3] and image
registration [4–11]. A local image feature [12,13] such as a keypoint or corner is encoded into a
local descriptor by representing image information within a local region such as color, gradient and
shape [14]. In the literature, there exist various types of local image descriptors [14–19] among which
SIFT-based local descriptors are particularly popular and have been extensively studied [8,20–27].
This paper is focused on the utilization of gradient information in SIFT-based local image
descriptors [28]. In SIFT, a set of keypoints are detected in scale space and each keypoint is then
represented by a local descriptor. The SIFT descriptor is built by concatenating a number of orientation
histograms that are quantized into eight orientations. An orientation histogram contains eight
orientation bins, where each orientation bin is incremented by gradient information of those pixels
in the corresponding gradient orientation. In the original SIFT, Gradient Magnitude (GM) values
of image pixels are summed up at each bin of an orientation histogram. However, compared with
mono-modal images, it is more challenging to deal with multi-modal images as there exist complex
and substantial intensity variations between corresponding parts of images [11,29–31]. To register
multi-modal images more effectively, Gradient Occurrence (GO) was proposed in [26,32] to increment
the value at each bin of orientation histograms instead of using GM. GO means that an image gradient
occurs in the immediate neighborhood of a pixel. In other words, there exist intensity changes in this
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neighborhood. When building descriptors, the number of GOs is counted at each bin of orientation
histograms.

Figure 1 shows an example to illustrate the difference between GM and GO. In Figure 1, a local
region is divided into 4 × 4 sub-regions. The length of an arrow represents the gradient magnitude
of the corresponding image pixel and the direction of the arrow indicates the gradient orientation.
In Figure 1a,b, two local regions represent totally different image contents. As expected, largely
different descriptors are to be built. The same descriptors are built by utilizing GM, whereas different
GO-based descriptors are built. A different case is shown in Figure 1b, where GM-based descriptors
are able to distinguish the two local regions and GO-based descriptors fail. Thus, both GM and GO
have limitations, and these two types of gradient information are complementary in building and
matching SIFT-like descriptors [8].

(a)

(b)

Figure 1. Illustration of the difference between Gradient Magnitude (GM)-based descriptors and
Gradient Occurrence (GO)-based descriptors. (a) Same GM-based descriptors and different GO-based
descriptors are built for different image local regions. (b) Same GO-based descriptors and different
GM-based descriptors are built for different image local regions.

Figure 2 shows a strategy of combining GM and GO has been proposed in [8] by intersecting the
keypoint matches which are obtained by matching GM-based and GO-based descriptors individually.
Unlike the aforementioned combination strategy [8], this paper presents four novel strategies of
weighting GO and GM to generate new descriptors. The difference between the combination
strategy [8] and the proposed weighting strategies is clearly illustrated in Figure 2. The proposed
strategies of weighting GM and GO are summarized as follows.

(1) GM-based descriptors are normalized piecewise to reduce the side effect of substantial intensity
variations between corresponding parts of multi-modal images. The normalizing operation is
performed in two ways, i.e., descriptor normalization and histogram normalization (Strategies 1
and 2).

(2) In the cases in which the values in GM-based descriptors are very small or not noticeable,
the values at corresponding dimensions in GO-based descriptors are suppressed, thereby better
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distinguishing substantial intensity variations between corresponding parts of multi-modal
images (Strategy 3).

(3) A GM-based descriptor is incremented onto a GO-based descriptor to build a new descriptor
which contains two types of gradient information simultaneously (Strategy 4).

These four strategies will be evaluated against GM and GO as well as their combination strategy
in registering various types of multi-modal images.

(a)

(b)

Figure 2. Illustration of the difference between the combination strategy in [8] and the proposed
weighting strategies of this paper. (a) The strategy of combining GM and GO proposed in [8] intersects
the keypoint matches that are obtained by matching GM-based and GO-based descriptors individually.
(b) The proposed strategies of this paper weight GM-based and GO-based descriptors, leading to
new descriptors.

