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Abstract: A timing constraint and a high level of reliability are the fundamental requirements for
designing hard real-time systems. To support both requirements, the N modular redundancy (NMR)
technique as a fault-tolerant real-time scheduling has been proposed, which executes identical copies
for each task simultaneously on multiprocessor platforms, and a single correct one is voted on,
if any. However, this technique can compromise the schedulability of the target system during
improving reliability because it produces N identical copies of each job that execute in parallel on
multiprocessor platforms, and some tasks may miss their deadlines due to the enlarged computing
power required for completing their executions. In this paper, we propose task-level N modular
redundancy (TL-NMR), which improves the system reliability of the target system of which tasks are
scheduled by any fixed-priority (FP) scheduling without schedulability loss. Based on experimental
results, we demonstrate that TL-NMR maintains the schedulability, while significantly improving
average system safety compared to the existing NMR.

Keywords: hard real-time systems; schedulability; reliability; N modular redundancy; multiprocessor
platform; fixed-priority scheduling

1. Introduction

Most embedded systems are known as real-time, of which timing constraints are one of the system
design requirements. One of the most important timing constraints in real-time systems is to complete
executions within their corresponding deadlines [1]. Therefore, the correctness of a real-time system
depends on the time in which the correct logical and functional output is generated. One class of
real-time systems with strict timing constraints is the hard real-time system. If the timing constraints of
hard real-time systems are not met, the consequences can be life threatening or cause serious economic
losses. Therefore, hard real-time system designers must ensure that all timing constraints are met
before the target system is actually implemented.

In addition to meeting the timing constraints of a hard real-time system, the systems functional
accuracy should be guaranteed [2]. An output produced in a timely manner is not reliable when the
system is out of the specified functional correctness. This deviation occurs in a computer system when
the system is defective. Therefore, hard real-time systems must meet all timing constraints of tasks
while they are not defective. Timing constraints in real-time applications can be met through proper
job scheduling, and fault tolerance can be achieved by obtaining the required level of reliability.

Although many fault-tolerant techniques have been previously implemented using hardware[3],
recent software-based techniques such as rollback, checkpointing, and re-execution have been
proposed, which were initially designed for uniprocessor systems [4–6]. Checkpoints using the
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rollback technology manage each checkpoint, where the state of the system is stored in stable
storage, and the system status is restored to the latest checkpoint if a transient error is detected [4].
The re-execution technique runs a job multiple times and selects the correct output obtained during
multiple runs [5,6]. If all outputs are incorrect during the multiple runs, it re-executes the job to improve
system reliability. Under the re-execution technique, tasks execute multiple times, which increases
the possibility of deadline misses due to prolonged execution times. Therefore, existing research
considering the re-execution technique aims at improving the system reliability of mixed-critical
systems or energy-sensitive real-time systems; however, the schedulability of the system has inevitably
been compromised.

In multi-processor domains, errors can be tolerated by taking advantage of the functionality of
multiple processors [7–9]. The most common approach is the primary-backup approach in which the
backup of a task executes if its primary does not execute successfully [7]. Backup overloading approach
schedules a backup copy of the primary job in a time-overlapping manner for operational efficiency [8].
Another efficient overloading algorithm on multiple processors has been proposed through dynamic
logical grouping between copies of tasks [9]. Regarding a hardware approach, Cirinei et al. proposed a
dynamic reconfiguration of a multiprocessor hardware platform with a balance between performance
and fault tolerance through concurrent replication [10]. N modular redundancy (NMR) executes
identical copies for each task simultaneously on multiprocessor platforms, and a single correct output
is voted if any. Because this technique produces N identical copies of each job, which execute in parallel,
some tasks may miss their deadlines owing to enlarged computing power required for completing
their execution [4–6].

Although NMR to make the target system tolerant to a transient fault is an effective approach
for real-time scheduling, it can compromise the schedulability of the target system while improving
reliability [4]. Because this technique produces N identical copies of each job, which are executed
in parallel, some tasks may miss their deadlines owing to enlarged computing power required for
completing their executions. This is due to the N modular redundancy techniques limited capability
of forcing the same N number of copies for all tasks, where the number N is determined without
schedulability analysis [4,6].

