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Abstract: The acceleration transformations form a 4-parameter Abelian subgroup of the conformal
group of Minkowski spacetime. The passive interpretation of acceleration transformations leads to
a congruence of uniformly accelerated observers in Minkowski spacetime. The properties of this
congruence are studied in order to illustrate the kinematics of accelerated observers in relativistic
physics. The generalization of this approach under conformal rescaling of the spacetime metric
is examined.
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1. Introduction

In the absence of gravitation, Minkowski spacetime provides the flat background for
special-relativistic physics. The observers in this arena are either hypothetical inertial observers or
accelerated observers. Inertial observers, each forever spatially at rest in an inertial frame of reference,
were introduced into physics by Newton and play an essential role since the fundamental laws of
physics have been formulated with respect to these nonexistent observers. Realistic observers are all
more or less accelerated. To access the laws of physics, the measurements of accelerated observers
must somehow be related to the hypothetical inertial observers.

The measurements of inertial observers are related to each other via Lorentz invariance. What do
accelerated observers measure? The standard answer, within the framework of the special theory of
relativity, involves performing Lorentz transformations point by point along the world line of the
accelerated observer [1]. That is, the standard prescription assumes the locality postulate, which states
that an accelerated observer is pointwise equivalent to an otherwise identical momentarily comoving
inertial observer [2,3]. The locality postulate of relativity theory is strictly valid if all measurements
are spatially pointwise and instantaneous. The internal mechanisms of measuring devices carried
by accelerated observers could be subject to Coriolis, centrifugal, and other inertial effects that may
add up to influence the results of measurements. We assume, however, that all such devices are
standard—that is, they are sufficiently robust against inertial effects and thus function in accordance
with the locality postulate.

These notions of the standard relativity theory are based on the assumption that all physical
phenomena could be reduced to pointlike coincidences. However, Bohr and Rosenfeld have pointed out
that the measurement of the electromagnetic field cannot be performed instantaneously and generally
involves an average over a spacetime domain [4,5]. Similarly, wave phenomena are generally nonlocal
by the Huygens principle. Consider, for instance, the measurement of the frequency of an incident
electromagnetic wave by an accelerated observer. We expect that the locality assumption is a good
approximation if the wavelength of the incident radiation λ is sufficiently small compared to the
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length scale L characteristic of the observer’s acceleration. In fact, L/c is the effective length of time
over which the state of the accelerated observer changes appreciably. For observers fixed on the
Earth, the corresponding translational acceleration length is about 1 light year and the rotational
acceleration length is about 28 astronomical units—therefore, the locality postulate is normally an
excellent approximation since λ� L. On the other hand, for observers undergoing large accelerations,
λ & L, the past history of the accelerated observer must be taken into account in accordance
with nonlocal special relativity [6–8]. Nonlocal special relativity goes beyond the locality postulate
by including a certain linear average over the past world line of the accelerated observer [9,10].
Furthermore, a classical nonlocal generalization of Einstein’s theory of gravitation has been developed
in analogy with the nonlocal electrodynamics of media. In this theory, nonlocal gravity simulates dark
matter [8,11,12].

The main purpose of this paper is to describe the kinematics of a congruence of accelerated
observers related to the special conformal transformations (Section 2). This particular uniformly
accelerated system is then employed in Section 3 to illustrate the main aspects of accelerated observers
in Minkowski spacetime. The extensions of our treatment under conformal rescaling of the spacetime
metric are explored in Section 4. Section 5 contains a brief discussion of our results. We use units such
that c = 1, unless specified otherwise. Moreover, the signature of the spacetime metric is +2 and Greek
indices run from 0 to 3, while Latin indices run from 1 to 3.