The rest of this paper is organized as follows. Section 2 summarizes SIFT-based local descriptors,
and the utilization of gradient information. In Section 3, the proposed strategies of weighting GM
and GO are presented in detail, followed by a performance study in Section 4. Section 5 concludes
this paper.

2. Related Work

This section will summarize SIFT-like local image descriptors and two types of gradient
information, i.e., GM and GO. Furthermore, Magnitude and Occurrence of Gradient (MOG) [8] which
combines GM and GO will be introduced briefly.

2.1. SIFT Based Local Image Descriptors

In the domain of mono-modal image registration, SIFT shows great effectiveness so that it has
been widely studied and improved such as [11,20,33–35]. However, it has been pointed out in [22] that
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gradient orientations of corresponding feature points across multi-modal images may point to opposite
directions. This phenomenon is called gradient reversal [8,11,26,36]. Hence, when SIFT descriptors
are employed to deal with multi-modal images, the performance is usually undesirable. To address
this issue, Symmetric SIFT (S-SIFT) [22] was proposed. The main steps of S-SIFT are as follows.
First, the range of gradient orientations is restricted to [0◦, 180◦) once the gradient magnitudes and
orientations are computed for all pixels within the neighborhood of a keypoint. Second, gradient
magnitudes and orientations are computed for each local region that is rotated by 180◦ relative to the
original local region. Third, a S-SIFT descriptor is generated by combining two intermediate descriptors
that are built for the original region and the rotated region. The S-SIFT descriptor achieves invariance to
gradient reversal. However, the process of combining two intermediate descriptors causes ambiguities
and sacrifices the discriminative power of descriptors [26,36]. Consequently, the same S-SIFT descriptor
may be built for two local regions in which their image contents are actually largely different.

To address this issue, S-SIFT was improved in Improved Symmetric SIFT (IS-SIFT) [26,36] and its
major steps are summarized as follows. First, S-SIFT is performed on two images to obtain a set of
tentative keypoint matches. Second, the rotation difference between these two images is estimated
by averaging the main orientation differences that underlie the tentative keypoint matches. Third,
the estimated rotation difference is used to rotate the target image. Lastly, keypoint descriptors are
re-built in two images as done in building a S-SIFT intermediate descriptor.

2.2. Gradient Magnitudes and Gradient Occurrences

Gradient magnitude of an image pixel is computed by

Gm =
√

dx
2 + dy

2, (1)

where

dx = L(x + 1, y)− L(x− 1, y),

dy = L(x, y + 1)− L(x, y− 1),
(2)

where L(x, y) denotes the intensity of the image pixel at location (x, y) in the Gaussian smoothed image.
In SIFT, the local region around a keypoint is divided into 4× 4 sub-regions and each sub-region is
represented by an 8-bin orientation histogram. With Equation (1), the GM values are incremented at
each bin of orientation histograms. When building an orientation histogram for the (x, y) sub-region
where there exist m pixels, (x, y, q) is used to denote the qth orientation bin of this histogram. Thus,
the GM value of the (x, y, q) orientation bin can be computed by

DGM(x, y, q) =
q

∑
i=1

Mi, (3)

where Mi is the GM of the ith pixel of the qth bin in the (x,y) sub-region.
Based on the analysis in [26], GM potentially brings ambiguity that the same orientation histogram

may be built for visually largely different regions. Therefore, GO was proposed in [26,32] as a new type
of gradient information to build SIFT-like descriptor. When using GO to build an orientation histogram
for a region, each bin of the histogram represents the number of occurrences of image gradients in
corresponding orientation. In other words, if an image gradient occurs, the corresponding orientation
bin will be incremented by 1. According to the definition in [26,32], GO can be computed by

fGO(M1, M2, ..., Mn) = n, (4)

where M1, M2, ..., Mn denotes the GM values of n pixels at a specific bin of an orientation histogram,
that is, there exist n occurrences of image gradients at this orientation bin. When using GO for building
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descriptors, the value for this orientation bin is n, which is independent of specific GM values of these
n pixels.