In this study, we propose a task-level N modular redundancy (TL-NMR) technique, which
improves the system reliability of the target system in which tasks are scheduled by any fixed-priority
(FP) scheduling without schedulability loss. The TL-NMR framework determines the number of
copies (not the same number of copies for all the tasks) of each job Jq

k of a task τk while ensuring
that every copied job can complete its execution before its absolute deadline by effectively using a
new response-time analysis (RTA) proposed in this paper. Then, Nk copies of each job Jq

k execute
simultaneously on multiple processors under the given FP scheduler, and a single correct output
(if any) is voted on. Based on the experimental results, we demonstrate that TL-NMR maintains
schedulability while significantly improving the average system safety, compared to the existing NMR.

The remainder of this paper is organized as follows. Section 2 presents our system model including
task and reliability models. Section 3 introduces our proposed fault-tolerant scheduling framework
called TL-NMR. Section 5 evaluates RTA for TL-NMR with various performance metrics. Section 6
concludes this study.

2. System Model

In this section, we present the system model of our target system, which includes task and
reliability models.

2.1. Task Model

We consider the Liu and Layland task model [1] for m identical processors in a hard real-time
system, in which a set τ of tasks τk(1 ≤ k ≤ |τ|) are denoted by three tuples of parameters, i.e., τk =

(Tk, Ck, Dk). For a given period Tk, worst-case execution time Ck, and relative deadline Dk, a task τk is
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supposed to invoke a series of jobs whose arrivals (also called release times) are at least Tk time units
away from each other. In addition, each job of τk is required to execute for at most Ck time units to
complete its execution and such an execution should be ended within Dk time units.

The q-th job Jq
k is invoked by a task τk at its release time rq

k , and its execution should be completed
before its absolute deadline dq

k as a timing constraint. We let the q-th job Jq
k ’s finishing time be f q

k ,
i.e., f q

k should be less than or equal to dq
k to satisfy the timing constraint; then the job Jq

k is said to be
schedulable. Consequently, a task τk is schedulable if every job of τk is schedulable, and a task set τ is
schedulable when every task τk is schedulable. When the TL-NMR technique is applied, Nk copies are
produced for each job Jq

k . Here, each copy (i.e., each copied job) is denoted by Jq,p
k , where 1 ≤ p ≤ Nk

holds, and a task τk is schedulable if every job Jq,p
k of τk is schedulable. We assume that each single

job cannot execute in parallel on multiple processors simultaneously. All copied jobs Jq,p
k can have

different finishing times f q,p
k depending on the scheduling algorithm; however, they have the same

release time rq
k and absolute deadline dq

k.
The response time Rk of a task τk is given by maxJq

k∈τ( f q
k − rq

k) (maxJq,p
k ∈τ( f q,p

k − rq
k) when the

TL-NMR technique is applied). By the definition of the response time Rk, a task set τ is guaranteed to
be schedulable if Ri ≤ Di holds. We target a constrained-deadline task system in which Ck ≤ Dk ≤ Tk
holds for every task τk ∈ τ. We consider a global preemptive work-conserving scheduling algorithm
in which a job can migrate from one processor to another and a lower priority job’s execution can
be hindered by a higher priority one. We assume quantum-based time where a time unit describes a
quantum length of one.

2.2. Reliability Model

Among various types of faults, we consider the transient fault for our system model, which occurs
for a short time without damaging the hardware devices. Reliability is the degree of tolerance for target
systems against transient faults, which has been addressed by a number of existing studies, regarding
a task (called task reliability) and a system (called system reliability) [6]. Task reliability is defined as
the possibility that a single job of the task can execute without a transient fault. For a given average
fault, arrival rate γ and exponential distribution, the task reliability Υk of a task τk is given by [6].

Υk = e−γCk . (1)

We assume that at most one transient fault can occur for a single job and it does not change the
worst-case execution time Ck of a task τk as a common assumption [11].

