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Abstract: The fuzzy order convergence in fuzzy Riesz spaces is defined only for fuzzy order bounded
nets. The aim of this paper is to define and study unbounded fuzzy order convergence and some of
its applications. Furthermore, some theoretical concepts like the fuzzy weak order unit and fuzzy
ideals are studied in relation to unbounded fuzzy order convergence.
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1. Introduction

Zadeh [1] proposed the notion of fuzzy relations by generalizing the concepts of reflexivity,
antisymmetry, and transitivity. Later, Venugopalan [2] developed an efficient structure of fuzzy
partial ordered sets. Since then, many authors have studied fuzzy ordering and relations by adopting
different approaches [3–8].

Vector space is widely used in modeling different kinds of real-life scenarios. Beg and Islam [9]
gave the concept of fuzzy ordered linear spaces and studied their general properties and in [10,11]
introduced the notion of fuzzy Riesz spaces and Archimedean fuzzy Riesz spaces. Beg [12] defined
and characterized the fuzzy positive operator and in [13] gave further details on fuzzy order relations.
Hong [14] defined and studied many concepts like fuzzy Riesz subspaces, fuzzy ideals, fuzzy
bands, and fuzzy band projections. Recently, Park et al. [15] introduced the notion of Riesz fuzzy
normed spaces.

Classically, vector spaces are used with other tools like topology, norm, and metric. Different types
of convergence have many direct applications like in solving nonlinear equations [16,17]. Whereas,
in a series of papers [18–22], the unbounded order convergence is defined for the nets that are not
necessarily to be order bounded in Banach lattices, this is a different approach than convergence
in norm or topology. In function spaces, unbounded order convergence is the same as pointwise
convergence. Indeed, It is easily seen that in c0 or lp(1 ≤ p < ∞), unbounded order convergence of nets
is an analogy to coordinate-wise convergence, and in measure spaces, unbounded order convergence
of sequences is the same as convergence almost everywhere.

In order to handle imprecise and vague scenarios more effectively, a novel concept of unbounded
fuzzy order convergence is proposed to deal with unbounded fuzzy ordered nets. In this regard,
first the fuzzy order convergence [9,14] is redefined to overcome certain flaws, and based on this,
unbounded fuzzy order convergence is defined. Then, an in depth theoretical investigation is done
to study its various properties. However, it is much harder to determine the unbounded fuzzy order
convergence of a given net. To resolve this issue, the notion of the fuzzy weak order unit is proposed
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to reduce the labor of checking unbounded fuzzy order convergence. Thus, unbounded fuzzy order
convergence is nicely characterized in fuzzy Dedekind complete Riesz spaces.

To further develop the theory for practical use, the completeness of a fuzzy Riesz space is also
explored with respect to unbounded fuzzy order convergence. For this purpose, the fuzzy ideals and
fuzzy bands are studied in connection with fuzzy order convergence, and some results are given in the
end as applications. The results and theory developed in this paper not only helped us to achieve the
main goal of defining and characterizing unbounded fuzzy order convergence in fuzzy Riesz spaces
but can also be used to develop and study more theoretical concepts like locally convex-solid fuzzy
Riesz spaces, fuzzy Banach lattices, and unbounded fuzzy norm convergence in fuzzy Banach lattices,
for better practical applications.

The paper is organized as follows. Section 2 provides the preliminary concepts necessary to
understand the proposed work. Section 3 is for unbounded fuzzy convergence and its basic properties.
Section 4 is devoted to defining and studying the fuzzy weak order unit in Dedekind complete fuzzy
Riesz space. Finally, some concluding remarks for possible future work are given in Section 5.

2. Preliminaries

We recall some basic concepts from [9,10,14].