As pointed out in [8], utilizing GO to build orientation histograms brings ambiguity as well,
that is, the same orientation histogram may be built for two regions with totally different image
contents if the numbers of GOs of these two regions are equivalent. Therefore, both GM and GO are
important gradient information for building local image descriptors. However, neither GM nor GO is
sufficiently discriminative to perform well in all circumstances.

2.3. Magnitude and Occurrence of Gradient

In [8], MOG was proposed by combining GM and GO in building and matching SIFT-like
descriptors. The main idea of MOG is summarized as follows. First, both GM-based and GO-based
descriptors are built for each keypoint that has been detected in two images. Second, GM-based
and GO-based descriptors are matched individually to obtain keypoint matches, respectively. Third,
GM-based and GO-based keypoint matches are intersected to constitute the final keypoint matches.

For the purpose of performance comparisons, IS-SIFT will be used as the GM-based descriptor.
When GO and MOG are incorporated into IS-SIFT, the merged feature description techniques are
called GO-IS-SIFT and MOG-IS-SIFT, respectively.

3. Proposed Strategies of Weighting GM and GO

This section elaborates the proposed strategies of weighting GM and GO for building new
SIFT-like descriptors. Strategies 1 and 2 aim at reducing the influence of substantial intensity variations
between multi-modal images. To this end, GM-based descriptors are normalized piecewise. Strategy 1
normalizes the entire descriptor, whereas each orientation histogram is normalized in Strategy 2.
Strategy 3 suppresses small gradient magnitudes when building GO-based descriptors. Strategy 4
increments a GM-based descriptor onto a GO-based descriptor to generate a new descriptor.

3.1. Normalizing GM-Based Descriptors (Strategies 1 and 2)

It is common that there exist substantial intensity variations between corresponding parts of
multi-modal images [7,23,37]. As stated in Sections 1 and 2.2, a SIFT-like descriptor is represented by
a 128-dimensional vector and the value at each dimension is a GM value accumulated at a specific
bin of an orientation histogram. In this manner, it is likely that largely different descriptors are built
for corresponding parts of multi-modal images. To decrease the influence of substantial intensity
variations between corresponding parts of multi-modal images, we propose to normalize GM-based
SIFT-like descriptors.

Strategy 1: Normalizing an entire GM-based descriptor by four levels is performed as follows.
First, all GM values of the descriptor are ranked by descending order. Second, these ranked GM values
are divided into four ranking zones, i.e., (75%, 100%], (50%, 75%], (25%, 50%] and [0, 25%], respectively.
These four ranking zones and their corresponding normalized GM values are listed in Table 1. Third,
the value at each dimension is set to the corresponding normalized GM according to the ranking
zone the original GM value should be assigned to. Similar to Table 1, GM-based descriptors can be
normalized by 8 and 16 levels.

Table 1. Normalizing Gradient Magnitude (GM) values by four levels.

GM Ranking Zone Normalized GM

(75%, 100%] 1

(50%, 75%] 0.75

(25%, 50%] 0.50

[0, 25%] 0.25



Symmetry 2019, 11, 998 6 of 20

Strategy 2: A similar strategy is proposed by normalizing each orientation histogram instead
of normalizing the entire descriptor. As stated in Section 2.2, a SIFT-like descriptor consists of
16 orientation histograms and each histogram is built within a region around the keypoint. Unlike the
aforementioned strategy which normalizes GM values in the domain of the entire local region around a
keypoint, the normalization of GM values is performed in the domain of each sub-region in this strategy.
As an orientation histogram only contains eight bins, Strategy 2 only does normalization by four levels.
The normalized GM values are the same as Table 1 presents. The following consideration inspires
us to narrow the normalization domain from the entire descriptor to each orientation histogram.
When normalizing GM values of all dimensions of a descriptor, those dimensions which correspond to
a sub-region will be set to the same normalized value if these dimensions are assigned to the same GM
ranking zone. This phenomenon potentially affects the discriminative power of normalized descriptors.
In such cases, performing GM normalization by each orientation histogram would be a better choice
as compared to doing normalization by the entire descriptor.

