
symmetryS S

Article

Extended Convergence Analysis of the
Newton–Hermitian and Skew–Hermitian
Splitting Method

Ioannis K Argyros 1,*, Santhosh George 2 , Chandhini Godavarma 2 and Alberto A Magreñán 3

1 Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA
2 Department of Mathematical and Computational Sciences, National Institute of Technology,

Karnataka 575 025, India
3 Departamento de Matemáticas y Computación, Universidad de la Rioja, 26006 Logroño, Spain
* Correspondence: iargyros@cameron.edu

Received: 24 June 2019; Accepted: 25 July 2019; Published: 2 August 2019
����������
�������

Abstract: Many problems in diverse disciplines such as applied mathematics, mathematical biology,
chemistry, economics, and engineering, to mention a few, reduce to solving a nonlinear equation or a
system of nonlinear equations. Then various iterative methods are considered to generate a sequence
of approximations converging to a solution of such problems. The goal of this article is two-fold:
On the one hand, we present a correct convergence criterion for Newton–Hermitian splitting (NHSS)
method under the Kantorovich theory, since the criterion given in Numer. Linear Algebra Appl.,
2011, 18, 299–315 is not correct. Indeed, the radius of convergence cannot be defined under the given
criterion, since the discriminant of the quadratic polynomial from which this radius is derived is
negative (See Remark 1 and the conclusions of the present article for more details). On the other
hand, we have extended the corrected convergence criterion using our idea of recurrent functions.
Numerical examples involving convection–diffusion equations further validate the theoretical results.

Keywords: Newton–HSS method; systems of nonlinear equations; semi-local convergence

1. Introduction

Numerous problems in computational disciplines can be reduced to solving a system of nonlinear
equations with n equations in n variables like

F(x) = 0 (1)

using Mathematical Modelling [1–11]. Here, F is a continuously differentiable nonlinear mapping
defined on a convex subset Ω of the n−dimensional complex linear space Cn into Cn. In general,
the corresponding Jacobian matrix F′(x) is sparse, non-symmetric and positive definite. The solution
methods for the nonlinear problem F(x) = 0 are iterative in nature, since an exact solution x∗ could be
obtained only for a few special cases. In the rest of the article, some of the well established and standard
results and notations are used to establish our results (See [3–6,10–14] and the references there in).
Undoubtedly, some of the well known methods for generating a sequence to approximate x∗ are the
inexact Newton (IN) methods [1–3,5–14]. The IN algorithm involves the steps as given in the following:
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Algorithm IN [6]

• Step 1: Choose initial guess x0, tolerance value tol; Set k = 0
• Step 2: While F(xk) > tol × F(x0), Do

1. Choose ηk ∈ [0, 1). Find dk so that ‖F(xk) + F′(xk)dk‖ ≤ ηk‖F(xk)‖.
2. Set xk+1 = xk + dk; k = k + 1

Furthermore, if A is sparse, non-Hermitian and positive definite, the Hermitian and
skew-Hermitian splitting (HSS) algorithm [4] for solving the linear system Ax = b is given by,

Algorithm HSS [4]

• Step 1: Choose initial guess x0, tolerance value tol and α > 0; Set l = 0
• Step 2: Set H = 1

2 (A + A∗) and S = 1
2 (A− A∗), where H is Hermitian and S is skew-Hermitian

parts of A.
• Step 3: While ‖b− Axł‖ > tol × ‖b− Ax0‖, Do

1. Solve (αI + H)xl+1/2 = (αI − S)xl + b
2. Solve (αI + S)xl = (αI − H)xł+1/2 + b
3. Set l = l + 1

Newton–HSS [5] algorithm combines appropriately both IN and HSS methods for the solution
of the large nonlinear system of equations with positive definite Jacobian matrix. The algorithm is
as follows:

Algorithm NHSS (The Newton–HSS method [5])

• Step 1: Choose initial guess x0, positive constants α and tol; Set k = 0
• Step 2: While ‖F(xk)‖ > tol × ‖F(x0)‖

– Compute Jacobian Jk = F′(xk)

– Set

Hk(xk) =
1
2
(Jk + J∗k ) and Sk(xk) =

1
2
(Jk − J∗k ), (2)

where Hk is Hermitian and Sk is skew-Hermitian parts of Jk.
– Set dk,0 = 0; l = 0
– While