Definition 1. A fuzzy order µ on a set K is a fuzzy set on K× K with the understanding that k precedes g if
and only if µ(k, g) > 1/2 for k, g ∈ K and the following conditions are also satisfied:

(i) ∀ k ∈ K µ(k, k) = 1 (reflexivity);
(ii) for k, g ∈ K µ(k, g) + µ(g, k) > 1 implies k = g (antisymmetric);
(iii) for k, h ∈ K µ(k, h) ≥ ∨

g∈K[µ(k, g) ∧ µ(g, h)] (transitivity).

The space (K, µ) is called fuzzy ordered set (FOS).

Definition 2. Let (K, µ) be an FOS, for k ∈ K, two related fuzzy sets ↑ k and ↓ k are known as (↑ k)(g) =
µ(k, g) and (↓ k)(g) = µ(g, k) for g ∈ K, respectively. For C ⊆ K, then two fuzzy sets U(C) and L(C) are
defined as follows.

U(C)(g) =

{
0, if (↑ k)(g) ≤ 1/2 f or some k ∈ C;

(∩k∈C ↑ k)(g), otherwise.

L(C)(g) =

{
0, if (↓ k)(g) ≤ 1/2 f or some k ∈ C;

(∩k∈C ↓ k)(g), otherwise.

Let (C)u denote the set of all upper bounds of C, and k ∈ (C)u if U(C)(k) > 0. Analogously, (C)l denotes
the set of all lower bounds, and k ∈ (C)l if L(C)(k) > 0. In addition, d ∈ K is known as the supremum of C in
K if (i) d ∈ (C)u and (ii) g ∈ (C)u implies g ∈ (d)u. The infimum is defined analogously. A subset C is said
to be fuzzy order bounded if (C)u and (C)l are non-empty.

Definition 3. A real vector space K with fuzzy order µ is known as a fuzzy ordered vector space (FOVS) if
µ satisfies:

(i) for k, g ∈ K if µ(k, g) > 1/2 then µ(k, g) ≤ µ(k + h, g + h) for all h ∈ K;
(ii) for k, g ∈ K if µ(k, g) > 1/2 then µ(k, g) ≤ µ(λk, λg) for all 0 ≤ λ ∈ R.

Let (K, µ) be an FOVS. Then k ∈ K is known as positive if µ(0, k) > 1/2 and negative if µ(k, 0) >
1/2. Moreover, K+ will be referred to as the set of positive elements in K. C ⊆ K is called a directed
upwards set if for each finite subset D of A we have C ∩ (D)u 6= ∅. The directed downwards set is
defined analogously. Furthermore, a net kλ ↑ k for each λ ∈ Λ reads as the net (kλ) being directed
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upwards to k, i.e., for λ0 ≤ λ, we have µ(kλ0 , kλ) > 1/2, and sup{kλ} = k. kλ ↓ k is defined
analogously.

An FOVS (K, µ) is said to be Archimedean if µ(nk, g) > 1/2 for all n ∈ N implies that µ(k, 0) >
1/2 for all k, g ∈ K. Therefore, { k

n} ↓ 0 and {nk} is unbounded from above for all 0 6= k ∈ K+.

Definition 4. An FOVS (K, µ) is said to be a fuzzy Riesz space (FRS) if k ∨ g = sup{k, g} and k ∧ g =

inf{k, g} exist in K for all k, g ∈ K.

For k ∈ K, k+ = k ∨ 0 and k− = (−k) ∨ 0 are defined to be positive and negative parts of k,
respectively, whereas the absolute value of k is defined as |k| = (−k)∨ k. Furthermore, let k1, k2 ∈ K be
called orthogonal or disjoint if k1 ∧ k2 = 0, and written as k1⊥k2. In addition, for C1, C2 ⊂ K are called
disjoint and denoted by C1 ⊥ C2 if k1 ⊥ k2 = 0 for each k1 ∈ C1 and k2 ∈ C2. Moreover, if ∅ 6= C ⊆ K,
then its disjoint complement is defined as Cd = {k ∈ K : k ⊥ g f or each g ∈ C}.