There are two reasons for normalizing GM-based descriptors as follows. On the one hand,
the more similar two descriptors are, the more likely these two descriptors are matched. Despite
the fact that there is a normalization operation in building SIFT-like descriptors in order to diminish
the influence of illumination, it has been found that there may exist a large difference in gradient
magnitudes between descriptors of corresponding keypoints. On the other hand, the main orientation
of a keypoint is decided by a set of gradient orientations within the local region surrounding the
keypoint. If the image is influenced by illumination and noise seriously, main orientations of keypoints
are likely to be incorrect. By normalizing GM values, the side effect caused by substantial intensity
variations will potentially be weakened. Nevertheless, it should be noted that normalizing gradient
magnitudes piecewise too much or too little will go to extremes and decrease the effectiveness of the
proposed strategy.

3.2. Suppressing GO-Based Descriptors (Strategy 3)

Both GM-based and GO-based descriptors have limitations when building SIFT-like descriptors.
GO-based descriptors better distinguish substantial intensity variations between corresponding parts
of images as compared to GM, however, detailed image information is not captured by GO-based
descriptors. As analyzed in [8], GO based-descriptors may be exactly the same for two regions whose
image contents are totally different.

A small GM value implies the intensity change around the pixel is small, indicating that the
gradient occurrence is not that noticeable. From this perspective, we propose that when the value
in GM-based descriptors is very small, the value at the corresponding dimension in GO-based
descriptor is set to zero. By doing so, the GO-based descriptors are likely to be more discriminative in
distinguishing substantial intensity variations between images.

The main steps of this strategy are as follows. First, all values in a GM-based descriptor are ranked
in descending order. Second, those 16 smallest values of the GM-based descriptor are labeled. Third,
the corresponding dimensions of these 16 smallest GM values are found in the GO-based descriptor.
Lastly, those labeled dimensions in the GO-based descriptor are set to zero. These four steps are
illustrated in Figure 3.

Mathematically, this strategy is expressed as

{GM(smallest, 16)⇒ GO(0)}. (5)

In the experiments, the following thresholds are tested, including 1/16, 1/8 and 1/4 smallest
values of the GM-based descriptor. Empirically, the 1/4 threshold achieves the best performance.
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Figure 3. The main steps of suppressing small gradient magnitudes in a GO-based descriptor
(Strategy 3). From left to right, (1): Ranking a GM-based descriptor; (2): Labeling those dimensions
which hold 16 smallest values; (3): Finding the corresponding dimensions in the GO-based descriptor;
(4): Resetting the values of those labeled dimensions in the GO-based descriptor to zero.

3.3. Incrementing GM-Based Descriptor onto GO-Based Descriptor (Strategy 4)

Unlike the MOG [8], Strategy 4 increments a GM-based descriptor onto the corresponding
GO-based descriptor to generate a new descriptor. This strategy puts emphasis on the feature
description stage, whereas MOG focuses on refining the keypoint matches. The motivation of
this strategy is to verify the effectiveness of building descriptors by utilizing GM and GO in a
straightforward way. The merged descriptor is more informative, which can be expressed as

DESC = DESCGM
⋃

DESCGO, (6)

where DESCGM and DESCGO denote the GM-based and GO-based descriptors, respectively. More
intuitively, the new descriptor can be expressed as

DESC = {m1, m2, m3..., m128, o1, o2, o3..., o128}, (7)

where m1—m128 denote the GM-based descriptor, o1—o128 denote the GO descriptor built for the
same keypoint.

For the referencing purpose, the following abbreviations are used to denote each of the
aforementioned weighting strategies of GM and GO.

1. NGMD: Normalizing a GM-based descriptor by the entire descriptor (Strategy 1);
2. NGMH: Normalizing a GM-based descriptor by each orientation histogram (Strategy 2);
3. SGO: Suppressing a GO-based descriptor by ignoring the corresponding dimensions of small

values in the GM-based descriptor (Strategy 3);
4. IMOG: Incrementing a GM-based descriptor onto a GO-based descriptor (Strategy 4).