‖F(xk) + Jkdk,ł‖ ≥ ηk × ‖F(xk)‖ (ηk ∈ [0, 1)) (3)

Do
{

1. Solve sequentially:

(αI + Hk)dk,l+1/2 = (αI − Sk)dk,l + b (4)

(αI + Sk)dk,l = (αI − Hk)dk,l+1/2 + b (5)

2. Set l = l + 1

}
– Set

xk+1 = xk + dk,l ; k = k + 1 (6)
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– Compute Jk, Hk and Sk for new xk

Please note that ηk is varying in each iterative step, unlike a fixed positive constant value in used
in [5]. Further observe that if dk,`k

in (6) is given in terms of dk,0, we get

dk,`k
= (I − T`

k )(I − Tk)
−1B−1

k F(xk) (7)

where Tk := T(α, k), Bk := B(α, k) and

T(α, x) = B(α, x)−1C(α, x)

B(α, x) =
1

2α
(αI + H(x))(αI + S(x)) (8)

C(α, x) =
1

2α
(αI − H(x))(αI − S(x)).

Using the above expressions for Tk and dk,`k
, we can write the Newton–HSS in (6) as

xk+1 = xk − (I − T`
k )
−1F(xk)

−1F(xk). (9)

A Kantorovich-type semi-local convergence analysis was presented in [7] for NHSS. However,
there are shortcomings:

(i) The semi-local sufficient convergence criterion provided in (15) of [7] is false. The details are
given in Remark 1. Accordingly, Theorem 3.2 in [7] as well as all the followings results based on
(15) in [7] are inaccurate. Further, the upper bound function g3 (to be defined later) on the norm
of the initial point is not the best that can be used under the conditions given in [7].

(ii) The convergence domain of NHSS is small in general, even if we use the corrected sufficient
convergence criterion (12). That is why, using our technique of recurrent functions, we present
a new semi-local convergence criterion for NHSS, which improves the corrected convergence
criterion (12) (see also Section 3 and Section 4, Example 4.4).

(iii) Example 4.5 taken from [7] is provided to show as in [7] that convergence can be attained
even if these criteria are not checked or not satisfied, since these criteria are not sufficient too.
The convergence criteria presented here are only sufficient.

Moreover, we refer the reader to [3–11,13,14] and the references therein to avoid repetitions for
the importance of these methods for solving large systems of equations.

The rest of the note is organized as follows. Section 2 contains the semi-local convergence analysis
of NHSS under the Kantorovich theory. In Section 3, we present the semi-local convergence analysis
using our idea of recurrent functions. Numerical examples are discussed in Section 4. The article ends
with a few concluding remarks.

2. Semi-Local Convergence Analysis

To make the paper as self-contained as possible we present some results from [3] (see also [7]).
The semi-local convergence of NHSS is based on the conditions (A). Let x0 ∈ Cn and F : Ω ⊂ Cn −→
Cn be G−differentiable on an open neighborhood Ω0 ⊂ Ω on which F′(x) is continuous and positive
definite. Suppose F′(x) = H(x) + S(x) where H(x) and S(x) are as in (2) with xk = x.

(A1) There exist positive constants β, γ and δ such that

max{‖H(x0)‖, ‖S(x0)‖} ≤ β, ‖F′(x0)
−1‖ ≤ γ, ‖F(x0)‖ ≤ δ, (10)
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(A2) There exist nonnegative constants Lh and Ls such that for all x, y ∈ U(x0, r) ⊂ Ω0,

‖H(x)− H(y)‖ ≤ Lh‖x− y‖
‖S(x)− S(y)‖ ≤ Ls‖x− y‖. (11)

Next, we present the corrected version of Theorem 3.2 in [7].

