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Abstract: The minimally extended standard model of particle physics contains three right handed
or sterile neutrinos, coupled to the active ones by a Dirac mass matrix and mutually by a Majorana
mass matrix. In the pseudo-Dirac case, the Majorana terms are small and maximal mixing of active
and sterile states occurs, which is generally excluded for solar neutrinos. In a “Diracian” limit, the
physical masses become pairwise degenerate and the neutrinos attain a Dirac signature. Members
of a pair do not oscillate mutually so that their mixing can be undone, and the standard neutrino
model follows as a limit. While two Majorana phases become physical Dirac phases and three extra
mass parameters occur, a better description of data is offered. Oscillation problems are worked
out in vacuum and in matter. With lepton number –1 assigned to the sterile neutrinos, the model
still violates lepton number conservation and allows very feeble neutrinoless double beta decay. It
supports a sterile neutrino interpretation of Earth-traversing ultra high energy events detected by
ANITA.
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1. Introduction

Thus far the Large Hadron Collider (LHC) has not produced evidence for physics beyond the
standard model (BSM). But the neutrino sector must involve BSM because neutrinos have mass. Indeed,
the 2015 Noble prize in physics was awarded to T. Kajita and A. B. McDonald “for the discovery of
neutrino oscillations which show that neutrinos have mass” [1].

The standard neutrino model (SνM) with its three Majorana neutrinos has measured values
for the mass-squared differences, the mixing angles θ12, θ23 and θ13 and the weak Dirac phase δ.
But the absolute mass scale, the order of the hierarchy, normal or inverted, and the Majorana phases
are unknown. There is stress in the fit to the standard solar model [2]; there is a reactor neutrino
anomaly [3,4]; MiniBooNE finds 4.5σ evidence for a sterile neutrino [5], while MINOS/MINOS+ does
not [6]. At present, there is no definite conclusion about the existence of an eV sterile neutrino [7].

There is also input from cosmology. From the lensing of background galaxies by the large,
reasonably relaxed galaxy clusters Abell 1689 [8–10] and Abell 1835 [11] there is indication for three
active and three sterile neutrinos with common mass of 1.5–1.9 eV, which act as the cluster dark matter.
We shall not dwell here into the many questions this raised and counter-evidence to that possibility,
but refer to the discussion and cited articles in these references. Be it as it may, the 3 + 3 case puts
forward the minimal extension of the standard model (SM) in the neutrino sector for consideration. By
default, this accepts all SM physics without extension in the Higgs, gauge, quark and charged lepton
sectors. Gauge invariance then forbids the presence of a ‘left handed’ Majorana mass matrix between
the left handed active neutrinos, so that there must be a Dirac mass matrix to give them mass. As
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such a term mixes left and right handed fields, this presupposes the existence of three right handed
neutrinos, also called sterile, i.e., not involved in elementary particle processes [12]. For that reason,
they are allowed to have a mutual ‘right handed’ Majorana mass matrix. In order to make up for half
of the cluster dark matter, sterile neutrinos have to be generated in the early cosmos by oscillation of
active ones. This is only possible when the Dirac mass matrix is accompanied by a non-trivial right
handed Majorana mass matrix.

In the pseudo-Dirac limit, the right handed Majorana masses are much smaller than the
eigenvalues of the Dirac mass matrix. The maximal mixing of the resulting pseudo-Dirac neutrinos
implies that in principle half of the emitted solar neutrinos has become sterile here on Earth, and thus
unobservable (see Section 2.4 for details); this is ruled out by the standard solar model [2]. Hence the
pseudo-Dirac case is often considered to be ruled out. We intend to show, however, that there is a way
out of this conundrum, so as to faithfully include neutrino mass in the SM without changing its high
energy sector.

While excellent studies such as [12–14] discuss the theory for general number Ns of sterile
neutrinos, we shall work out the case Ns = 3 in a nontrivial limit where the 6 Majorana neutrinos
combine into three Dirac neutrinos so that the maximal mixing is harmless and can be circumvented.
We call them Diracian neutrinos, i.e., Dirac neutrinos in a model with both Dirac and Majorana masses.
In Section 2 we treat the theory and in Section 3 we consider various applications. We close with
a summary.

2. The Lagrangian for Active Plus Sterile Neutrinos

In this section we concentrate on the neutrino sector of the SM. For completeness we present the
full Lagrangian in Appendix B.

2.1. Active Neutrinos Only

We start from the SM Lagrangian where the e, µ and τ fields are diagonal in the mass basis.
Left handed neutrinos and right handed antineutrinos exist, and are called “active neutrinos” since
they participate in the weak interactions (left and right handedness refers to the chirality; see
Appendix A). Additional neutrinos are not involved in them, and are called sterile. If only active ones
exist, they are Majorana particles. Their mass term involves the quantized left handed fermionic flavor
fields νeL, νµL, ντL,

LM
mL =

1
2 ∑

α,β=e,µ,τ
νT

αLC†(MM
L )αβνβL + h.c. (1)

where C is the charge conjugation matrix, T denotes transposition, † Hermitian conjugation, and h.c.
Hermitian conjugated terms. MM

L is called the left handed Majorana mass matrix. In the SM gauge
invariance forces MM

L to vanish [12]; if it is present, it must originate from high energy BSM, such
as Weinberg’s dimension-five operator. Considering new physics only in the neutrino sector, we
neglect MM

L .

2.2. The Dirac and Majorana Mass Matrices

In absence of MM
L , the only possibility to give mass to the active neutrinos is by a Dirac mass

matrix. Since that involves products of left and right handed fields, this presupposes the existence of
Ns ≥ 3 sterile neutrinos, that must be right handed and represented by quantized fermionic fields νiR,

LD
m = − ∑

α=e,µ,τ

Ns

∑
i=1

(
ναL MD

αiνiR + νiR MD †
iα ναL

)
, (2)



Symmetry 2019, 11, 994 3 of 23

where the Dirac mass matrix MD is a complex 3× Ns matrix. The sterile fields do not enter the weak
interactions; they are singlets under the U(1)Y × SU(2)L × SU(3)C gauge groups of the SM and affect
neither gauge invariance, anomalies nor renormalization. Hence they preserve its full functioning
while accounting for neutrino masses. Moreover, the sterile fields may have a mutual mass term like
Equation (1),

LM
mR =

1
2

Ns

∑
i,j=1

(
νT

iRC† MM†
R,ij νjR + (ν c

iR)
T C† MM

R,ij ν c
jR

)
, (3)

where the right handed Majorana mass matrix MM
R is symmetric and complex valued, and where ν c

iR
is the charge conjugate of νiR,

ν c
iR = C νiR

T = C (γ 0)T(ν†
iR)

T = −γ 0C(ν†
iR)

T . (4)

While νiR is a right handed field, ν c
iR is left handed (see Appendix A for properties of γ and C

matrices).
The kinetic term has a common form for all species [12],

Lk = ∑
α=e,µ,τ

ναL i
←→
/∂ ναL +

Ns

∑
i=1

νiR i
←→
/∂ νiR, (5)

where the slash denotes contraction with γ matrices, and the partial derivatives acting as

←→
/∂ =

3

∑
µ=0

γ µ←→∂µ ,
←→
∂µ =

−→
∂µ −

←−
∂µ

2
, a /∂b ≡ 1

2

3

∑
µ=0

(
aγµ ∂b

∂x µ −
∂a

∂x µ γµb
)

. (6)

2.3. The General Mass Matrix for Three Sterile Neutrinos

Though the number of right handed neutrinos is not fixed in principle, the case Ns = 3 has, if not
a practical value [8–11], at least an esthetic one: for each left handed neutrino there is a right handed
one, in the way it occurs for charged leptons and quarks. The three families of active left and sterile
right handed neutrinos have the flavor three vectors (in our case Ns = 3 one may be tempted to denote
(ν1R, ν2R, ν3R) as (νeR, νµR, ντR))

νf L ≡ νaL = (νeL, νµL, ντL)
T , νf R ≡ νsR = (ν1R, ν2R, ν3R)

T . (7)

With the combined left handed flavor vector

N f L = (νT
f L, ν c T

f R )T = (νT
aL, νc T

sR )T , (8)

the above mass Lagrangians combine into

Lm =
1
2

NT
f LC

† MDMN f L + h.c. (9)

In general, the mass matrix consists of four 3× 3 blocks,

MDM =

(
MM

L MDT

MD MM
R

)
. (10)

As stated, we take MM
L = 0. In the (“standard”, “pure” or “trivial”) Dirac limit also MM

R = 0.
For pseudo-Dirac neutrinos MM

R will be small with respect to MD, or, more precisely, small with respect
to the variation in the eigenvalues of MD. Though we consider general MD, we are inspired by the case
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of galaxy cluster lensing where it has nearly equal eigenvalues with central value 1.5–1.9 eV [8–11];
in Section 3.1 we shall show that the entries of MM

R then typically lie well below 1 meV.