2. Conformal Symmetry of Minkowski Spacetime

The conformal group of Minkowski spacetime consists of all coordinate transformations that
leave the light cone invariant [13–17]. This 15-parameter Lie group includes the 10-parameter Poincaré
group; the 1-parameter scale transformation xµ 7→ σ xµ, where σ is a constant; and the 4-parameter
acceleration transformation xµ 7→ x′µ,

x′µ =
xµ + aµ x2

1 + 2 a · x + a2 x2 , (1)

where aµ, µ = 0, 1, 2, 3, are constant acceleration parameters, each of dimensions 1/length. Here,
a2 := ηαβ aαaβ, x2 := ηαβ xαxβ, and a · x := ηαβ aαxβ. The coordinate transformation (1), which leaves
the origin of spacetime coordinates invariant, is admissible if

D(x) = 1 + 2 a · x + a2 x2 6= 0 . (2)

We must therefore exclude from transformation (1) events xµ for which D(x) = 0. If a2 6= 0, then

1
a2 D(x) = ηαβ

(
xα +

aα

a2

)(
xβ +

aβ

a2

)
. (3)

Thus, we must exclude from transformation (1) all events xα on the null cone centered at −aα/a2.
On the other hand, if a2 = 0, then all events on the null hyperplane 1 + 2 a · x = 0 are excluded.

Let us note that when the special conformal transformation (1) is admissible,

x′2 =
x2

1 + 2 a · x + a2 x2 , (4)

so that when x2 = 0, x′2 = 0 as well—hence, the light cone remains invariant. Moreover, when x2 6= 0
and x′2 6= 0, Equations (1) and (4) imply

x′µ

x′2
=

xµ

x2 + aµ , (5)
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where xµ 7→ xµ/x2 is an inversion. Denoting an admissible acceleration transformation by C(aµ), we
find C(aµ)C(bµ) = C(aµ + bµ). Moreover, C−1(aµ) = C(−aµ) and C(0) = I, where I is the identity
transformation. It follows from these observations that the acceleration transformations form an
Abelian subgroup of the conformal group of Minkowski spacetime.

3. Accelerated System

We now adopt a strictly passive interpretation of acceleration transformation (1), and note that the
Minkowski spacetime interval ds2 = ηµν dxµ dxν can be written in the new coordinates as [18]

ds2 = g′αβ(x′) dx′αdx′β , g′αβ =
ηαβ

(1− 2 a · x′ + a2 x′2)2 , (6)

where
(1 + 2 a · x + a2 x2)(1− 2 a · x′ + a2 x′2) = 1 . (7)

With an admissible coordinate transformation (1), the curvilinear coordinates in metric (6) are
admissible. To investigate the nature of the accelerated system in Minkowski spacetime, we consider
the congruence of spatially static observers in the new curvilinear coordinate system. Each observer
remains spatially at rest in the accelerated system and carries along its world line a tetrad frame e′µα̂

that is orthonormal, namely,
g′µν(x′) e′µα̂(x′) e′ν β̂(x′) = ηα̂β̂ . (8)

Here, the hatted tetrad indices specify the tetrad axes in the tangent space at event x′. For the static
observers under consideration here, it is natural to choose the tetrad frame such that

e′µα̂ = f (x′) δ
µ
α , f (x′) = 1− 2 a · x′ + a2 x′2 . (9)

In particular, the world line of such a static observer can be determined via

dx′0

dτ
= f (x′) ,

dx′i

dτ
= 0 , (10)

where τ is the proper time along the path of the observer. If a2 6= 0, we find

x′0(τ) =
a0

a2 + p tanh(a2 p τ − q) , (11)

where p > 0 is a constant given by

p2 := δij

(
x′i − ai

a2

)(
x′j − aj

a2

)
(12)

and q is an integration constant. In fact, tanh q = a0/(a2 p) once we assume that x′0 = 0 at τ = 0.
In the special case that p = 0, x′i = ai/a2, and a0 6= 0, instead of Equation (11) we get,

x′0(τ) =
a0

a2
a0 τ

a0 τ − 1
, (13)

so that as τ approaches 1/a0, x′0 diverges. Furthermore, if a2 = 0, then a0 6= 0 and the temporal
coordinate of the accelerated observer varies with its proper time as

x′0(τ) =
1

2a0 (1− 2δij ai x′j)
(

e2a0τ − 1
)

. (14)
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Let us next turn to the translational acceleration of the static observer, A′µ, given by

A′µ =
D′

dτ
e′µ 0̂ , (15)

where the covariant differentiation here involves the Christoffel symbols for metric (6) in curvilinear
coordinates, namely,

Γ′αβγ = − 1
f
( f,γ δα

β + f,β δα
γ − f,δ ηδαηβγ) . (16)