Proposition 1. If k and g are elements of an FRS (K, µ), then

(i) k = k+ − k−;
(ii) k+ ∧ k− = 0;
(iii) |k| = k+ + k−;
(iv) |k| = 0⇔ k = 0;
(v) µ(||k| − |g||, |k− g|) > 1/2.

Definition 5. A vector subspace L of an FRS (K, µ) is known as a fuzzy Riesz subspace if L is closed under
fuzzy Riesz operations ∨ and ∧.

Definition 6. An FRS (K, µ) is called:

(i) fuzzy order complete if each non-empty subset of K has a supremum and infimum in K;
(ii) fuzzy σ− order complete if each nonempty countable subset of K has a supremum and infimum in K;
(iii) fuzzy Dedekind complete if each non-empty subset of K which is bounded from above has a supremum in K;
(iv) fuzzy σ− Dedekind complete if each nonempty countable subset of K that is bounded from above has a

supremum in K.

3. Unbounded Fuzzy Order Convergence

Although the notion of fuzzy order convergence is a central tool in studying the fuzzy Riesz
spaces, the definition given in [9,14] has some limitations that we now try to overcome. Later, it will be
generalized as unbounded fuzzy order convergence to open new horizons, and its various properties
are studied.

Definition 7. A net (kλ)λ∈Λ in an FRS (K, µ) is said to be fuzzy order convergent (fo-convergent for short)

to k ∈ K denoted kλ
f o−→ k if there exists another net (gλ)λ∈Λ in K+ directed downwards to zero such that

µ(|kλ − k|, gλ) > 1/2 for each λ ∈ Λ.

But the above definition cannot truly fulfill the concepts of convergence, as intuitively, if we
add some terms at the start of net, then convergence should not be changed. The following example
illustrates our point.

Example 1. Let (K, µ) be an Archimedean FRS. Then for k ∈ K+, the net { k
n} ↓ 0. Therefore, k

n
f o−→ 0

according to Definition 7. On the other hand, negative integers are added and placed between 1 and 2 in the
index set. Thus, the new index set is denoted as

Λ = {1,−1,−2,−3, ..., 2, 3, 4, ...},
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and the extended net (gn) is defined as

gn =


k, if n = 1

|n|k, if n ∈ −N;
k
n , otherwise.

Clearly, (gn) is not fuzzy order convergent to zero according to Definition 7.

This deficiency is pointed out in [18] for the classical order convergence. Therefore, a new
definition is proposed to overcome this issue.

Definition 8. A net (kλ)λ∈Λ in an FRS (K, µ) is said to be fuzzy order convergent (fo-convergent for short) to

k ∈ K denoted kλ
f o−→ k if there exists another net (gγ)γ∈Γ in K+ directed downwards to zero, and for each

γ ∈ Γ there exist λ0 ∈ Λ such that µ(|kλ − k|, gγ) > 1/2 whenever λ ≥ λ0.

One can check—the extended net in Example 1 is fuzzy order convergent to zero according to
Definition 8. Clearly, Definition 7 implies Definition 8. From here on, fuzzy order convergence will
be considered according to Definition 8 without reference. The generalization of fo-convergence is
given below.

Definition 9. A net (kλ)λ∈Λ in an FRS (K, µ) is said to be unbounded fuzzy order convergent (ufo-convergent

for short) to k ∈ K denoted kλ
u f o−−→ k if |kλ − k| ∧ g

f o−→ 0 for each g ∈ K+.

Note that fo-convergence implies ufo-convergence. The ufo-convergence has a number of nice
characterizing conditions.

Proposition 2. If (kλ)λ∈Λ and (gγ)γ∈Γ are nets in an FRS (K, µ), then the following statements are true:

(i) kλ
u f o−−→ k iff (kλ − k)

u f o−−→ 0;

(ii) if kλ
u f o−−→ k and gγ

u f o−−→ g, then akλ + bgγ
u f o−−→ ak + bg for each a, b ∈ R;

(iii) if kλ
u f o−−→ k and kλ

u f o−−→ g, then k = g;

(iv) if kλ
u f o−−→ k, then

(a) (kλ)
+ u f o−−→ k+;

(b) (kλ)
− u f o−−→ k−.