2.4. Intermezzo: One Neutrino Family

In case of one family, the flavor vector is N f L = (νL, νc
R)

T . The entries of Equation (10) are
scalars, so

MDM =

(
0 m̄
m̄ µ̄

)
. (11)

Its eigenvalues are

λ1,2 =
1
2

µ̄∓
√

m̄2 +
1
4

µ̄2. (12)

The physical masses are their absolute values [12]. For µ̄ nonnegative, this leads to

m1 =

√
m̄2 +

1
4

µ̄2 − 1
2

µ̄, m2 =

√
m̄2 +

1
4

µ̄2 +
1
2

µ̄. (13)

The corresponding eigenvectors are

e(1) =
1√

m̄2 + m2
1

(
m̄
−m1

)
=

1√
m̄2 + m2

2

(
m2

−m̄

)
, e(2) =

1√
m̄2 + m2

1

(
m1

m̄

)
. (14)

For small µ̄ these are 45◦ rotations, i.e., maximal mixing of the active and sterile basis vectors.
Formally we may undo the rotations over 45◦, by considering

eã =
e(1) + e(2)√

2
≈
(

1
µ̄/4m̄

)
, es̃ =

e(2) − e(1)√
2

≈
(
−µ̄/4m̄

1

)
, (15)

where the approximations are to first order in µ̄, the pseudo Dirac regime. The first vector, eã, has
its main weight on the first component, so it is mainly active, which we indicate by the tilde on a.
The second one, es̃, is mainly sterile. But unless µ̄ = 0, the masses m1,2 are different, so that eã and es̃

are not eigenvectors and have no physical meaning. In fact, the mass squares have the difference

∆m2
21 = m2

2 −m2
1 = 2µ̄

√
m̄2 +

1
4

µ̄2 ≈ 2µ̄m̄. (16)

An initially active state,

|νa(0)〉 =
(

1
0

)
=

m̄e(1) + m1e(2)√
m̄2 + m2

1

, (17)

with momentum p will at time t have oscillated into

|νa(t)〉 =
m̄e(1)e− iE1t + m1e(2)e− iE2t√

m̄2 + m2
1

, (18)
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where E1,2 =
√

p2 + m2
1,2. The occurrence probability is

Paa(t) = |〈νa(0)|νa(t)〉|2 =
m̄4 + m4

1 + 2m̄2m2
1 cos ∆Et

(m̄2 + m2
1)

2
≈ 1 + cos ∆Et

2
, (19)

where for p� m̄

∆E ≡ E2 − E1 ≈
∆m2

21
2p

≈ µ̄m̄
p

. (20)

In practice there will not be a pure initial state but some wave packet [12]. For t � h̄/∆E the
cosine in Equation (19) will average out, so that the fraction of observable neutrinos is approximately 1

2 .
In plain terms: for t large enough, half of the neutrinos are sterile and thus unobservable. For the solar
neutrino problem the one-family approximation happens to work quite well [15] and the detection
rates are well established. Hence for the pseudo Dirac model it would mean that twice as many
neutrinos should be emitted as in the standard solar model. The corresponding doubling of heat
generated by nuclear reactions is ruled out by the measurements of the solar luminosity, so the case is
rarely discussed.

Only in the pure Dirac case, i.e., with Majorana mass µ̄ = 0, the oscillations will not take place,
since m1,2 = m̄ and ∆E = 0. When starting from an initial active state νa(0), it now equals eã, and this
can be taken as eigenstate. The sterile state will merely be a spectator, “just sitting there and wasting
its time”. This can be generalized to three families. If one would follow the Franciscan William of
Ockham (Occam’s razor), it would be preferable for active neutrinos to be Majorana rather than Dirac
with unobservable right handed partners.

The SνM differs from the neutrino sector in the SM by accounting for finite masses of its three
Majorana neutrinos. Below we discuss a “Diracian” setup in which the sterile fields become physical,
namely partly active, and the active fields partly sterile, even though the mass eigenstates have Dirac
signature in vacuum.

2.5. Diagonalization of the Dirac Mass Matrix

We return to the three family case and its total mass matrix Equation (10) with MM
L = 0. We notice

that any 3× 3 unitary matrix U can be decomposed as a product of five standard ones,

U = D′UDM, UDM = UDDM, UD = U1U2U3, DM = diag(e iη1 , e iη2 , e iη3). (21)

The diagonal matrix DM is called the Majorana phase matrix. Likewise we denote the diagonal
phase matrix D′ by diag(e iη′1 , e iη′2 , e iη′3) (for U in Equation (21) only five of the ηi and η′i are needed;
this can be seen by factoring out e iη1 from DM and e iη′1 from D′ and setting η1 → η1 − η′1. Both sides
of Equation (21) thus involve nine free parameters). The matrix UD is the product of

U1 =

1 0 0
0 c1 s1

0 −s1 c1

 , U2 =

 c2 0 s2e− iδ

0 1 0
−s2e iδ 0 c2

 , U3 =

 c3 s3 0
−s3 c3 0

0 0 1

 , (22)

where ci = cos θi, si = sin θi where the angles θi are termed in standard notation θ1 = θ23, θ2 = θ13 and
θ3 = θ12. The Dirac phase δ is also called weak CP violation phase.

The complex valued Dirac mass matrix MD can be diagonalized by two unitary matrices of the
form (21), viz. UL = D′LUD

L DM
L and UR = D′RUD

R DM
R . The result reads

MD = UT†
R MdU†

L, Md = diag(m̄1, m̄2, m̄3), (23)
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with the real positive m̄i (we denote Dirac mass eigenvalues by m̄i to distinguish them from the physical
masses mi, the eigenvalues in absolute value of the total mass matrix. Notice also that while the left
hand side of Equation (23) has nine complex or 18 real parameters, the right hand side has 9 + 3 + 9;
but since Md is diagonal, the diagonal matrices DM†

L = DM∗
L and DM∗

R only act as a product. Hence it
is allowed to fix DM

R before solving DM
L , see below Equation (28). The number of parameters available

for the diagonalization is then still 18). We identify UD
L with the PMNS mixing matrix UD = U1U2U3

and DM
L with the Majorana matrix DM = diag(e iη1 , e iη2 , e iη3) employed in literature.

To connect the transformation (23) to MDM, we introduce the 6× 6 unitary matrix

ULR =

(
UL 0
0 UR

)
, (24)

and define, using that Md T = Md since it is diagonal,

M = UT
LR MDMULR =

(
0 Md

Md MN

)
. (25)

New active and sterile fields naL = U†
Lνf L, nsR = UT

Rνf R, merged as

nL = (n1
aL, n2

aL, n3
aL, n1c

sR, n2c
sR, n3c

sR)
T , (26)

express (8) as

N f L = (νT
f L, ν c T

f R )T = ULRnL, nL = U†
LRN f L. (27)

With these steps the right handed Majorana mass matrix transforms into

MN = UT
R MM

R UR. (28)

Like MM
R , it is complex symmetric, but since UR was needed to diagonalize MD, it will in general

not result in a diagonal MN . With the decomposition UR = DRUD
R DM

R as in Equation (21), one can,
however, use the phases in DM

R to make the off-diagonal elements of MN real and nonnegative (While
the left hand side of Equation (23) has nine complex or 18 real parameters, the right hand side has
9 + 3 + 9; but since Md is diagonal, the diagonal matrices DM†

L = DM∗
L and DM∗

R only act as a product.
Hence it is allowed to fix DM

R before solving DM
L , see below Equation (28). The number of parameters

available for the diagonalization is then still 18. Moreover, for n lepton families there are 1
2 n(n− 1)

independent complex valued off-diagonal elements and n Majorana phases, so making all off-diagonal
elements real and nonnegative is possible for n = 3 or 2).

We denote the diagonal elements of the Majorana matrix MN by µ̄i, that may still be complex, and
the real positive off-diagonal elements by µi. The right handed Majorana mass matrix MN then takes
the form

MN =

µ̄1 µ3 µ2

µ3 µ̄2 µ1

µ2 µ1 µ̄3

 , (29)
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so that the total mass matrixM reads

M =



0 0 0 m̄1 0 0
0 0 0 0 m̄2 0
0 0 0 0 0 m̄3

m̄1 0 0 µ̄1 µ3 µ2

0 m̄2 0 µ3 µ̄2 µ1

0 0 m̄3 µ2 µ1 µ̄3


. (30)

Except in the pure Dirac limit where µi = µ̄i = 0, the nL are not rotations of mass eigenstates.