4. Performance Study

For the purpose of performance comparisons, IS-SIFT and GO-IS-SIFT [8] are used for building
the GM-based and GO-based descriptors, respectively. The proposed strategies of weighting GM and
GO, i.e., NGMD, NGMH, SGO and IMOG, are evaluated against GM, GO and MOG [8] in registering
multi-modal images.
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4.1. Evaluation Metrics

The accuracy of an image registration technique depends highly on the matching accuracy.
The higher the matching accuracy is, the more accurate the final registration will be [8]. Thus,
the proposed strategies of weighting GM and GO are evaluated by

accuracy =
#correct matches
#total matches

× 100%. (8)

Moreover, recall vs 1-precision [20,38,39] is used for performance comparisons. The recall vs
1-precision is defined as

recall =
#correct matches
#correspondences

× 100%, (9)

1− precision =
#incorrect matches

#total matches
× 100%, (10)

where #correspondences is the ground-truth number of matches. The precision in Equation (10) is
simply the equivalent of accuracy defined in Equation (8). The recall vs 1-precision curve is generally
plotted for a particular image pair [6,20]. To make statistics on a set of image pairs, the area under the
recall vs 1-precision curve [38] will be used.

The ground-truths of test image pairs are all known or provided. A maximum of four pixels
error is considered when deciding whether a match is correct or not, which is consistent with
existing literature [5,8,40].

4.2. Test Datasets

The following five datasets are tested. The first dataset consists of 18 NIR (Near Infra-Red) vs
EO (Electro-Optical) image pairs from several sources [20,21,41,42] (Dataset 1). The second and third
datasets are transverse and coronal T1 vs T2 weighted MRI brain images respectively (Datasets 2
and 3). These two datasets were collected from McConnell Brain Imaging Center (McConnell Brain
Imaging Center: https://www.mcgill.ca/bic/home). There are 87 and 101 image pairs in Datasets 2
and 3 respectively. The fourth dataset consists of 32 pairs of satellite images from different bands and
can be downloaded on this website (https://serc.carleton.edu/index.html) . The fifth dataset is SYM
dataset that consists of 46 image pairs involving different depictions (drawing vs. photo), different time
periods (modern vs. historical), and different illuminations (day vs. night) [43] (Dataset 5). In total,
284 image pairs are tested. Sample image pairs of these five datasets are shown in Figure 4.

(a) (b)

Figure 4. Cont.

https://www.mcgill.ca/bic/home
https://serc.carleton.edu/index.html
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(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4. Sample image pairs of Datasets 1 to 5. (a,b) NIR vs EO (Dataset 1). (c,d) transverse T1 vs
T2 MRI (Dataset 2). (e,f) coronal T1 vs T2 MRI (Dataset 3). (g,h) satellite images from different bands
(Dataset 4). (i,j) SYM dataset (Dataset 5).

4.3. Experimental Results

For a clear comparison, the average accuracy achieved by each compared technique for each
dataset is listed in Table 2. Overall, the following trends can be derived from Table 2. First, GO-based
descriptors generally achieve higher accuracy as compared to GM-based descriptor, which has also
been reported in [8,36]. Second, the proposed NGMD (16 levels) achieves an overall matching accuracy
that is close to what MOG obtains. These two techniques outperform the others in terms of matching
accuracy. However, it is noted that MOG only refines the matching result and does not generate new
descriptors, as stated in Section 2.3. In contrast, each of the proposed strategies builds new SIFT-like
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descriptors by appropriately weighting GM and GO. Third, each of the proposed strategies achieves
higher accuracy as compared to both GM and GO. This indicates that these three proposed strategies
are more robust to gradient changes between multi-modal images and have higher discriminative
power as compared to GM and GO.

Table 2. Comparisons in average accuracy between the compared techniques on each dataset.
The horizontal line below MOG separates three existing techniques and the proposed strategies
of weighting GM and GO. The accuracy in the last column is obtained by doing the average on all
five datasets.