Furthermore, (a) and (b) imply that

|kλ|
u f o−−→ |k|.

(v) If a positive net kλ
u f o−−→ k and µ(kλ, gγ) > 1/2, gγ

u f o−−→ g, then µ(k, g) > 1/2.

Proof. (i) Suppose kλ
u f o−−→ k. Then |(kλ − k) − 0| ∧ g = |kλ − k| ∧ g

f o−→ 0 for each g ∈ K+,

hence (kλ − k)
u f o−−→ 0. The converse can be proved analogously.

(ii) Suppose kλ
u f o−−→ k and gγ

u f o−−→ g. Then we have

µ(|(kλ + gγ)− (k + g)| ∧ h, (|kλ − k|+ |gγ − g|) ∧ h) > 1/2

and
µ((|kλ − k|+ |gγ − g|) ∧ h, |kλ − k| ∧ h + |gγ − g| ∧ h) > 1/2
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for each λ, γ, and h ∈ K+. It follows that kλ + gγ
f o−→ k + g. Fix a ∈ R, and let h ∈ K+.

Check that |akλ − ak| ∧ h = |a||kλ − k| ∧ h. If |a| ≤ 1, then µ(|a||kλ − k| ∧ h, |kλ − k| ∧ h) > 1/2

and |kλ − k| ∧ h
f o−→ 0. If |a| > 1 then |h| ≤ |a|h and µ(|a||kλ − k| ∧ h, |a||kλ − k| ∧ |a|h) > 1/2

and |a|(|kλ − k| ∧ h)
f o−→ 0. In each case akλ

u f o−−→ ak.
1. Let µ(|k − g|, |k − kλ| + |g − kλ|) > 1/2 for each λ. Let h = |k − g|. Observe that |k − g| =

|k− g| ∧ h. Also
µ(|k− g| ∧ h, |k− kλ| ∧ h + |g− kλ| ∧ h) > 1/2.

Hence, k = g.

2. Suppose |kλ − k| u f o−−→ 0. As µ(|(kλ)
+ − k+|, |kλ − k|) > 1/2 for each λ. So |(kλ)

+ − k+| u f o−−→ 0.

Hence, (kλ)
+ u f o−−→ k+. Thus −kλ

u f o−−→ −k this gives that (kλ)
− u f o−−→ k−. The final statement

follows from µ(||kλ| − |k||, |kλ − k|) > 1/2.

3. By Proposition 2, kλ = |kλ|
u f o−−→ |k|. k = |k| by uniqueness of fuzzy order limit. As µ(0, gγ− kλ) >

1/2, then gγ − kλ
u f o−−→ g− k, and we have µ(k, g) > 1/2.

Remark 1. Let (kλ)λ∈Λ be a fuzzy order bounded net in a Dedekind complete FRS (K, µ). Then kλ
f o−→ k iff

k = lim supλ(kλ) = lim infλ(kλ). Moreover, two sequences (kn) and (km) are called disjoint if |kn| ∧ |km| =
0 or (kn ⊥ km) holds for m 6= n. The ufo-convergence for disjoint sequences in σ-Dedekind complete FRS is
discussed in the following proposition.

Proposition 3.

(i) Let (kn)n∈N be a disjoint sequence in a σ-Dedekind complete FRS (K, µ). Then kn
u f o−−→ 0 in K.

(ii) Let (kn)n∈N be a sequence in an FRS (K, µ). If kn
u f o−−→ 0, then infm(knm) = 0 for each increasing

sequence (nm) of natural numbers.