2.6. Diracian Limit

For reasons explained above, we wish to achieve pairwise degeneracies in the masses.
The standard Dirac limit, just taking µi and µ̄i → 0, is a trivial way to achieve this; we shall, however,
need finite values for them and design the more subtle “Diracian” limit.

To start, we notice that the eigenvalues of the mass matrix (29) follow from det(M− λI) =

0, where

det(M− λI) = (31)

(λ2−m̄2
1)(λ

2−m̄2
2)(λ

2−m̄2
3)− (µ̄1+µ̄2+µ̄3)λ

5 − (µ2
1+µ2

2+µ2
3−µ̄1µ̄2−µ̄2µ̄3−µ̄3µ̄1)λ

4

+[m̄2
1(µ̄2+µ̄3)+m̄2

2(µ̄3+µ̄1)+m̄2
3(µ̄1+µ̄2)+µ2

1µ̄1+µ2
2µ̄2+µ2

3µ̄3−2µ1µ2µ3−µ̄1µ̄2µ̄3]λ
3

+[m̄2
1(µ

2
1−µ̄2µ̄3)+m̄2

2(µ
2
2−µ̄3µ̄1)+m̄2

3(µ
2
3−µ̄1µ̄2)]λ

2−(m̄2
1m̄2

2µ̄3+m̄2
2m̄2

3µ̄1+m̄2
3m̄2

1µ̄2)λ.

The criterion to get pairwise degeneracies in the eigenvalues (up to signs), is simply that the odd
powers in λ vanish. Let us denote

∆̄1 = m̄2
2 − m̄2

3, ∆̄2 = m̄2
3 − m̄2

1, ∆̄3 = m̄2
1 − m̄2

2,

M̄1 =
m̄2m̄3

m̄1
, M̄2 =

m̄3m̄1

m̄2
, M̄3 =

m̄1m̄2

m̄3
, (32)

and express the µ̄i in a common dimensionless parameter ū through

µ̄i =
∆̄i

M̄i
ū. (33)

The relations ∑i m̄2
i ∆̄i = ∑i ∆̄i = 0 make the coefficients of λ5 and λ1 of Equation (31) vanish,

respectively. To condense further notation, we express the µi into dimensionless non-negative
parameters ui,

µi =
√
|∆̄1∆̄2∆̄3|

ui

m̄i
√
|∆̄i|

. (34)

For normal ordering of the m̄i (notice that these are Dirac masses, not the physical masses),
m̄1 < m̄2 < m̄3 implies ∆̄1 < 0, ∆̄2 > 0, ∆̄3 < 0, hence ∆̄1∆̄2∆̄3 > 0; this is also the case for the inverted
ordering m̄3 < m̄1 < m̄2 whence ∆̄1 > 0, ∆̄2 < 0, ∆̄3 < 0. It thus holds that

µ1µ2µ3 =
∆̄1∆̄2∆̄3

m̄1m̄2m̄3
u1u2u3. (35)

Equating the λ3 coefficient of Equation (31) to zero requires

ū3 − (1 + u2)ū + 2u1u2u3 = 0, u2 ≡ ∆̄1

|∆̄1|
u2

1 +
∆̄2

|∆̄2|
u2

2 +
∆̄3

|∆̄3|
u2

3 =
∆̄1

|∆̄1|
(
u2

1 − u2
2
)
− u2

3. (36)
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This cubic equation has the solutions for n = −1, 0, 1, and positive or negative u2,

ū =
− i√

3

[
e2πin/3 u1/3

+ − e−2πin/3(1 + u2) u−1/3
+

]
, (37)

u+ =
√

D+ i
√

27u1u2u3, D = (1+u2)3−27u2
1u2

2u2
3.

We restrict ourselves to real solutions; there is always one. Then the matrixM is real-valued.
All solutions are real when D > 0, which occurs in particular when the ui are small, i.e., in the
pseudo-Dirac case. Then there exist the large solutions n = ±1 with ū ≈ ±1, which in both cases leads
to the eigenvalues λ±i ≈ ±Mi for i = 1, 2, 3. For small ui the n = 0 solution has a small ū and µ̄i, viz.

ū ≈ 2u1u2u3 = 2
µ1µ2µ3

∆̄1∆̄2∆̄3
m̄1m̄2m̄3, µ̄i ≈ 2

µ1µ2µ3

∆̄1∆̄2∆̄3
m̄2

i ∆̄i = 2u1u2u3
∆̄i
Mi

. (38)

The Diracian limit, defined by Equations (33), (34) and (37), reduces Equation (31) to a cubic
polynomial in λ2,

(λ2 − m̄2
1)(λ

2 − m̄2
2)(λ

2 − m̄2
3) (39)

+λ2∆̄1∆̄2∆̄3

[ (λ2 − m̄2
1)(ū

2 − u2
1)

m̄2
1∆̄1

+
(λ2 − m̄2

2)(ū
2 − u2

2)

m̄2
2∆̄2

+
(λ2 − m̄2

3)(ū
2 − u2

3)

m̄2
3∆̄3

]
= 0.

Its analytical roots are intricate, but they are easily calculated numerically. Denoting them as m2
i ,

the squares of the physical masses, the eigenvalues ofM are λ2i−1 = −mi and λ2i = +mi > 0 for
i = 1, 2, 3. From detM = −m̄2

1m̄2
2m̄2

3 it holds that m1m2m3 = m̄1m̄2m̄3. The eigenvectors are set by

6

∑
k=1
Mjke(i)k = λie

(i)
j , (i = 1, · · · , 6). (40)

and they are real and orthonormal. They can be expressed as

e(2i−1) =
e(iã) − e(is̃)√

2
, e(2i) =

e(iã) + e(is̃)√
2

, (41)

with orthonormal e(iã) and e(is̃) for i = 1, 2, 3. For small µi and µ̄i the e(iã) and e(is̃) read to first order

e(1ã) =
(

1, 0, 0,
µ̄1

4m̄1
, m̄1

µ3

∆̄3
,−m̄1

µ2

∆̄2

)T
, e(1s̃) =

(
− µ̄1

4m̄1
, m̄2

µ3

∆̄3
,−m̄3

µ2

∆̄2
, 1, 0, 0

)T
,

e(2ã) =
(

0, 1, 0,−m̄2
µ3

∆̄3
,

µ̄2

4m̄2
, m̄2

µ1

∆̄1

)T
, e(2s̃) =

(
− m̄1

µ3

∆̄3
,− µ̄2

4m̄2
, m̄3

µ1

∆̄1
, 0, 1, 0

)T
, (42)

e(3ã) =
(

0, 0, 1, m̄3
µ2

∆̄2
,−m̄3

µ1

∆̄1
,

µ̄3

4m̄3

)T
, e(3s̃) =

(
m̄1

µ2

∆̄2
,−m̄2

µ1

∆̄1
,− µ̄3

4m̄3
, 0, 0, 1

)T
.

Notice that the i and i + 3 components of e(iã) and e(is̃) stem with the one-family case Equation (15).
With the first three components of these vectors relating to active neutrinos and the last three to

sterile ones, it is seen that for small µi and µ̄i the e(iã) are mainly active and the e(is̃) mainly sterile,
which we indicate by the tildes. The e(2i−1) and e(2i) are 45◦ rotations of the e(iã) and e(is̃), which
is maximal mixing. In the standard Dirac limit, it is customary to work with Dirac states and not
with Majorana states. Likewise, in our Diracian limit the mass degeneracies allow the rotations
to be circumvented by working with the e(iã) and e(is̃) themselves. Indeed, there holds the exact
decomposition
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M =
6

∑
i=1

λie(i)e(i) T =
3

∑
i=1

mi

[
e(iã)e(is̃) T + e(is̃)e(iã) T

]
. (43)

These steps allow us to retrieve the standard Dirac expressions in the limit where the
Majorana masses µi, µ̄i vanish, whence the e(iã) and e(is̃) become purely active and purely sterile
states, respectively.