Technique Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Overall

GM 86.86% 86.32% 87.19% 79.57% 32.73% 74.53%
GO 91.18% 90.75% 92.93% 82.47% 39.53% 79.37%

MOG 95.70% 95.89% 94.49% 87.71% 55.75% 85.91%

NGMD (4 levels) 93.67% 93.39% 95.86% 81.97% 46.95% 82.37%
NGMD (8 levels) 94.04% 90.85% 91.60% 83.53% 46.52% 81.31%

NGMD (16 levels) 94.66% 95.46% 95.42% 87.98% 49.99% 84.70%
NGMH 95.14% 95.69% 93.49% 78.30% 36.90% 79.90%

SGO 92.29% 92.54% 94.61% 83.47% 44.14% 81.41%
IMOG 90.95% 90.78% 91.95% 83.30% 40.70% 79.54%

Figure 5 shows an example of matching results when registering the sample image pair shown
in Figure 4e,f. Among these compared techniques, NGMH comes first with a 100% accuracy.
The proposed NGMD(4 levels), NGMD(8 levels), NGMD(16 levels), NGMH and SGO achieve higher
accuracy as compared to the existing GM, GO and MOG. The proposed IMOG outperforms both GM
and GO, but performs slightly worse as compared to MOG.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Cont.
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(g) (h)

(i) (j)

Figure 5. Comparisons in matching results for a pair of coronal T1 vs T2 weighted MRI brain images
from Dataset 3. Green (solid) and red (dashed) lines indicate correct and incorrect matches respectively.
(a) Original image pair. (b) GM: 9/18 = 50.00%. (c) GO: 12/26 = 46.15%. (d) MOG: 8/13 = 61.54%.
(e) NGMD(4 levels): 11/14 = 78.57%. (f) NGMD(8 levels): 11/12 = 91.67%. (g) NGMD(16 levels):
9/11 = 81.82%. (h) NGMH: 5/5 = 100%. (i) SGO: 7/9 = 77.78%. (j) IMOG: 13/24 = 54.17%.

Moreover, Figure 6 compares the recall results of the seven compared techniques on Datasets 1 to
5. Figure 6b only shows the recall results of 18 image pairs that have been randomly sampled from
Datasets 2 and 3. Similarly, Figure 6c,d show the recall results of 16 and 23 image pairs that have been
sampled from Datasets 4 and 5, respectively. Apart from these sample image pairs, the recall results
of the remaining pairs show a similar trend as Figure 6b–d, which is because all image pairs of the
same dataset have similar characteristics. Showing a part of recall results in Figure 6b–d is to make a
better illustration between the compared techniques. In order to clearly compare the recall results of
the compared methods, Figure 7 plots the recall vs precision curves of five image pairs that have been
randomly selected from each dataset. Table 3 compares the area under the recall vs 1-precision curve
achieved by the seven compared techniques. By analyzing the results presented in Figures 6 and 7 and
Table 3, the following trends can be drawn.

Overall, the proposed IMOG achieves the best recall results among all compared techniques.
The proposed NGMH achieves the lowest recall results. This strategy of weighting GM and GO
actually obtains a high matching accuracy by preserving a small set of keypoint matches, which can be
seen from the example of matching results shown in Figure 5.
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(a)

(b)

Figure 6. Cont.
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(c)

(d)

Figure 6. Comparisons in the area under the recall vs 1-precision curve. (a) NIR vs EO (Dataset 1).
(b) Sample pairs of transverse and coronal T1 vs T2 MRI (Datasets 2 and 3). (c) Sample pairs of satellite
images from different bands (Dataset 4). (d) Sample pairs of SYM dataset (Dataset 5).
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(a)

(b)

Figure 7. Cont.
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(c)

(d)

Figure 7. Cont.
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(e)

Figure 7. Comparisons in the recall vs precision curves. (a–e) show the recall vs precision curves for
sample image pairs that are randomly selected from Datasets 1 to 5, respectively.

Table 3. Comparisons in the area under the recall vs 1-precision curve for Datasets 1 to 5. Randomly
sampled image pairs of Datasets 1 to 5 are tested. Higher results are better.