Theorem 1. Assume that conditions (A) hold with the constants satisfying

δγ2L ≤ ḡ3(η) (12)

where ḡ3(t) := (1−t)2

2(2+t+2t2−t3)
, η = max{ηk} < 1, r = max{r1, r2} with

r1 =
α + β

L

(√
1 +

2ατθ

(2γ + γτθ)(α + β)2 − 1

)

r2 =
b−
√

b2 − 2ac
a

(13)

a =
γL(1 + η)

1 + 2γ2δLη
, b = 1− η, c = 2γδ,

and with `∗ = lim infk−→∞ `k satisfying `∗ > b ln η
ln((τ+1)θ c, (Here b.c represents the largest integer less than or

equal to the corresponding real number) τ ∈ (0, 1−θ
θ ) and

θ ≡ θ(α, x0) = ‖T(α, x0)‖ < 1. (14)

Then, the iteration sequence {xk}∞
k=0 generated by Algorithm NHSS is well defined and converges to x∗,

so that F(x∗) = 0.

Proof. We simply follow the proof of Theorem 3.2 in [7] but use the correct function ḡ3 instead of the
incorrect function g3 defined in the following remark.

Remark 1. The corresponding result in [7] used the function bound

g3(t) =
1− t

2(1 + t2)
(15)

instead of ḡ3 in (12) (simply looking at the bottom of first page of the proof in Theorem 3.2 in [7]), i.e.,
the inequality they have considered is,

δγ2L ≤ g3(η). (16)

However, condition (16) does not necessarily imply b2 − 4ac ≥ 0, which means that r2 does not necessarily
exist (see (13) where b2 − 2ac ≥ 0 is needed) and the proof of Theorem 3.2 in [7] breaks down. As an example,
choose η = 1

2 , then g3(
1
2 ) = 1

5 , ḡ3(
1
2 ) = 1

23 and for ḡ3(
1
2 ) = δγ2L < g3(

1
2 ), we have b2 − 4ac < 0.

Notice that our condition (12) is equivalent to b2 − 4ac ≥ 0. Hence, our version of Theorem 3.2 is correct.
Notice also that

ḡ3(t) < g3(t) for each t ≥ 0, (17)

so (12) implies (16) but not necessarily vice versa.

3. Semi-Local Convergence Analysis II

We need to define some parameters and a sequence needed for the semi-local convergence of
NHSS using recurrent functions.
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Let β, γ, δ, L0, L be positive constants and η ∈ [0, 1). Then, there exists µ ≥ 0 such that L = µL0.
Set c = 2γδ. Define parameters p, q, η0 and δ0 by

p =
(1 + η)µγL0

2
, q =

−p +
√

p2 + 4γL0 p
2γL0

, (18)

η0 =

√
µ

µ + 2
(19)

and

ξ =
µ

2
min{ 2(q− η)

(1 + η)µ + 2q
,
(1 + η)q− η − q2

(1 + η)q− η
}. (20)

Moreover, define scalar sequence {sk} by

s0 = 0, s1 = c = 2γδ and for each k = 1, 2, . . .

sk+1 = sk +
1

1− γL0sk
[p(sk − sk−1) + η(1− γL0sk−1)](sk − sk−1). (21)

We need to show the following auxiliary result of majorizing sequences for NHSS using the
aforementioned notation.

Lemma 1. Let β, γ, δ, L0, L be positive constants and η ∈ [0, 1). Suppose that

γ2Lδ ≤ ξ (22)

and
η ≤ η0, (23)

where η0, ξ are given by (19) and (20), respectively. Then, sequence {sk} defined in (21) is nondecreasing,
bounded from above by

s∗∗ =
c

1− q
(24)

and converges to its unique least upper bounds s∗ which satisfies

c ≤ s∗ ≤ s∗∗. (25)

Proof. Notice that by (18)–(23) q ∈ (0, 1), q > η, η0 ∈ [
√

3
3 , 1), c > 0, (1 + η)q− η > 0, (1 + η)q− η −

q2 > 0 and ξ > 0. We shall show using induction on k that

0 < sk+1 − sk ≤ q(sk − sk−1) (26)

or equivalently by (21)

0 ≤ 1
1− γL0sk

[p(sk − sk−1) + η(1− γL0sk−1)] ≤ q. (27)

Estimate (27) holds true for k = 1 by the initial data and since it reduces to showing δ ≤
η

γ2L
q−η

(1+η)µ+2q , which is true by (20). Then, by (21) and (27), we have

0 < s2 − s1 ≤ q(s1 − s0), γL0s1 < 1

and

s2 ≤ s1 + q(s1 − s0) =
1− q2

1− q
(s1 − s0) <

s1 − s0

1− q
= s∗∗.
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Suppose that (26),
γL0sk < 1 (28)

and

sk+1 ≤
1− qk+1

1− q
(s1 − s0) < s∗∗ (29)

hold true. Next, we shall show that they are true for k replaced by k + 1. It suffices to show that