Proof. (i) Fix k ∈ K+. We will show that lim supn(|kn| ∧ k) = 0. Indeed, let g ∈ K+ such that
µ(g, supn(|kn| ∧ k)) > 1/2. Therefore,

µ(g ∧ |kn|, (sup
n+1

(|kn+1| ∧ k) ∧ |kn|) > 1/2 and sup
n+1

(|kn+1| ∧ |kn| ∧ k) = 0.

Thus, g ∧ |kn| = 0 for all n ∈ N. It follows that

g = g ∧ sup
n≥1

(|kn| ∧ k) = sup
n≥1

(g ∧ |kn| ∧ k) = 0.

Hence, |kn| ∧ k
f o−→ 0.

(ii) Suppose kn
u f o−−→ 0. Take (nm) as an increasing sequence of natural numbers. Clearly, knm

u f o−−→ 0.

Let µ(k, knm) > 1/2 for each m ∈ N, and k ∈ K+. Therefore, k = knm ∧ k
f o−→ 0 implies that k = 0.

Hence, infm(knm) = 0.

4. Fuzzy Weak Order Unit

Our next goal is to reduce the task of checking ufo-convergence at every positive vector to a single
special vector, which will be defined as fuzzy weak order unit that allows us to nicely characterize
ufo-convergence. Before that, we present some important theoretical concepts as follows.

Definition 10. Let (K, µ) be an FRS.
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(i) A subset C of K is said to be fuzzy order closed (fo-closed for short) if for any net (kλ) ⊂ C and k ∈ K

with kλ
f o−→ k in K implies k ∈ C.

(ii) A subset S of K is called fuzzy solid if µ(|k|, |g|) > 1/2 and g ∈ S implies k ∈ S.
(iii) A fuzzy solid vector subspace I of K is called a fuzzy ideal of K.
(iv) A fuzzy order closed ideal in K is said to be a fuzzy band.

For k ∈ K, the fuzzy band generated by k is known as the principal fuzzy band and defined as
Bk = {g ∈ K : |g| ∧ n|k| ↑ |g|} by Corollary 5.4 in [14]. The fuzzy band generated by a non-zero
positive element is discussed as follows.

Definition 11. Let (K, µ) be an FRS, and 0 6= w ∈ K+ is said to be a fuzzy weak order unit if the fuzzy band
generated by w satisfies Bw = K, or equivalently, k ∧ nw ↑ k : n ∈ N for each k ∈ K+.

Proposition 4. Let (K, µ) be an Archimedean FRS. Then 0 6= w ∈ K+ is a fuzzy weak order unit if and only
if k ⊥ w implies k = 0 for each k ∈ K+.

Proof. It follows from the definition of fuzzy weak order unit, Theorems 4.7 and 5.8 in [14].

Proposition 4 leads to the following result.

Proposition 5. Let (K, µ) be a Dedekind complete FRS with a fuzzy weak order unit w. Then kλ
u f o−−→ 0 iff

|kλ| ∧ w
f o−→ 0.

Proof. Suppose kλ
u f o−−→ 0. Take any g ∈ K+. As K is fuzzy Dedekind complete, then

(lim sup
λ

(|kλ| ∧ g)) ∧ w = (lim sup
λ

(|kλ| ∧ w)) ∧ g = 0∧ g = 0.

Thus, w being a fuzzy weak order unit implies that lim supλ(|kλ| ∧ g) = 0. Hence, |kλ| ∧ g
f o−→ 0.

The converse follows from Definition 9.

We defined and studied the properties of the fuzzy component in Dedekind complete FRS in
which ufo-convergence is nicely characterized.

Definition 12. Let (K, µ) be an FRS. A vector k ∈ K+ is said to be the fuzzy component of w whenever
k ∧ (w− k) = 0 for w ∈ K+.

Remark 2. For k ∈ K, wk denotes the fuzzy component of w in the fuzzy band generated by k. So for each α ∈ R,
w(k−αw)+ is the fuzzy component of w in the fuzzy band generated by (k− αw)+, and we set e(α) = w(k−αw)+ .
In a Dedekind complete FRS (K, µ) with k ∈ K+ and letting e = wk+ , then ke = k+.