For neutrino oscillation probabilities in vacuum (see Sections 2.4 and 3.2) one needs the
eigenvalues m2

i and eigenvectors e(iã) and e(is̃) ofM2,

M2 =
3

∑
i=1

m2
i

[
e(iã)e(iã) T + e(is̃)e(is̃) T

]
. (44)

In terms of nL defined above Equation (27) and related there to the flavor states (8), the fields for
the mass eigenstates are

νi
ãL =

6

∑
j=1

e(iã)j njL, νi
s̃R =

6

∑
j=1

e(is̃)j n c
jL, (i = 1, 2, 3). (45)

Here j = 1, 2, 3 label active fields and j = 4, 5, 6 sterile ones. Hence the fields νi
ãL annihilate

chiral left handed, mainly active neutrinos and create similar right handed antineutrinos, while the νi
s̃R

annihilate chiral right handed, mainly sterile neutrinos and create similar left handed antineutrinos.
The mass term of the 6 Majorana fields now takes the form of 3 Dirac terms,

Lm =
1
2

3

∑
i=1

mi

[
νi T

ãLC†νi c
s̃R + (νi c

s̃R)
TC†νi

ãL

]
+ h.c. =

1
2

3

∑
i=1

mi

(
νi

ãL
T

νi
s̃R

T
− νi

s̃Rνi
ãL

)
+ h.c.

= −
3

∑
i=1

mi

(
νi

s̃Rνi
ãL + νi

ãLνi
s̃R

)
= −

3

∑
i=1

miνiνi, (46)

because fermion fields anticommute and left and right handed fields are orthogonal. The here
introduced Dirac fields,

νi = νi
ãL + νi

s̃R, (i = 1, 2, 3), (47)

combine left and right handed chiral fields, as usual. They are the mass eigenstates. In this basis the
Dirac–Majorana neutrino Lagrangian is a sum of Dirac terms,

L =
3

∑
i=1

(
νi i
←→
/∂ νi −miνiνi

)
. (48)

2.7. Charged and Neutral Current

Neutrinos also enter the currents coupled to the W and Z gauge bosons, which are part of the
covariant derivatives in the Lagrangian, see Equation (A11) below. The W boson couples to the charged
weak current. On the flavor basis it reads

LCC = − g
2
√

2

[
Wµ Jµ †

CC + W†
µ J µ

CC

]
, Jµ

CC = 2 ∑
α=e,µ,τ

ναLγ µ`αL, Jµ †
CC = 2 ∑

α=e,µ,τ
`αLγ µναL, (49)
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with g the weak coupling constant. The neutral weak current reads on the flavor basis

LNC = − g
2 cos θw

Zµ J µ
NC, J µ

NC = ∑
α=e,µ,τ

ναLγ µναL, (50)

with θw the weak or Weinberg angle.
To express these in the mass eigenstates, we define A and S as matrices consisting of the active

components of the 6-component eigenvectors e(iã) and e(is̃), respectively,

Aji = e(iã)j , Sji = e(is̃)j , (j, i = 1, 2, 3), (51)

and, likewise, As and S s for the sterile components

As
ji = e(iã)j+3, S s

ji = e(is̃)j+3, (j, i = 1, 2, 3). (52)

From (42) we read off that for small µi and µ̄i

Aji ≈ δij, Sji ≈ −δij
µ̄i

4m̄i
+

3

∑
k=1

εijkm̄j
µk

∆̄k
, (53)

S s
ji ≈ δij, As

ji ≈ δij
µ̄i

4m̄i
+

3

∑
k=1

εijkm̄i
µk

∆̄k
. (54)

From the orthonormality of the eigenvectors it follows that the real valued 3× 3 matrices A and
S satisfy the unitarity relation

AAT + SST = 13×3, (55)

while ATA+ STS 6= 13×3.
From Equations (7), (8), (21), (22), (24) and (27), and denoting DM ≡ DM

L , we have νf L =

DLUDDMnaL. As shown below Equation (50), the diagonal phase matrix D′L can be absorbed in the
fields. Inverting Equation (45) leaves Equation (48) invariant and expresses the flavor eigenstates
as superpositions of mass eigenstates νmL = (νãL, ν c

s̃R). In vector notation, and using νc
s̃R = −νT

s̃RC†,
one has

νf L = UDM(A νãL + S ν c
s̃R) = A νãL + S ν c

s̃R ,

νf L = (νãLAT + ν c
s̃RS

T)UDM† = νãL A† + ν c
s̃RS†, (56)

= (νãLAT − νT
s̃RC†ST)UDM† = νãL A† − νT

s̃RC†S†.

Here UDM = UDDM, with UD is the standard PMNS matrix, see (21), while DM =

diag(e iη1 , e iη2 , e iη3) is the Majorana matrix of the three-neutrino problem; its ηi are Dirac phases
now (a word on nomenclature: the Majorana phases in the matrix DM stem from the 3 + 0 SνM,
without sterile neutrinos. While they become physical Dirac phases in the 3 + 3 Dirac–Majorana
neutrino standard model (DMνSM), there appear no true 3 + 3 Majorana phases, so we propose to
keep this name for them. Hence the DMνSM has three physical phases: one Dirac and two “Majorana”
phases. They all appear in the CP-invariance breaking part of the neutrino oscillation probabilities, see
Equation (81). We also introduced

A = UDMA, S = UDMS , AA† + SS† = 13×3. (57)
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The sterile field ν c
sR = (ν1 c

sR , ν2 c
sR , ν3 c

sR) similar to (56) reads

ν c
sR = D′RUD

R DM
R (Asνã + S sν c

s̃ ). (58)

The only current knowledge of the involved matrix elements lies in (54).
The flavor eigenstates can also be written as single sums over mass eigenstates,

ναL =
6

∑
i=1

Uαiν
i
mL, νf L = UνmL, νmL = (ν1

ãL, ν2
ãL, ν3

ãL, ν1 c
s̃R , ν2 c

s̃R , ν3 c
s̃R)

T , (59)

with the 3× 6 PMNS matrix U having elements

Uα,i = Aαi = (UDMA)αi, Uα,i+3 = Sαi = (UDMS)αi, (UU†)αβ = δαβ, (α, β = 1, 2, 3). (60)

the latter deriving from (55), while U†U 6= 16×6, because U represents the three active rows of a unitary
6× 6 matrix which also involves As and S s. Hence the GIM theorem that J µ

NC has the same form on
flavor and mass basis, does not hold [12].

Inserted in the currents the relations (56) yield

Jµ
CC = 2νmL U†γ µ`L = 2(νãL A† + ν c

s̃RS†)γ µ`L = 2(νãLAT − νT
s̃RC†ST)UDM†γ µ`L (61a)

Jµ †
CC = 2`Lγ µUνmL = 2`Lγ µ(AνãL + Sνc

s̃R) = 2`Lγ µUDM(AνãL + Sνc
s̃R), (61b)

J µ
NC = νãLγ µATA νãL − νs̃Rγ µSTSνs̃R − νT

s̃RC†γ µSTA νãL − ν†
ãLγµ†CATSν†T

s̃R . (61c)

2.8. Lepton Number for Sterile Neutrinos

There is an ambiguity in defining the lepton number of the sterile neutrinos. The lepton number
of neutrinos is investigated by making the transformation

νaL → e iLaφνaL, νsR → e iLsφνsR, (62)

This leaves the kinetic terms invariant and for the standard choice Ls = La = 1 also the Dirac
mass terms (2). Only the Majorana mass terms (1) and (3) will vary by factors e±2 iφ: they violate
lepton number conservation by ∆L = ±2. This approach connects the lepton number La = 1 of active
neutrinos also to sterile neutrinos, hence Lν̄s = −1 for sterile antineutrinos (charge conjugated sterile
ones). This assigns lepton number +1 to the components j = 1, 2, 3 of N f L of Equation (8) and nL
of Equation (26), but −1 to the components j = 4, 5, 6. Then the mixing (45), or its reverse (56), (58),
enforced by the nonvanishing right handed Majorana mass matrix, makes it impossible to consistently
connect a lepton number to the particles connected to the mass eigenstates νi

ã and νi
s̃.

The opposite choice La = 1, Ls = −1 circumvents this problem for general models with active and
sterile neutrinos. According to (8), (45) and (56) the lepton number La = 1 of νa particles is consistent
with Lã = 1 of a νã particle and Ls̃ = −1 of νs̃ particles. This choice is henceforward consistent
with (58). The benefit of this convention is that in pion and neutron decay both channels π− → µ + ν̄ãL,
π− → µ + νs̃R, and n→ p + e + ν̄ẽ, n→ p + e + νs̃, respectively, satisfy lepton number conservation.

The minor price to pay is that now both the Dirac mass term and the Majorana terms violate
lepton number conservation by two units, so that the unsolvable problem of lepton number violation
remains unsolved. Indeed, as we shall discuss below, the Majorana mass terms still allow for
neutrinoless double β decay, where a nucleus decays by emitting two electrons (or two positrons) but
no (anti)neutrinos.
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3. Applications

3.1. Estimates for the Dirac and Majorana Masses

For later use we present the eigenvalues up to third order in µ1,2,3 and µ̄1,2,3, viz.