0 ≤ 1
1− γL0sk+1

(p(sk+1 − sk) + η(1− γL0sk)) ≤ q

or
p(sk+1 − sk) + η(1− γL0sk) ≤ q(1− γL0sk+1)

or
p(sk+1 − sk) + η(1− γL0sk)− q(1− γL0sk+1) ≤ 0

or
p(sk+1 − sk) + η(1− γL0s1) + γqL0sk+1)− q ≤ 0

(since s1 ≤ sk) or

2γδpqk + 2γ2qL0δ(1 + q + . . . + qk) + η(1− 2γ2L0δ)− q ≤ 0. (30)

Estimate (30) motivates us to introduce recurrent functions fk defined on the interval [0, 1) by

fk(t) = 2γδptk + 2γ2L0δ(1 + t + . . . + tk)t− t + η(1− 2γ2L0δ). (31)

Then, we must show instead of (30) that

fk(q) ≤ 0. (32)

We need a relationship between two consecutive functions fk :

fk+1(t) = fk+1(t)− fk(t) + fk(t)

= 2γδptk+1 + 2γ2L0δ(1 + t + . . . tk+1)t− t

+η(1− 2γ2L0δ)− 2γδptk − 2γ2L0δ(1 + t + . . . + tk)t

+t− η(1− 2γ2L0δ) + fk(t)

= fk(t) + 2γδg(t)tk, (33)

where
g(t) = γL0t2 + pt− p. (34)

Notice that g(q) = 0. It follows from (32) and (34) that

fk+1(q) = fk(q) for each k. (35)

Then, since
f∞(q) = lim

k−→∞
fk(q), (36)

it suffices to show
f∞(q) ≤ 0 (37)
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instead of (32). We get by (31) that

f∞(q) =
2γ2L0δq

1− q
− q + η(1− 2γ2L0δ) (38)

so, we must show that
2γ2L0δq

1− q
− q + η(1− 2γ2L0δ) ≤ 0, (39)

which reduces to showing that

δ ≤ µ

2γ2L
(1 + η)q− η − q2

(1 + η)q− η
, (40)

which is true by (22). Hence, the induction for (26), (28) and (29) is completed. It follows that sequence
{sk} is nondecreasing, bounded above by s∗∗ and as such it converges to its unique least upper bound
s∗ which satisfies (25).

We need the following result.

Lemma 2 ([14]). Suppose that conditions (A) hold. Then, the following assertions also hold:

(i) ‖F′(x)− F′(y)‖ ≤ L‖x− y‖
(ii) ‖F′(x)‖ ≤ L‖x− y‖+ 2β

(iii) If r < 1
γL , then F′(x) is nonsingular and satisfies

‖F′(x)−1‖ ≤ γ

1− γL‖x− x0‖
, (41)

where L = Lh + Ls.

Next, we show how to improve Lemma 2 and the rest of the results in [3,7]. Notice that it follows
from (i) in Lemma 2 that there exists L0 > 0 such that

‖F′(x)− F′(x0)‖ ≤ L0‖x− x0‖ for each x ∈ Ω. (42)

We have that
L0 ≤ L (43)

holds true and L
L0

can be arbitrarily large [2,12]. Then, we have the following improvement of Lemma 2.

Lemma 3. Suppose that conditions (A) hold. Then, the following assertions also hold:

(i) ‖F′(x)− F′(y)‖ ≤ L‖x− y‖
(ii) ‖F′(x)‖ ≤ L0‖x− y‖+ 2β

(iii) If r < 1
γL0

, then F′(x) is nonsingular and satisfies

‖F′(x)−1‖ ≤ γ

1− γL0‖x− x0‖
. (44)

Proof. (ii) We have

‖F′(x)‖ = ‖F′(x)− F′(x0) + F′(x0)‖
≤ ‖F′(x)− F′(x0)‖+ ‖F′(x0)‖
≤ L0‖x− x0‖+ ‖F′(x0)‖ ≤ L0‖x− x0‖+ 2β.
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(iii)
γ‖F′(x)− F′(x0)‖ ≤ γL0‖x− x0‖ < 1. (45)

It follows from the Banach lemma on invertible operators [1] that F′(x) is nonsingular, so that
(44) holds.