Now, many lemmas are proved in order to characterize the ufo-convergence with the help of
fuzzy components.

Lemma 1. If (K, µ) is a Dedekind complete FRS and k ∈ K+, then

µ(e(α),
1
α

k) > 1/2

for α > 0.

Proof. Remark 2 yields that (k− αw)e(α) = (k− αw)+ and µ(0, (k− αw)+) > 1/2. Therefore, (k−
αw)e(α) = ke(α) − αwe(α) and µ(0, k− αe(α)) > 1/2 implies µ(e(α), 1

α k) > 1/2.
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Lemma 2. If (K, µ) is a Dedekind complete FRS and (kλ) a net in K+, then ∧λwkλ
= 0 implies ∧λkλ = 0.

But the converse is not true.

Proof. For each λ, µ(kλ ∧ w, wkλ
) > 1/2, so (∧λkλ) ∧ w = ∧λ(kλ ∧ w) and µ(∧λ(kλ ∧ w),∧λwkλ

) >

1/2. Thus, (∧λkλ) ∧ w = 0. Hence, ∧λkλ = 0. To see that the converse is false, take a set kn = 1
n w for

all n ∈ N.

Lemma 3. Let (K, µ) be a Dedekind complete FRS and (kλ) a net in K+. Then ∧λw(kλ−αw)+ = 0 for each
α > 0 iff ∧λkλ = 0.

Proof. For the forward implication, we show that µ(∧λkλ, αw) > 1/2 for each α > 0. Fix α.
By Lemma 2, ∧λ(kλ − αw)+ = 0. So µ(∧λ(kλ − αw), 0) > 1/2, which implies µ(∧λkλ, αw) > 1/2.

The converse follows from Lemma 1.

Lemma 4. If (K, µ) is a Dedekind complete FRS and (kλ) a net in K+, then wkλ

f o−→ 0 implies kλ
u f o−−→ 0.

The converse is not true.

Proof. The proof is essentially the same as for Lemma 2 with the use of Lemma 5.

Now, the characterization of ufo-convergence is established in the following theorem.

Theorem 1. Let (K, µ) be a Dedekind complete FRS and (kλ) a net in K+. Then w(kλ−αw)
f o−→ 0 for each

α > 0 iff kλ
u f o−−→ 0.

Proof. For the forward implication, suppose the net (kλ) is fuzzy order bounded. We show that

µ(lim sup
λ

kλ, αw) > 1/2 ∀ α > 0.

Fix α. By Lemma 4, (kλ − αw)+
f o−→ 0. In particular, lim supλ(kλ − αw)+ = 0, thus

µ(lim supλ(kλ − αw), 0) > 1/2 such that µ(lim supλ kλ, αw) > 1/2.
Now drop the supposition that (kλ) is fuzzy order bounded. For every α > 0,

µ(w(kλ∧w−αw)+ , w(kλ−αw)+) > 1/2 and w(kλ−αw)+
f o−→ 0.

Since kλ ∧ w is fuzzy order bounded, then kλ ∧ w
f o−→ 0.

The backward implication is followed from Lemma 1.

Fuzzy Ideals and Completeness with Respect to Ufo-Convergence

The fuzzy ideal is a useful structure with important properties that can help to study
ufo-convergence. To work in the fuzzy ideal is much easier than to work in the whole space. Indeed, it is
shown that ufo-convergence in the fuzzy ideal is equivalent to ufo-convergence in the complete space.

Remark 3. Let (K, µ) be an FRS, I be a fuzzy ideal of K, and (kλ) ⊂ I. If kλ
f o−→ 0 in I, then kλ

f o−→ 0 in K.

Conversely, If (kλ) is fuzzy order bounded in I and kλ
f o−→ 0 in K, then kλ

f o−→ 0 in I.