In our convention, a comma denotes partial differentiation. It is then straightforward to calculate the
acceleration 4-vector using Equations (15) and (16)—the result is

A′µ = −ηµi f f,i , (17)

so that A′0 = 0 and A′i = 2(ai − a2x′i) f (x′), for i = 1, 2, 3. The translational acceleration 4-vector of
the observer as measured by the static observer itself is constant and is given by

A′µ̂ = A′α e′αµ̂ = −δi
µ f,i . (18)

The constant magnitude of the static observer’s acceleration is thus 2 p |a2|, since

A′µ̂ A′µ̂ = 4 a4 p2 (19)

and p2 is defined in Equation (12). From the speed of light and the magnitude of the acceleration, one
can construct the translational acceleration length of an observer in this congruence, namely,

L =
c2

2 p |a2| . (20)

Let us briefly digress here and examine the nature of the uniformly accelerated system under
consideration. For a2 6= 0, each observer that is spatially at rest in curvilinear coordinates is, in
general, uniformly accelerated, but the magnitude of acceleration is different for different observers. There
is an exception however. The static observer with x′i = ai/a2 follows a geodesic and has zero
translational acceleration—indeed, this observer is inertial and its inertial motion can be determined
from Equation (1) via its inverse transformation, namely,

xi = βi x0 + bi , βi :=
2a0ai

a2 + 2 a02 , bi = − ai

a2 + 2 a02 . (21)

Similarly, in terms of inertial coordinates, the uniformly accelerated motion of the observer with
x′µ = (x′0, 0, 0, 0) that remains at rest at the spatial origin of the curvilinear coordinate system can be
expressed as

xi =
ai

2 α2

(√
4 α2 x02 + 1− 1

)
, α2 := δij aiaj 6= 0 . (22)

On the other hand, if a2 = 0, then all accelerated observers have the same uniform acceleration
with magnitude 2 |a0|; that is,

A′µ̂ A′µ̂ = 4 a02
= 4 δij aiaj (23)

and the corresponding translational acceleration length is L = c2/(2 |a0|). For treatments of uniformly
accelerated motion in the theory of relativity, see, for instance, References [19–23].

For measurement purposes, the static observer’s spatial frame e′µ î, for i = 1, 2, 3, is carried
along its world line. It is possible to show explicitly that the spatial frame of the observer is indeed
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Fermi–Walker transported along its path. That is, each component e′µ î satisfies the equation of
Fermi–Walker transport, namely,

dSµ

dτ
+ Γ′µαβ e′α 0̂ S

β = (A′ · S) e′µ 0̂ − (e′0̂ · S) A′µ , (24)

where Sµ is Fermi–Walker transported along e′µ 0̂.
We have thus far demonstrated that observers that are spatially static in the accelerated system

under consideration have, in general, uniform translational accelerations and their spatial frames
are locally nonrotating as they propagate along their world lines. Employing the method of moving
frames, it is useful at this point to introduce the general acceleration tensor, namely,

D′

dτ
e′µα̂ = Φ′

α̂β̂
e′µβ̂ , (25)

where
Φ′

α̂β̂
= −Φ′

β̂α̂
, (26)

is the antisymmetric acceleration tensor of the observer with orthonormal tetrad frame e′µα̂. For the
static uniformly accelerated congruence of observers under consideration here, we find

Φ′
α̂β̂

= ηα̂0̂ f,β − ηβ̂0̂ f,α . (27)

In analogy with the Faraday tensor, the acceleration tensor can be decomposed into its “electric” and
“magnetic” parts. The electric part, Φ′

0̂α̂
= A′α̂, represents the invariant translational acceleration of

the observer; and the magnetic part, Φ′
î ĵ
= εî ĵk̂ ω′k̂, represents the observer’s invariant rotational

acceleration. The latter is the proper rate of rotation of the observer’s spatial frame with respect to a
locally Fermi–Walker transported frame. The acceleration scales can be constructed from the invariants
of the acceleration tensor [3]. We have demonstrated that the accelerated observers under consideration
have uniform translational accelerations and zero rotational accelerations. The generalization of these
results is the subject of the next section.