λ±1 = ±m̄1

(
1−

µ2
2

2∆̄2
+

µ2
3

2∆̄3

)
+

µ̄1

2
−

m̄2
1µ1µ2µ3

∆̄2∆̄3
,

λ±2 = ±m̄2

(
1−

µ2
3

2∆̄3
+

µ2
1

2∆̄1

)
+

µ̄2

2
−

m̄2
2µ1µ2µ3

∆̄3∆̄1
, (63)

λ±3 = ±m̄3

(
1−

µ2
1

2∆̄1
+

µ2
2

2∆̄2

)
+

µ̄3

2
−

m̄2
3µ1µ2µ3

∆̄1∆̄2
.

Due to Equation (38) the last terms cancel, to make the mi = |λ±i | pairwise degenerate. Employing
the averages m̄2 = 1

3 (m̄
2
1 + m̄2

2 + m̄2
3) and m2 = 1

3 (m
2
1 + m2

2 + m2
3), the mass-squared differences

∆m2
ij ≡ m2

i −m2
j become approximately,

∆1 ≡ ∆m2
23 = ∆̄1 + m̄2

(2µ2
1

∆̄1
−

µ2
2

∆̄2
−

µ2
3

∆̄3

)
, ∆2 ≡ ∆m2

31 = ∆̄2 + m̄2
(2µ2

2
∆̄2
−

µ2
3

∆̄3
−

µ2
1

∆̄1

)
, (64a,b)

∆3 ≡ ∆m2
12 = ∆̄3 + m̄2

(2µ2
3

∆̄3
−

µ2
1

∆̄1
−

µ2
2

∆̄2

)
, (64c)

provided that µ2
i � |∆̄i|. It holds that −∆3 = ∆m2

sol = (7.53± 0.18) 10−5eV2 [16]. Normal ordering
m1 < m2 < m3 is connected to −∆1 = ∆m2

atm = (2.44± 0.06) 10−3eV2 [16] and ∆2 = −∆1 − ∆3 > 0,
while inverse ordering m3 < m1 < m2 leads to ∆1 = ∆m2

atm and ∆2 < 0. Cluster lensing puts forward
a value m̄ ∼ 1.5–1.9 eV for the absolute scale of the neutrino masses [8–11].

With εijk the Levi-Civita symbol, there hold the exact relations

m̄2
i = m̄2 +

1
3

3

∑
j,k=1

εijk∆̄k, m2
i = m2 +

1
3

3

∑
j,k=1

εijk∆k. (65)

Let us investigate Equation (64) for normal ordering. The effects of the Majorana masses are
anticipated to occur at the level of ∆m2

sol. We fix m̄2 and express m̄1,3 in d1,3 as

m̄2
1 = m̄2

2 − d3∆m2
sol, m̄2

3 = m̄2
2 + ∆m2

atm − d1∆m2
sol, (66)

so that

−∆̄1 = ∆m2
atm − d1∆m2

sol, −∆̄3 = d3∆m2
sol. (67)

With m̄ ≈ m̄2 we set also

Θ3 =
µ3m̄

d3∆m2
sol

=
∆m2

atm
∆m2

sol

u3

d3
, µ3 = d3Θ3

∆m2
sol

m̄
, u3 = d3Θ3

∆m2
sol

∆m2
atm

. (68)
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With d1,3 and Θ3 fixed we can determine µ1,2 or, equivalently, u1,2. Imposing ∆m2
sol � ∆m2

atm ≪
m̄2, we deduce from Equation (64c)and from the difference of (64a) and (64b) that

u2
1 =

2d1 − 5(1− d3)

12d3
+ Θ2

3, µ1 =
√
|∆̄2∆̄3|

u1

m̄1
,

u2
2 =

2d1 + 7(1− d3)

12d3
−Θ2

3, µ2 =
√
|∆̄3∆̄1|

u2

m̄2
, (69)

u2 = u2
2 − u2

1 − u2
3 =

1− d3

d3
− 2Θ2

3 − d2
3Θ2

3

( ∆m2
sol

∆m2
atm

)2
.

These are expressions of order unity and exact to leading order in d1, d3 − 1 and Θ3. Hence the

typical scale is µ1,2 ∼
√

∆m2
atm∆m2

sol/m̄ = 4.3 10−4eV2/m̄ and µ3 ∼ 8 10−5eV2/m̄.
In the eigenvectors (42) the coefficients

µ̄1

4m̄
≈ − µ̄2

4m̄
≈ −u1u2u3

∆m2
atm

2m̄2 ,
µ̄3

4m̄
≈ u1u2u3

∆m2
sol

2m̄2 , (70)

are typically rather small. Hence the mixing matrix S will essentially involve elements ±Θ1,2,3

Θ1,2 =
m̄µ1,2

|∆1,2|
≈ u1,2

√
∆m2

sol
∆m2

atm
= 0.18u1,2, Θ3 ≈ 32

u3

d3
. (71)

with Θ3 introduced in (68). If one of the Θi dominates but is still small, it can be seen as a mixing angle.
In particular, Θ3 ∼ 0.1 is possible, which is relevant for the ANITA events to be discussed below.

3.2. Neutrino Oscillations in Vacuum

We consider neutrino oscillations in the plane wave approximation. See Ref. [17] for an excellent
discussion of its merits. In the notation (59), (60) an initially pure active state vector reads

|ναL(0)〉 =
6

∑
i=1

U∗αi|νi
mL〉. (72)

It evolves after time t into

|ναL(t)〉 =
6

∑
i=1

U∗αie
− iφi |νi

mL〉, (73)

with the Lorentz invariant phase at |r| ≈ ct given by

φi =
Eit− p·r

h̄
≈
(√

1 +
m2

i c2

p2 − 1
) pct

h̄
≈

m2
i c3t

2h̄p
. (74)

This result can be motivated for a wave packet [17]. The amplitude for transition into active state
β is

〈νβL|ναL(t)〉 =
6

∑
i=1

UβiU∗αie
− iφi =

3

∑
i,k,l=1

UD
βkUD∗

αl (AkiAli + SkiSli)e i(ηk−ηl)− iφi . (75)

where we used that φ2i−1 = φ2i. The transition probability after time t may be expressed as two terms,

PDM
να→νβ

= |〈νβL|ναL(t)〉|2 = PD
να→νβ

+ PM
να→νβ

, (76)
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where the first one

PD
να→νβ

= δαβ −
3

∑
i,j=1

UD
βiU

D∗
αi UD∗

βj UD
αj(1− e iφj− iφi ), (77)

represents the standard “Dirac” result and where the Majorana masses add the “Majorana” expression

PM
να→νβ

=
3

∑
i,j,k,l,m,n=1

UD
βkUD∗

αl UD∗
βmUD

αne i(ηk−ηl−ηm+ηn)(e iφj− iφi − 1)

× [(AkiAli + SkiSli)(AmjAnj + SmjSnj)− δkiδliδmjδnj]. (78)

The fact that ∑3
β=1 PM

να→νβ
≤ 0 reflects oscillation into sterile states. While the Majorana phases ηi

cancel in PD
να→νβ

as usual, they remain present in PM
να→νβ

. This occurs in the DMνSM because they are

upgraded to physical Dirac phases (a word on nomenclature: the Majorana phases in the matrix DM

stem from the 3 + 0 SνM, without sterile neutrinos. While they become physical Dirac phases in the 3
+ 3 DMνSM, there appear no true 3 + 3 Majorana phases, so we propose to keep this name for them.
Hence the DMνSM has three physical phases: one Dirac and two “Majorana” phases. They all appear
in the CP-invariance breaking part of the neutrino oscillation probabilities, see Equation (81)). PDM

να→νβ

has the schematic δ-dependence 1 + cos δ + sin δ + cos 2δ + sin 2δ, but the cos 2δ, sin 2δ terms are
turned into cos δ, sin δ terms by taking η3 → η′3 = δ + η3. This is equivalent to replace UD of (21) by

ŨD = U1U2U3 × diag(1, 1, e iδ) =

 c2c3 c2s3 s2

−c1s3 − s1s2c3e iδ c1c3 − s1s2s3e iδ s1c2e iδ

s1s3 − c1s2c3e iδ −s1c3 − c1s2s3e iδ c1c2e iδ

 , (79)

wherein δ enters only in the schematic form 1 + e iδ. Absolute Majorana phases have no physical
meaning; indeed, the expression (78) involves them only through their differences. The CP
violation effect,

∆PCP
να↔νβ

= PDM
να→νβ

− PDM
ν̄α→ν̄β

= PDM
να→νβ

− PDM
νβ→να

, (80)

can be read off from the above by switching α↔ β. The terms with sin(2ηi− ηj− ηk), cos(2ηi− ηj− ηk)

with j = k and j 6= k from (78) cancel, leaving the dependence on δ, the ηi and t of the form

∆PCP
να↔νβ

(t) =
3

∑
k=1

[
dk sin δ +

3

∑
i 6=j=1

dijk sin(δ + ηi − ηj) +
3

∑
i>j=1

cijk sin(ηi − ηj)
]

sin
∆kt
2q

. (81)

Choosing η1 = 0 this vanishes only for the trivial values δ, η2, η,3 equal to 0 or π. It confirms that
in the DMνSM two of the Majorana phases ηi of the SνM are physical Dirac phases.