Remark 2. The new estimates (ii) and (iii) are more precise than the corresponding ones in Lemma 2, if L0 < L.

Next, we present the semi-local convergence of NHSS using the majorizing sequence {sn}
introduced in Lemma 1.

Theorem 2. Assume that conditions (A), (22) and (23) hold. Let η = max{ηk} < 1, r = max{r1, t∗} with

r1 =
α + β

L

(√
1 +

2ατθ

(2γ + γτθ)(α + β)2 − 1

)

and s∗ is as in Lemma 1 and with `∗ = lim infk−→∞ `k satisfying `∗ > b ln η
ln((τ+1)θ c, (Here b.c represents the

largest integer less than or equal to the corresponding real number) τ ∈ (0, 1−θ
θ ) and

θ ≡ θ(α, x0) = ‖T(α, x0)‖ < 1. (46)

Then, the sequence {xk}∞
k=0 generated by Algorithm NHSS is well defined and converges to x∗, so that

F(x∗) = 0.

Proof. If we follow the proof of Theorem 3.2 in [3,7] but use (44) instead of (41) for the upper bound
on the norms ‖F′(xk)

−1‖ we arrive at

‖xk+1 − xk‖ ≤
(1 + η)γ

1− γL0sk
‖F(xk)‖, (47)

where
‖F(xk)‖ ≤

L
2
(sk − sk−1)

2 + η
1− γL0sk−1

γ(1 + η)
(sk − sk−1), (48)

so by (21)

‖xk+1 − xk‖ ≤ (1 + η)
γ

1− γL0sk
[
L
2
(sk − sk−1) + η

1− γL0sk−1
γ(1 + η)

](sk − sk−1) = sk+1 − sk. (49)

We also have that ‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖+ ‖xk − xk−1‖+ . . . + ‖x1 − x0‖ ≤ sk+1 − sk + sk −
sk−1 + . . . + s1 − s0 = sk+1 − s0 < s∗. It follows from Lemma 1 and (49) that sequence {xk} is complete
in a Banach space Rn and as such it converges to some x∗ ∈ Ū(x0, r) (since Ū(x0, r) is a closed set).

However, ‖T(α; x∗)‖ < 1 [4] and NHSS, we deduce that F(x∗) = 0.

Remark 3. (a) The point s∗ can be replaced by s∗∗ (given in closed form by (24)) in Theorem 2.
(b) Suppose there exist nonnegative constants L0

h, L0
s such that for all x ∈ U(x0, r) ⊂ Ω0

‖H(x)− H(x0)‖ ≤ L0
h‖x− x0‖

and
‖S(x)− S(x0)‖ ≤ L0

s‖x− x0‖.
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Set L0 = L0
h + L0

s . Define Ω1
0 = Ω0 ∩U(x0, 1

γL0
). Replace condition (A2) by

(A′2) There exist nonnegative constants L′h and L′s such that for all x, y ∈ U(x0, r) ⊂ Ω1
0

‖H(x)− H(y)‖ ≤ L′h‖x− y‖

‖S(x)− S(y)‖ ≤ L′s‖x− y‖.

Set L′ = L′h + L′s. Notice that
L′h ≤ Lh, L′s ≤ Ls and L′ ≤ L, (50)

since Ω1
0 ⊆ Ω0. Denote the conditions (A1) and (A′2) by (A′). Then, clearly the results of Theorem 2

hold with conditions (A′), Ω1
0, L′ replacing conditions (A), Ω0 and L, respectively (since the iterates {xk}

remain in Ω1
0 which is a more precise location than Ω0). Moreover, the results can be improved even further,

if we use the more accurate set Ω2
0 containing iterates {xk} defined by Ω2

0 := Ω∩U(x1, 1
γL0
− γδ). Denote

corresponding to L′ constant by L′′ and corresponding conditions to (A′) by (A′′). Notice that (see also the
numerical examples) Ω2

0 ⊆ Ω1
0 ⊆ Ω0. In view of (50), the results of Theorem 2 are improved and under the

same computational cost.
(c) The same improvements as in (b) can be made in the case of Theorem 1.