4. Conformal Invariance

Two spacetimes with metric tensors gµν(x) and g̃µν(x) are conformally related if

g̃µν(x) = Ω2(x) gµν(x) , Ω(x) > 0 . (28)

If the coordinate system is admissible in one spacetime, it is also admissible in the conformally related
spacetime. Conformal invariance preserves angles and leaves the local light cone invariant, but can
change lengths in a pointwise manner. Indeed, the corresponding spacetime intervals are related via
ds̃ = Ω(x) ds. Moreover, null geodesics are conformally invariant.

In this section, we go beyond Minkowski spacetime and consider accelerated observers in a
gravitational field. Imagine an accelerated observer in a spacetime with metric ds2 = gµν(x) dxµ dxν

following a world line with proper time τ. The observer carries an orthonormal tetrad frame eµ
α̂ such

that its acceleration tensor is given by

D
dτ

eµ
α̂ = Φα̂β̂(τ) eµβ̂ . (29)

Similarly, let us consider the corresponding world line in a conformally related spacetime with metric
ds̃2 = g̃µν(x) dxµ dxν, proper time τ̃, and orthonormal tetrad

ẽµ
α̂ = Ω−1(x) eµ

α̂ . (30)
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The corresponding acceleration tensor is given by

D̃
dτ̃

ẽµ
α̂ = Φ̃α̂β̂(τ̃) ẽµβ̂ , (31)

where the covariant differentiation here involves the Christoffel symbols of the conformally related
spacetime, namely,

Γ̃α
βγ = Γα

βγ +

(Ω,β

Ω
δα

γ +
Ω,γ

Ω
δα

β −
Ω,δ

Ω
gαδ gβγ

)
. (32)

From Equations (29)–(32), we find

Φ̃α̂β̂ =
1
Ω

[
Φα̂β̂ +

Ω,µ

Ω
(eµ

α̂ ηβ̂0̂ − eµ
β̂ ηα̂0̂)

]
. (33)

This result is a generalization of Equation (27) and indicates that under conformal rescaling, apart from
a scale factor of Ω−1, there is only a contribution to the translational acceleration of the observer and
there is no contribution to the rotational acceleration—that is,

Φ̃0̂î =
1
Ω

[
Φ0̂î +

Ω,µ

Ω
eµ

î

]
, Φ̃î ĵ =

1
Ω

Φî ĵ . (34)

In particular, if one world line is a geodesic, the conformally related world line is accelerated.
Apropos of the acceleration transformation, we can view Equation (6) as connecting a Minkowski

spacetime with metric ηαβ dx′α dx′β to another conformally related Minkowski spacetime with metric
f−2(x′) ηαβ dx′α dx′β. That is, in the context of observers in two conformally related Minkowski
spacetimes, the inertial observers that are spatially at rest with constant x′i in a global inertial frame
of reference correspond to uniformly accelerated observers in the conformally related Minkowski
spacetime. Therefore, in Equation (33), we have Φα̂β̂ = 0, eµ

α̂ = δ
µ
α and Ω = 1/ f . In this way,

Equation (33) simply reduces to Equation (27).

4.1. Conformal Invariance of Maxwell’s Equations

Imagine Faraday fields Fµν and F̃µν in the conformally related spacetimes. To establish a connection
between them, we assume that Fµν = F̃µν. Next, we note that

∇̃ν F̃µν =
1√
−g̃

∂

∂xν
(
√
−g̃ F̃µν) =

1
Ω4 ∇ν Fµν . (35)

Hence, source-free Maxwell’s equations

∇[ρ Fµν] = 0 , ∇ν Fµν = 0 , (36)

are conformally invariant. This is a natural consequence of the absence of any intrinsic length scale in
source-free electrodynamics [24].