3.3. Neutrino Oscillations in Matter

Relativistic neutrinos have energy Ei = (q2 + m2
i )

1/2 ≈ q + m2
i /2q. Neutrino oscillations in

vacuum are ruled by the Hamiltonian H0 = E, which reads on the flavor basis

(H0)αβ ≈
6

∑
i=1

Uαi
(
q +

m2
i

2q
)
|νi

mL〉〈νi
mL|U†

iβ. (82)
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The q term leads to qδαβ and can be omitted, as it plays no role for the eigenfunctions.
For propagation in matter one adds the matter potential. The charged and neutral currents induce the
scalar potentials

VCC =
√

2GFne, VNC = −1
2

√
2GFnn, (83)

involving the electron number density ne = ne− − ne+ and the neutron number density nn, and yielding

Ve = VCC + VNC, Vµ = Vτ = VNC, (84)

The potential of the active neutrinos is diagonal on the flavor basis, while the sterile ones do not
sense any. This results in the total matter potential on the flavor basis

Vm = diag(Ve, Vµ, Vτ , 0, 0, 0). (85)

From Equation (25) and its real, symmetric nature it follows that

MDM = U∗LRMU†
LR, MDM † = ULRMUT

LR. (86)

Hence the m2
i , the eigenvalues ofM2, arise from

MDM † MDM = ULR M2 U†
LR. (87)

The total matter Hamiltonian therefore reads on the flavor basis

Hm =
1
2q

MDM † MDM + Vm. (88)

Let us set Vm = 2qU†
LRVmULR = (V a

m,V s
m) with V s

m = diag(0, 0, 0) and

V a
m = 2q U†

L Va
m UL, Va

m = diag(Ve, Vµ, Vτ). (89)

The factor D′L in the decomposition (21) for UL, also drops out from V a
m since Va

m is diagonal,
hence it can be totally omitted. Equation (88) can be expressed as

Hm = ULRHm U†
LR, Hm =

M2 + Vm

2q
=

1
2q

(
Md 2 + V a

m Md MN

MN Md Md 2 + MN 2

)
. (90)

First solving the eigenmodes ofHm and then going to the flavor basis allows us to evaluate the
effects of oscillations on the active neutrinos without having knowledge of the undetermined matrix
UR. The eigenfunctions do not alter upon subtracting (m̄2/2q) 16×6 fromHm, after which all elements
are small.

Inside matter the Diracian properties are lost, there are just six Majorana states with different
masses. While the neutral current potential VNC can be omitted in the limit MN → 0, this is not allowed
in general. In matter one has real potentials Vα, α = e, µ, τ. Due to VCC the matrix V a

m is complex
hermitian. The hermitianHm has six different positive eigenvalues but complex valued eigenmodes.

Inside the Sun, neutrino transport is dominated by a mostly electron-neutrino mode [15]; in the 3
+ 3 model this is represented by two nearly degenerate, nearly maximally mixed Majorana modes. The
resonance condition in the standard solar model now splits up as a condition for each of them.

The so-called solar abundance problem stems from the inconsistency between the standard solar
model parameterized by the best description of the photosphere and the one parameterized to optimize
agreement with helioseismic data sensitive to interior composition [18]. The biggest deviations in the
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solar composition are of relative order 1% and occur at ∼ 0.7R�. Our modified resonance conditions
offer hope for an improved description of the data.

3.4. Pion Decay

One of the simplest elementary particle reactions is

π− →W− → µ + ν̄µR. (91)

It describes a negatively charged π− particle, π− = (dū), consisting of a down quark
(charge −e/3) and an anti-up quark (charge −2e/3), decaying into a W− boson (charge −e), which
in its turn decays into a muon (charge −e) and an muon-antineutrino (charge 0). Related reactions
are π− → e + ν̄e, π+ → µ+ + νµ and π+ → e+ + νe. In the DMνSM, the current Jµ †

CC = 2`Lγ µUνmL =

2`Lγ µ(AνãL + Sνc
s̃R) replaces Equation (91) by decays with any of the 6 mass eigenstates (ν i

m)R emitted.
They can be grouped as

π− →W− → µ + ν̄i
ãR, (i = 1, 2, 3), π− →W− → µ + νi−3

s̃R (i = 4, 5, 6). (92)

The νi
ãL and the charge conjugated νi c

s̃R fields have identical chiral structure (up to a phase factor,
see Ref. [12], Equations (2.139) vs. (2.356)), differing only by their creation and annihilation operators.
Hence all decay channels involve the standard chiral factors, and a new factor, the sum over final
neutrino states, ∑6

i=1 |Uµi|2 = ∑3
i=1 |(UDDMA)µi|2 + ∑3

i=1 |(UDDMS)µi|2. It equals(
UU†)

αβ
=
(
UDDM(AAT + SST)DM†UD†)

αβ
= δαβ, (93)

for α = β = µ. (In this equality we employed Equation (55)). So charged pions decay in the DMνSM
at the same rate as in the SM. Neutral pion decay does not involve neutrinos, so it is also not modified.

3.5. Neutron Decay

A neutron n = (ddu) consists of two down quarks and one up quark, and a proton p = (duu)
of one down and two up quarks. Neutron decay n → p + e + ν̄e involves a transition from a down
quark to an up quark producing a virtual W− boson, which decays into an electron and an electron
antineutrino. As coded in the charged current Jµ †

CC of (49), it occurs in the DMνSM in two channels,
n→ p + e + ν̄ã and n→ p + e + νs̃. Both decay channels involve the standard chiral factors, and a new
factor, the sum over final neutrino states ∑i |(UDDMA)ei|2 + ∑i |(UDDMS)ei|2. This is the α = β = e
element of Equation (93), so it is equal to unity. Hence the neutron lifetime in the DMνSM stems with
the one in the SνM.

The main decay channel is n → p + e + ν̄ã. With our convention Lνs̃ = −1, also the channel
n→ p + e + νs̃ conserves the lepton number. The latter occurs at a slower rate due to the small term
SST in (93). We could not convince ourselves that it would be ineffective in beam experiments and
hence be capable to explain the neutron decay anomaly between beam and bottle measurements [19].

3.6. Muon Decay

With the neutron decay going into two channels, muon decay µ→ e + ν̄eR + νµL goes into four,

µ→ e + ν̄ãR + νãL, µ→ e + ν̄ãR + ν̄s̃L, µ→ e + νs̃R + νãL, µ→ e + νs̃R + ν̄s̃L, (94)

with rates of leading schematic order 1, SST , SST and (SST)2, respectively, adding up to the SM result.

3.7. Neutrinoless Double β-Decay

In a simultaneous double neutron decay (double β-decay) the emission of two electrons involves
the schematic neutrino terms νi 2

ãL + νi c 2
s̃R + νi

ãLνi c
s̃R, corresponding to the emission of two mostly active
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antineutrinos, two mostly sterile neutrinos, or one of each. With Lνã = 1 and Lνs̃ = −1, all three
channels conserve the lepton number.