The majorizing sequence {tn} in [3,7] is defined by

t0 = 0, t1 = c = 2γδ

tk+1 = tk +
1

1− γLtk
[p(tk − tk−1) + η(1− γLtk−1)](tk − tk−1). (51)

Next, we show that our sequence {sn} is tighter than {tn}.

Proposition 1. Under the conditions of Theorems 1 and 2, the following items hold

(i) sn ≤ tn

(ii) sn+1 − sn ≤ tn+1 − tn and
(iii) s∗ ≤ t∗ = limk−→∞ tk ≤ r2.

Proof. We use a simple inductive argument, (21), (51) and (43).

Remark 4. Majorizing sequences using L′ or L′′ are even tighter than sequence {sn}.

4. Special Cases and Numerical Examples

Example 1. The semi-local convergence of inexact Newton methods was presented in [14] under the conditions

‖F′(x0)
−1F(x0)‖ ≤ β,

‖F′(x0)
−1(F′(x)− F′(y))‖ ≤ γ‖x− y‖,
‖F′(x0)

−1sn‖
‖F′(x0)−1F(xn)‖

≤ ηn

and
βγ ≤ g1(η),

where

g1(η) =

√
(4η + 5)3 − (2η3 + 14η + 11)

(1 + η)(1− η)2 .
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More recently, Shen and Li [11] substituted g1(η) with g2(η), where

g2(η) =
(1− η)2

(1 + η)(2(1 + η)− η(1− η)2)
.

Estimate (22) can be replaced by a stronger one but directly comparable to (20). Indeed, let us define a
scalar sequence {un} (less tight than {sn}) by

u0 = 0, u1 = 2γδ,

uk+1 = uk +
( 1

2 ρ(uk − uk−1) + η)

1− ρuk
(uk − uk−1), (52)

where ρ = γL0(1 + η)µ. Moreover, define recurrent functions fk on the interval [0, 1) by

fk(t) =
1
2

ρctk−1 + ρc(1 + t + . . . + tk−1)t + η − t

and function g(t) = t2 + t
2 −

1
2 . Set q = 1

2 . Moreover, define function g4 on the interval [0, 1
2 ) by

g4(η) =
1− 2η

4(1 + η)
. (53)

Then, following the proof of Lemma 1, we obtain:

Lemma 4. Let β, γ, δ, L0, L be positive constants and η ∈ [0, 1
2 ). Suppose that

γ2Lδ ≤ g4(η) (54)

Then, sequence {uk} defined by (52) is nondecreasing, bounded from above by

u∗∗ =
c

1− q

and converges to its unique least upper bound u∗ which satisfies

c ≤ u∗ ≤ u∗∗.

Proposition 2. Suppose that conditions (A) and (54) hold with r = min{r1, u∗}. Then, sequence {xn}
generated by algorithm NHSS is well defined and converges to x∗ which satisfies F(x∗) = 0.

These bound functions are used to obtain semi-local convergence results for the Newton–HSS method as a
subclass of these techniques. In Figures 1 and 2, we can see the graphs of the four bound functions g1, g2, ḡ3 and
g4. Clearly our bound function ḡ3 improves all the earlier results. Moreover, as noted before, function g3 cannot
be used, since it is an incorrect bound function.
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Figure 1. Graphs of g1(t) (Violet), g2(t) (Green), ḡ3 (Red).
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Figure 2. Graphs of g1(t) (Violet), g2(t) (Green), ḡ3 (Red) and g4 (Blue).

In the second example we compare the convergence criteria (22) and (12).

Example 2. Let η = 1, Ω0 = Ω = U(x0, 1− λ), x0 = 1, λ ∈ [0, 1). Define function F on Ω by

F(x) = x3 − λ. (55)

Then, using (55) and the condition (A), we get γ = 1
3 , δ = 1 − λ, L = 6(2 − λ), L0 = 3(3 − λ)

and µ = 2(2−λ)
3−λ . Choosing λ = 0.8., we get L = 7.2, L0 = 6.6, δ = 0.2, µ = 1.0909091, η0 =

0.594088525, p = 1.392, q = 0.539681469, γ2Lδ = 0.16. Let η = 0.16 < η0, then, ḡ3(0.16) = 0.159847474,
ξ = min{0.176715533, 0.20456064} = 0.176715533. Hence the old condition (12) is not satisfied, since
γ2Lδ > ḡ3(0.16). However, the new condition (22) is satisfied, since γ2Lδ < ξ. Hence, the new results expand
the applicability of NHSS method.