It follows from the conformal invariance of Maxwell’s equations and Equation (6) that Maxwell’s
equations are invariant under the acceleration transformation. The same is true under constant scaling
of Minkowski spacetime coordinates (xµ 7→ σ xµ). These results imply that Maxwell’s equations are
invariant under the 15-parameter conformal group of Minkowski spacetime. On the other hand,
invariant length scales are associated with accelerated observers in relativity theory and hence,
electromagnetic fields measured along conformally related world lines
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Fα̂β̂ = Fµν eµ
α̂ eν

β̂ , F̃α̂β̂ = F̃µν ẽµ
α̂ ẽν

β̂ (37)

are related by
F̃α̂β̂ = Ω−2 Fα̂β̂ . (38)

Furthermore, for a test particle of mass M, charge Q, and 4-velocity uµ = dxµ/dτ, the Lorentz
force law

Duµ

dτ
=

Q
M

Fµ
ν uν , (39)

does not remain invariant under conformal rescaling. In fact,

D̃ũµ

dτ̃
=

Q
M

F̃µ
ν ũν (40)

is equivalent to

Ω
Duµ

dτ
+ Ω,ρ (uρuµ + gρµ) =

Q
M

Fµ
ν uν , (41)

which is consistent with uµ uµ = −1. Thus, particle acceleration breaks conformal invariance.

4.2. Curvature and Torsion

In nonlocal gravity [8], general relativity is extended such that one deals with one spacetime
metric and two metric-compatible connections. The Levi–Civita connection is given by the symmetric
Christoffel symbols, while the Weitzenböck connection is defined by

Γ′µνρ = Eµ
α̂ ∂ν Eρ

α̂ , (42)

where Eµ
α̂ is a smooth tetrad frame field defined on the spacetime manifold. In the conformally related

spacetime manifold, the tetrad frame field transforms as in Equation (30), so that for the Weitzenböck
connection we have

Γ̃′µνρ = Γ′µνρ +
Ω,ν

Ω
δ

µ
ρ . (43)

The Levi–Civita connection is torsion free, but has curvature. The transformation of curvature
under conformal transformation (28) is well known [25,26]—in particular, the totally traceless Weyl
curvature tensor turns out to be conformally invariant, i.e.,

C̃µ
νρσ = Cµ

νρσ . (44)

On the other hand, the Weitzenböck connection is curvature free, but has torsion. The tetrad frame
field Eµ

α̂ provides a global network of parallel tetrad frames via the Weitzenböck connection. Using
Equation (43), it is possible to show that curvature is left invariant under this transformation, namely,
R̃′µνρσ = R′µνρσ—in particular, the curvature of the conformally related Weitzenböck connection
vanishes as well. Therefore, the notion of a teleparallel frame field is, in this sense, conformally
invariant. Moreover, for the torsion tensor

Cµν
α = Γ′αµν − Γ′ανµ , (45)

we find

C̃µν
α = Cµν

α +
Ω,µ

Ω
δα

ν −
Ω,ν

Ω
δα

µ . (46)

Similarly, for the contorsion tensor,
Kµν

α = Γα
µν − Γ′αµν , (47)
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we find

K̃µν
α = Kµν

α +
Ω,ν

Ω
δα

µ −
Ω,ρ

Ω
gαρ gµν . (48)

It is interesting to define a new conformal torsion tensor by

Cα
βγ = gαδ

[
Cδ gβγ − Cβ gδγ +

1
2
(Cγβδ − Cγδβ) +

5
2

Cδβγ

]
, (49)

where Cµ is the torsion vector given by the trace of the torsion tensor,

Cµ = −Cµ
ν

ν = Cα
µα . (50)

It is straightforward to check that Cαβγ is antisymmetric in its first two indices and is totally traceless.
Moreover, in the conformally related spacetime, we have

C̃µ = Cµ − 3
Ω,µ

Ω
. (51)

Using Equations (46) and (51), we find that the conformal torsion tensor is indeed conformally invariant,
that is,

C̃α
βγ = Cα

βγ . (52)

The analogy between Equations (44) and (52) is noteworthy. The completely traceless and
conformally invariant torsion tensor Cµ

νρ is the analog of the completely traceless and conformally
invariant Weyl curvature tensor Cµ

νρσ.

5. Discussion

We have studied a specific congruence of accelerated observers in Minkowski spacetime.
The corresponding accelerated system is related to the conformal group of Minkowski spacetime. All
actual observers are accelerated. One can construct intrinsic acceleration scales from the acceleration of
the observer and the speed of light. The presence of an acceleration scale breaks conformal invariance.
This important point has been illustrated in detail in this paper.

A possible extension of our treatment would involve, for instance, the formulation of nonlocal
electrodynamics for the accelerated observers investigated in this work.
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