In the standard neutrino model also neutrinoless double β-decay is possible. Then only the νi 2
ãL

term occurs, subject to the Majorana condition νi c
ãL = νi

ãL; with Aij → δij and Sij → 0, it yields an
amplitude proportional to mee = ∑3

i=1 UD 2
ei e2 iηi mi for small mi. The GERDA search puts a bound

|mee| ≤ 0.15–0.33 eV [20]. Does this rule out the DMνSM for m ∼ 2 eV? Not, as we show now.
In our situation with Diracian neutrinos neither νi 2

ãL nor νi c 2
s̃R contributes, but neutrinoless double-β

decay does arise from the νãLν c
s̃R terms. All spinor terms are again as in the SνM. The only change

occurs in the effective mass, which now reads

mee = [AmST + SmAT ]ee = [UDDM(AmST + SmAT)DMUD T ]ee, m = diag(m1, m2, m3). (95)

It involves cancellations, since S is nearly asymmetric while A and m/m are close to the identity
matrix. But the cancellations are maximal. From the definitions (51) we can go back to the six
eigenvectors e(i) of Equations (40) and (41). Recalling that λ2i = mi and λ2i−1 = −mi, (i = 1, 2, 3),
it follows that

(AmST + SmAT)jk =
6

∑
i=1

λiei
je

i
k =Mjk. (96)

From (30) it is seen that Mjk = 0 for j, k = 1, 2, 3, because we neglected the left handed
Majorana mass matrix MM

L . In general mee = MDM
ee = (MM

L )ee [13]. Hence mee = 0 for this leading
order diagram.

Nevertheless, neutrinoless double β–decay, involving lepton number violation ∆ L = 2, is not
forbidden in the DMνSM. It occurs in the m3

i /q2 correction to the mi in (95) stemming from the
internal propagator mi/(q2 −m2

i ) = mi/q2 + m3
i /q4 + · · · . But the suppression factor m2

i /q2 makes
its measurement impractical for realistic q ∼ MeV−GeV. Loop effects may fare better, but are also
tiny. If a finite mee is established, it points at new high-energy physics.

In conclusion, the non-detection of neutrinoless double β-decay is compatible with the DMνSM.

3.8. Small Twin-Oscillation

If the degeneracy of the solar twin modes is slightly lifted by non-cancellation of the last two
terms in each line of Equation (63), one gets

∆m̄2
1 ≡ (λ+

1 )
2 − (λ−1 )

2 ≈ m̄µ̄1 −
2m̄3µ1µ2µ3

∆̄2∆̄3
. (97)

From the standard solar model we know that oscillations should not occur underway to Earth [2],
so that |∆m̄2

1| . 10−12 eV2. For the supernova SN1987A at distance of 51.4 kpc the absence of
twin-oscillations even implies that |∆m̄2

1| . 10−22 eV2; the alternative is that twin-oscillation did take
place, and only half of the emitted neutrinos arriving here on Earth were active and could be detected.
The implied doubling of power emitted in neutrinos then requires an adjustment of the SN1987A
explosion model.

The similarly defined ∆m̄2
2 and ∆m̄2

3 may be larger. Either of them may describe the MiniBooNE
anomaly [5] (disputed by MINOS [6] and still debated [7]) with ∆m2 ≈ 0.04 eV2. But a more elegant
approach hereto is to keep the 3 Diracian neutrinos and add a fourth sterile one.

3.9. Sterile Neutrino Creation in the Early Universe

The creation of sterile neutrinos in cosmology is an important process based on loss of coherence
in oscillation processes. It is well studied, see e.g., [14], and is important when sterile neutrinos are to
make up half of the cluster dark matter [8–11].
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The charged currents in Equations (61a,b) allow the creation of sterile neutrinos out of active ones
via e+ + νe → W+ → e+ + ν̄s, and creation of sterile antineutrinos out of active ones in the process
e + ν̄e → W− → e + νs, that is, by four-Fermi processes with virtual W± exchange. The first term in
Equation (61c) describes interaction of active neutrinos with Z, the second of sterile ones, and the last
two the exchange of active versus sterile neutrinos, and vice versa. In particular the creation of sterile
neutrinos out of active ones is possible in two channels via the four-Fermi process να + ν̄α → νs + ν̄s

with the exchange of a virtual Z boson. All these processes conserve lepton number. As is seen from
the sterile component in the flavor eigenstate (56) or from the charged and neutral currents (61), to
achieve the sterile neutrino creation a finite matrix S is needed. Hence it does not occur in the standard
Dirac limit where both Majorana mass matrices MM

L and MM
R vanish.

3.10. Muon g− 2 Anomaly

The gyromagnetic factor of the muon is gµ = 2(1 + aµ). Dirac theory yields gµ = 2 and aµ is the
anomaly due to quantum effects. The leading term is Schwinger’s famous result,

aµ =
α

2π
+ · · · = 0.00116 + · · · ., (98)

where aµ is known up to its 9th digit, but there is a ∼ 3.5σ discrepancy between measurement and
prediction, aexp

µ − aSM
µ = 288(63)(43) 10−11 [16], where the first error is statistical and the second

systematic.
Our interest lies in the contribution of neutrinos, which occurs in a simple triangle diagram with

virtual W bosons. Ref. [21] presents the result for an arbitrary number of sterile neutrinos. For neutrino
masses well below MW it reads

aν
µ = (aν

µ)
SM

3+Ns

∑
i=1

UµiU∗µi = (aν
µ)

SM(UU†)µµ = (aν
µ)

SM =
GF√

2

5m2
µ

12π2 = 389 10−11. (99)

The unitarity relation (60), viz. (UU†)αβ = δαβ, is valid even beyond our Ns = 3 case [12]. So the
DMνSM reproduces the one-loop outcome of the SM, as well as the dominant two-loop electroweak
contributions of Ref. [22].

3.11. ANITA Detection of UHE Cosmic Neutrino Events

Scattering of ultra high energy (UHE) cosmic rays on cosmic microwave background photons puts
the GZK limit on their maximal energy [23,24] and acts as a source for EeV (1018 eV) (anti)neutrinos
via the creation and decay of charged pions [25], as considered in Section 3.4.

The Antarctic Impulsive Transient Antenna (ANITA) is a balloon experiment at the South Pole
that detects the radio pulses emitted when UHE cosmic neutrinos interact with the Antarctic ice
sheet. In a set of &30 cosmic ray events, ANITA has discovered an upward going event with
energy E ∼ 0.6 EeV [26] and one with ∼0.56 EeV [27]. Both are consistent with the cascade caused
by a τ lepton created beneath the ice surface (see [28] for a possible explanation due to sub-surface
reflection in the ice for a downward event). But the SM connects a relatively large neutrino-nucleon
cross section σ ∼ G2

FmN E to an UHE neutrino [29], so that the probability for it to traverse a large path
L through the Earth to reach Antartica is PT ∼ exp(−n σL) is small, where n is the effective density
of nuclei. The numbers are PT ∼ 4 10−6 and 2 10−8, respectively [26,27]. In Ref. [30] it is pointed out
that a sterile neutrino with a smaller cross section, viz. σ → σ sin2 Θ, with Θ the mixing angle with
respect to active neutrinos, may be involved. To explain the events and relate them to the detections at
IceCube, AUGER and Super-Kamiokande, these authors fix Θ at 0.1 [30].

For typical models a sterile neutrino with such a large mixing angle should have been discovered
already. In the DMνSM the situation is different, however. It contains the reaction νs̃ → τ + W+,
where the W+ is quickly lost locally but the τ escapes and decays while creating a shower. In the
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approximation where one mixing angle dominates, an emitted electron neutrino will have components
of strength sin2 Θ on mostly sterile states. Inside the Earth they are scattered less, and, given that they
enter the other side of the Earth, can be measured in the τ-flavor mode with modified probability
P̃T ∼ sin2 Θ exp(−n σL sin2 Θ) and modified flux Φsterile/Φactive ∼ sin4 Θ exp(−n σL sin2 Θ).
The estimates of Section 3.1 show that the value Θ = 0.1 is reasonable for the component Θ3 of
the mixing matrix S , see in particular the expression for Θ3 in Equation (71). Hence the DMνSM
supports the sterile-neutrino interpretation of ANITA events.

For determining the DMνSM parameters, it seems worth to include UHE data.

4. Summary and Outlook

Since the maximal mixing of pseudo Dirac neutrinos runs into observational problems, neutrino
mass is often supposed to stem from a high-energy sector beyond the standard model (BSM),
for instance by the seesaw mechanism [12,14]. We show that the mixing effects can be suppressed in
the DMνSM, the minimal extension of the SM with three sterile neutrinos (3 + 3 model) with both a
Dirac and a right handed Majorana mass matrix. Indeed, to have the six physical masses condense in
three degenerate pairs poses three conditions, which leaves three Dirac and three Majorana masses
free. In this Diracian limit the neutrino mass eigenstates act as Dirac particles like the other fermions
in the SM. There is no change in the pion, neutron and muon decay, nor on the muon g− 2 problem.
Compared to the general case, less mixing occurs since members of the same Dirac pair undergo no
mutual oscillation. For small Majorana masses the left handed mass eigenstate is still mostly active,
and the right handed one still mostly sterile. A flavor eigenstate has a component on mass eigenstates
with a mostly sterile character. With mixing angles up to 0.2–0.3, this allows to explain the ANITA
ultra high energy events. Hence for determining the DMνSM parameters, it is natural to include UHE
data.