Proposition 6. Let (K, µ) be a Dedekind complete FRS and (kλ) a net in fuzzy ideal I of K. Then kλ
u f o−−→ 0 in

I iff kλ
u f o−−→ 0 in K.
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Proof. Suppose kλ
u f o−−→ 0 in K. Then for any g ∈ I+ such that |kλ| ∧ g

f o−→ 0 in K, Remark 3 yields

|kλ| ∧ g
f o−→ 0 in I. Hence, kλ

u f o−−→ 0 in I. Conversely, take any g ∈ I+, then |kλ| ∧ g
f o−→ 0 in I,

and again by Remark 3, |kλ| ∧ g
f o−→ 0 in K. It follows that for any g ∈ I+ and positive h ∈ Id such that

|kλ| ∧ (g + h)
f o−→ 0 = |kλ| ∧ g

f o−→ 0 in K.
For any u ∈ K+ and z ∈ (I ⊕ Id)+, we have u ∧ z ∈ (I ⊕ Id)+. Therefore, by Remark 3,

|kλ| ∧ (u + z)
f o−→ 0 in K, or equivalently,

lim sup
λ

(|kλ| ∧ u) ∧ z = lim sup
λ

(|kλ| ∧ (u ∧ z)) = 0.

Theorem 4.7 (i) in [14] yields that (I ⊕ Id)d = {0}. Thus,

lim sup
λ

(|kλ| ∧ u) = 0.

Hence, |kλ| ∧ u
f o−→ 0 in K.

The closeness of ufo-convergence is defined and discussed as follows.

Definition 13. Let (K, µ) be an FRS. For C ⊂ K is said to be unbounded fuzzy order closed (ufo-closed for

short) if for any net (kλ) ⊂ C and k ∈ K with kλ
u f o−−→ k in K implies k ∈ C.

Proposition 7. Let L be a fuzzy Riesz subspace of an FRS (K, µ). Then L is ufo-closed in K iff L is fo-closed in K.

Proof. The forward implication is obvious.

Conversely, suppose L is fo-closed in K. Let (gλ) ⊆ L and k ∈ K such that gλ
u f o−−→ k in K.

By Lemma 2(iv), |gλ|
u f o−−→ |k| in K. Therefore, without loss of generality, consider (gλ) ⊆ L+ and

k ∈ K+. Observe that for each u ∈ K+, then

µ(|gλ ∧ u− k ∧ u|, |gλ − k| ∧ u) > 1/2 and |gλ − k| ∧ u
f o−→ 0 in K. (1)

Consequently, for any g ∈ L+, gλ ∧ g
f o−→ k ∧ g in K. As L is fo-closed, then k ∧ g ∈ L. On the

other hand, for any u ∈ (Ld)+, then gλ ∧ u = 0 for each λ, so that by (1), k ∧ u = 0. Thus, k ∈ Ldd,
which is fuzzy band generated by L in K.

It follows that there is a net (uγ) in the fuzzy ideal generated by L+ such that uγ ↑ k in K.
Moreover, for each γ there exists zγ ∈ L such that µ(uγ, zγ) > 1/2. So

µ(uγ ∧ k, zγ ∧ k) > 1/2 and µ(zγ ∧ k, k) > 1/2

implies that uγ ↑ k in K. Therefore, zγ ∧ k
f o−→ k in K. Hence, zγ ∧ k ∈ L and L is fo-closed, then k ∈

L.

5. Conclusions

In the present paper, fuzzy order convergence is generalized as unbounded fuzzy order
convergence. Many other concepts like fuzzy weak order units and fuzzy components are studied,
and many related results are proved. In addition, some applications of unbounded fuzzy order
convergence are provided. For future research, one can define and explore the notions of fuzzy locally
convex solid Riesz spaces and study different fuzzy norms with respect to fuzzy ordering to develop
fuzzy norm lattices, which will lead to the fuzzy Banach lattices.
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