The next example is used for the reason already mentioned in (iii) of the introduction.
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Example 3. Consider the two-dimensional nonlinear convection–diffusion equation [7]

−(uxx + uyy) + q(ux + uy) = −eu, (x, y) ∈ Ω

u(x, y) = 0 (x, y) ∈ ∂Ω (56)

where Ω = (0, 1)× (0, 1) and ∂Ω is the boundary of Ω. Here q > 0 is a constant to control the magnitude of
the convection terms (see [7,15,16]). As in [7], we use classical five-point finite difference scheme with second
order central difference for both convection and diffusion terms. If N defines number of interior nodes along
one co-ordinate direction, then h = 1

N+1 and Re = qh
2 denotes the equidistant step-size and the mesh Reynolds

number, respectively. Applying the above scheme to (56), we obtain the following system of nonlinear equations:

Āu + h2eu = 0

u = (u1, u2, . . . , uN)
T , ui = (ui1, ui2, . . . , uiN)

T , i = 1, 2, . . . , N,

where the coefficient matrix Ā is given by

Ā = Tx ⊗ I + I ⊗ Ty.

Here, ⊗ is the Kronecker product, Tx and Ty are the tridiagonal matrices

Tx = tridiag(−1− Re, 4,−1 + Re), Ty = tridiag(−1− Re, 0,−1 + Re).

In our computations, N is chosen as 99 so that the total number of nodes are 100× 100. We use α = qh
2 as

in [7] and we consider two choices for ηk i.e., ηk = 0.1 and ηk = 0.01 for all k.
The results obtained in our computation is given in Figures 3–6. The total number of inner iterations is

denoted by IT, the total number of outer iterations is denoted by OT and the total CPU time is denoted by t.
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Figure 3. Plots of (a) inner iterations vs. log(‖F(xk)‖), (b) outer iterations vs. log(‖F(xk)‖), (c) CPU
time vs. log(‖F(xk)‖) for q = 600 and x0 = e.
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inner iterations
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Figure 4. Plots of (a) inner iterations vs. log(‖F(xk)‖), (b) outer iterations vs. log(‖F(xk)‖), (c) CPU
time vs. log(‖F(xk)‖) for q = 2000 and x0 = e.
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Figure 5. Plots of (a) inner iterations vs. log(‖F(xk)‖), (b) outer iterations vs. log(‖F(xk)‖), (c) CPU
time vs. log(‖F(xk)‖) for q = 600 and x0 = 6e.
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Figure 6. Plots of (a) inner iterations vs. log(‖F(xk)‖), (b) outer iterations vs. log(‖F(xk)‖), (c) CPU
time vs. log(‖F(xk)‖) for q = 2000 and x0 = 6e.
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5. Conclusions

A major problem for iterative methods is the fact that the convergence domain is small in
general, limiting the applicability of these methods. Therefore, the same is true, in particular
for Newton–Hermitian, skew-Hermitian and their variants such as the NHSS and other related
methods [4–6,11,13,14]. Motivated by the work in [7] (see also [4–6,11,13,14]) we:

(a) Extend the convergence domain of NHSS method without additional hypotheses. This is done
in Section 3 using our new idea of recurrent functions. Examples, where the new sufficient
convergence criteria hold (but not previous ones), are given in Section 4 (see also the remarks in
Section 3).

(b) The sufficient convergence criterion (16) given in [7] is false. Therefore, the rest of the results based
on (16) do not hold. We have revisited the proofs to rectify this problem. Fortunately, the results
can hold if (16) is replaced with (12). This can easily be observed in the proof of Theorem 3.2 in [7].
Notice that the issue related to the criteria (16) is not shown in Example 4.5, where convergence
is established due to the fact that the validity of (16) is not checked. The convergence criteria
obtained here are not necessary too. Along the same lines, our technique in Section 3 can be used
to extend the applicability of other iterative methods discussed in [1–6,8,9,12–16].
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