Technique Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Overall

GM 1.87 0.71 0.64 2.37 1.12 6.71
GO 1.87 0.83 0.96 1.91 1.06 6.62

MOG 1.99 0.83 0.83 2.39 0.90 6.95

NGMD (4 levels) 1.09 0.64 0.52 2.09 1.11 5.45
NGMD (8 levels) 1.78 0.68 0.66 2.22 1.20 6.54

NGMD (16 levels) 1.80 0.76 0.71 2.27 1.15 6.70
NGMH 1.78 0.73 0.71 1.02 0.64 4.88

SGO 1.30 0.71 0.76 2.35 0.49 5.61
IMOG 2.00 0.79 0.85 2.60 1.14 7.38

4.4. Efficiency Comparison

The experiments were implemented in Matlab R2014b on a Windows 7 PC with Intel i7 CPU
of 3.4 GHz and 8 GB memory. Figure 8 compares the runtime of all seven compared techniques
when registering coronal T1 vs T2 weighted MRI brain images (Dataset 3). Note that the runtime
for the four Datasets show a similar trend as Figure 8. For all five datasets, the average runtime for
GM, GO, MOG, NGMD(4 levels), NGMD(8 levels), NGMD(16 levels), NGMH, SGO, IMGO are 7.30,
7.43, 15.70, 7.53, 7.38, 7.36, 7.23, 8.08 and 11.24 seconds, respectively. Obviously, MOG is the most
time-consuming one among all compared techniques as it needs to build and match GM-based and
GO-based descriptors individually.
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Figure 8. Efficiency comparison on Dataset 3.

4.5. Discussions

Despite the fact that it has been found that GM and GO are complementary gradient
information [8], to the best of our knowledge, there exists no literature which builds new SIFT-like
descriptors by taking into account both GM and GO. This paper aims to address this issue. In the
cases there exist substantial gradient changes between corresponding parts of the multi-modal image,
GM-based local descriptors usually perform poorly in registering this kind of images. It has been
pointed out that GO also has limitations in building local descriptors [8]. Both GM and GO are
important and these two types of gradient information are complementary [8]. Based on this analysis,
a strategy of combining GM and GO has been proposed in [8], which is achieved by intersecting the
keypoint matches which are obtained by matching GM-based and GO-based descriptors individually.
In this paper, four novel strategies of weighting GM and GO are proposed to build new SIFT-like
descriptors, thereby achieving greater robustness to gradient changes across multi-modal images.

Experimental results can be briefly summarized as follows.

(1) From the perspective of building new descriptors, each of the proposed strategies of weighting
GM and GO achieves higher accuracy as compared to both GM and GO. Overall, the proposed
NGMD that normalizes GM-based descriptors by 16 levels achieves the highest matching
accuracy, while excluding MOG. It should be noted that each of the proposed strategies of
weighting GM and GO creates new SIFT-like descriptors, whereas MOG only intersects the
keypoint matches obtained by GM-based and GO-based descriptors.

(2) In terms of recall performance, the proposed IMOG achieves the best recall results, whereas the
proposed NGMH obtains the lowest recall performance among the seven compared techniques.

(3) With regards to efficiency, MOG is the least efficient one as it builds and matches GM-based and
GO-based descriptors individually, and then intersects two sets of keypoint matches. Compared
with MOG, the proposed IMOG is more efficient in that it only increments GM-based descriptors
onto GO-based descriptors, thereby doubling the dimensionality of descriptors. The other
compared techniques take comparable runtime, and are far more efficient as compared to MOG
and IMOG.
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5. Conclusions

This paper explores the utilization of two types of gradient information, i.e., GM and GO.
Four novel strategies of weighting GM and GO have been presented and extensively evaluated
using five image registration datasets. The experimental results have shown the effectiveness of
the proposed techniques. From the perspective of building new descriptors, the proposed NGMD
(16 levels) is recommended as the best choice for multi-modal image registration, when taking into
account both matching accuracy and recall.

On the basis of GM-based and GO-based descriptors, the proposed weighting strategies lead to
novel local descriptors. Without loss of generality, these novel local descriptors are applicable to those
research problems that demand local image representation.
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