In the Diracian limit the model keeps some of its Majorana properties. Neutrino oscillations
in matter involve the usual six nondegenerate Majorana states. Lepton number is not conserved.
Neutrinoless double-β decay remains possible, be it at an impractically small rate. Sterile neutrino
generation in the early cosmos is possible at temperatures in the few MeV range.

It is interesting to investigate whether processes involving the neutral current can further test the
model. They are relevant e.g., in nonresonant sterile neutrino production in the early universe.

By connecting lepton number L = 1 to (mostly) active neutrinos but L = −1 to (mostly) sterile
neutrinos, neutron decay and double β-decay conserve the lepton number, while lepton number
violation is restricted to feeble neutrinoless double-β decay. Should that be observed, it would
invalidate our assumption of negligible left handed Majorana mass matrix, and prove the presence of
BSM physics in the high energy sector.

The SM has 19 parameters while six neutrino parameters are established and two anticipated (the
SM in Equation (A11) has three gauge coupling constants; two Higgs self couplings; six quark masses;
three charged lepton masses; three strong mixing angles and a strong Dirac phase. Parameter 19 is
the strong CP angle. The established neutrino parameters are two mass-squared differences, three
weak mixing angles and, to some extent, the weak Dirac phase [16]. The two weak Majorana phases
can in the SνM only be measured via neutrinoless double β decay, but in the DMνSM in many ways).
The DMνSM adds three further Majorana masses. In the limit where they vanish, the sterile partners
decouple and the standard neutrino model emerges. The extra Majorana masses and Dirac role of the
“Majorana” phases may alleviate some of the tensions in solar, reactor and other neutrino problems.

From a philosophical point of view, we do not consider the values of the Dirac and Majorana
masses and phases as problematic properties in urgent need of an explanation, but rather as further
mysteries of the standard model.

Acknowledgments: The author is grateful for inspiring lectures and discussion with his teachers Martinus ‘Tini’
Veltman and Gerardus ‘Gerard’ ’t Hooft.
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Appendix A. Gamma and Charge Conjugation Matrices

The four 4× 4 anticommuting γ-matrices were introduced by Dirac. They play a role in the
description of, e.g., the chiral left handed and right handed electron and positron.

In the convention of Giunti and Kim [12] the Lorentz indices µ = 0, 1, 2, 3 label the coordinates
x µ = (ct, x, y, z). The anticommutation relations read for any representation of the γ matrices,

{γ µ, γν} = 2ηµν, ηµν = diag(1,−1,−1,−1) = ηµν. (A1)

The γ 5 matrix has the properties

γ 5 = iγ 0γ1γ 2γ 3, {γ µ, γ 5} = 0, (γ 5)2 = 1. (A2)

Left and right handed chiral projectors are, respectively,

PL =
1
2
(1− γ 5), PR =

1
2
(1 + γ 5). (A3)

Chiral left handed fields are νL = PLν and chiral right handed ones νR = PRν. The projections are
orthogonal, viz. PRPL = PLPR = 0, while P2

L = PL and P2
R = PR.

Hermitian conjugation brings γ 0† = γ 0, γ i† = −γ i, summarized as

γ µ† = γ 0γ µγ 0 = γµ = ηµνγν, γ 5† = γ 5. (A4)

The charge conjugation matrix C has the properties

C† = C−1, CT = −C. (A5)

It is defined up to an overall phase factor, which plays no physical role, and connected
to transpositions,

γ µT = −C†γ µC, γ 5T = C†γ 5C. (A6)

The Pauli matrices are

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A7)

The charge conjugate of any spinor ν has the properties

ν c = C ν̄T = −γ 0Cν†T , ν c† = −νTC†γ 0, ν = −γ 0Cν cT†,

νT = −ν c†γ 0C, ν† = −ν cTC†γ 0, νT† = −C†γ 0ν c. (A8)

For four-component spinors νi and νj (with i = j allowed) the contraction νT
i C†νj = ∑4

k,l=1 νikC†
klνj l

is a nonvanishing scalar, since the fermion fields νi,j anticommute and C is antisymmetric. The relation

(νT
i C†νj)

† = ν†
j CνT†

i = ν cT
j C†ν c

i , (A9)

assures that the Majorana mass Lagrangian (3) is hermitean.
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In the chiral representation the γ and C matrices have the 2×2 blocks

γ0 =

(
0 −σ0

−σ0 0

)
, γi =

(
0 σi

−σi 0

)
, C =

(
−iσ2 0

0 iσ2

)
,

γ5 =

(
σ0 0
0 −σ0

)
, PL =

(
0 0
0 σ0

)
, PR =

(
σ0 0
0 0

)
. (A10)

Appendix B. The Standard Model with Sterile Neutrinos

For completeness we present the Lagrangian of the standard model with Dirac–Majorana
neutrinos in a compact form (leaving out the strong CP violating term),

L = −1
4

BµνBµν −
1
4

AµνAµν −
1
4

GµνGµν + DµΦ†D µΦ− µ2Φ†Φ− λ(Φ†Φ)2

+QL i /DQL + qU
R i /DqU

R + qD
R i /DqD

R + LL i /DLL + `R i /D`R

−QLΦYDqD
R−qD

R YD†Φ†QL−QLΦ̃YUqU
R−qU

R YU†Φ̃†QL− LLΦY``R−`RY`†Φ†LL (A11)

+ νR i /DνR − LLΦ̃YννR − νRYν†Φ̃†LL +
1
2

νT
RC† MM†

R νR +
1
2

ν c T
R C† MM

R ν c
R . (A12)

Up to (A11) included, this represents the SM itself: the first line contains the U(1)Y, SU(2)L and
SU(3)C gauge fields, respectively, and the Higgs kinetic and potential energy. The second line contains
the kinetic terms for three families of quarks, charged leptons and active neutrinos; the third line
lists the quark couplings to the Higgs field with 3× 3 Yukawa matrices YU,D and the charged lepton
couplings to the Higgs field with Yukawa matrix Y`. Equation (A12) exhibits the kinetic term for 3
sterile neutrinos and the Yukawa couplings between the active leptons, the Higgs field and the sterile
neutrinos with a 3× 3 Yukawa matrix Yν. Equation (A12) also contains the right handed Majorana
mass terms of Equation (3).

The Diracian limit of the main text refers a special form for MM
R .

The quark doublets in Equation (A11) contain the left handed up, down, charm, strange, top and
bottom quarks,

QL =

Q1L
Q2L
Q3L

 , Q1L =

(
uL
dL

)
, Q2L =

(
cL
sL

)
, Q3L =

(
tL
bL

)
. (A13)

The lepton doublets contain the left handed electron, muon and tau (tau lepton, tauon), and their
active neutrinos: the left handed electron, mu and tau neutrino,

LL =

L1L
L2L
L3L

 , L1L =

(
νeL
eL

)
, L2L =

(
νµL
µL

)
, L3L =

(
ντL
τL

)
. (A14)

The right handed quark and lepton singlets are grouped as

qU
R =

uR
cR
tR

 , qD
R =

dR
sR
bR

 , `R =

 eR
µR
τR

 , νR =

ν1R
ν2R
ν3R

 . (A15)

The covariant derivatives Dµ and /D = γ µDµ in Equation (A11) contain currents from gauge fields,
except for /DνR = /∂νR, since νR is gauge invariant. Indeed, the weak currents JCC from Equation (49)
and JNC from Equation (50) arise as parts of LL i /DLL. The strong currents from QL i /DQL do not involve
the neutrino sector. In the unitary gauge the normal and conjugated Higgs doublets read, respectively,
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Φ =
1√
2

(
0

v + H

)
, Φ̃ = iσ2 Φ†T =

1√
2

(
v + H

0

)
, (A16)

where v =
√
−µ2/λ is the vacuum expectation value and H the dynamical Higgs field.

After spontaneous symmetry breaking the 3× 3 Dirac mass matrices for the Down = {d, s, b} and
Up = {u, c, t} quarks are MD

q = vYD/
√

2 and MU
q = vYU/

√
2; for the charged leptons M` = vY`/

√
2

and the Dirac mass matrix for the active neutrinos is Mν = vYν/
√

2 (it is denoted as MD in the main
text). From unitary transformations of the fields it follows that the matrices MD

q and M` can be taken
diagonal with the respective particle masses as entries. Next, the diagonalization of MU

q is performed
with the CKM mixing matrix and of MD = Mν with the PMNS mixing matrix of Equation (21).
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