In the existing NMR, each job’s N identical copies are executed on multiple processors
simultaneously (sharing the same release time rq,p

k and absolute deadline dq,p
k ), and their results

are voted to produce a single correct output (with no transient faults) if any. Unlike the existing NMR
technique, our proposed TL-NMR allows different tasks to execute different number of copies for
each execution. We denote the number of such copies by Nk (each τk can have different values of Nk).
We describe the method to determine Nk in Section 3. By the definition of reliability, 1− Υk implies the
possibility that a job Jq

k does not successfully execute owing to a transient fault. In addition, TL-NMR
selects a correct job (if any) among Nk identical jobs. Thus, Υk under the TL-NMR technique can be
re-formulated as follows:

Υk = 1− (1− e−γCk )Nk . (2)

Then, system reliability Υ(τ) is defined as the average of task reliability Υk in a task set τ and is
calculated as

Υ(τ) =
∑τk∈τ Υk

|τ| (3)
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For designing a hard real-time system, the reliability of the system should be maintained at a
high level and every single execution of a task should be finished within its corresponding absolute
deadline. The system safety Ω(τ) to quantify system reliability and schedulability simultaneously
is defined as the product of system reliability Υ(τ) and schedulability (one if schedulable and zero
otherwise) of τ. Thus, Ω(τ) is Υ(τ) if Rk ≤ Dk for all τk ∈ τ, and zero otherwise.

3. TL-NMR Framework

In this section, we propose TL-NMR, which improves the system reliability of a target system in
which tasks are scheduled by any FP scheduling without schedulability loss. The TL-NMR framework
determines Nk, which represents the individual number of copies of each job Jq

k of a task τk by effectively
using a new RTA proposed in this paper. Then, Nk copies of each job Jq

k execute simultaneously on
multiple processors under the given FP scheduler, and a single correct output (if any) is voted.

Because a real-time scheduling algorithm exploiting the existing NMR technique schedules N
copies of each job, it requires N times Ck (i.e., N · Ck) for each τk. Thus, some jobs (although they
satisfy their absolute deadlines under vanilla (It indicates a scheduling algorithm that does not
incorporate NMR.) FP scheduling) may miss their absolute deadlines owing to prolonged execution
times. Figure 1 illustrates the scenario where a schedulable task set under vanilla RM scheduling RM
scheduling (assigns a higher priority to that task τk which has a small Tk.) becomes unschedulable
owing to NMR. τ2 and τ3 have the same priority owing to their same Ti; however, we assume that τ2

has a higher priority than τ3 according to a simple tie-breaking rule that a task with a smaller task
index has a higher priority. As shown in Figure 1, jobs of three tasks τ1, τ2, and τ3 are schedulable
under vanilla RM on m = 3 processors (Figure 1a). Considering RM scheduling that exploits NMR for
N = 2, two identical copies of each job are scheduled (Figure 1a). The first job J1,1

3 of a job J1
3 starts

its execution at time instant t = 2, and it is preempted at t = 4 owing to higher priority jobs. Then,
it completes its execution at t = 8. However, the second job J1,2

3 of the job J1
3 begins its execution at

t = 6 because all the three processors are occupied by higher priority jobs. Then, it misses its absolute
deadline at t = 8 because it does not execute completely for Ck = 4.

τ1

τ2

τ3
0 4 8

𝐽1
1 𝐽1

2

𝐽2
1

job release

/deadline

𝐽3
1

(a) Vanilla RM

τ1

τ2

τ3
0 4 8

𝐽1
1,1
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1,2

𝐽1
2,1

𝐽1
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𝐽2
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𝐽2
1,2

𝐽3
1,1

𝐽3
1,1

𝐽3
1,2

deadline miss

(b) RM incorporating NMR (N = 2)

Figure 1. Schedules under vanilla RM and RM incorporating NMR (N = 2) for an example task set
τ = {τ1(T1 = 4, C1 = 2, D1 = 4), τ2 = τ3(8, 4, 8)} on m = 3 processors.

We can easily observe that τ in Figure 1b becomes schedulable if one copied job of any task is not
considered for scheduling (e.g., Nk = 1 for any τk). TL-NMR is capable of assigning Nk for each task,
while it does not make a schedulable task set unschedulable under any FP scheduling. To achieve this
goal, we need to address the following questions:

• How to determine Nk of each task τk?
• How to guarantee schedulability of τk for a given Nk?
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To address question 1, TL-NMR effectively assigns the value of Nk using Nk-assignment algorithm
in conjunction with a new RTA for TL-NMR so that Rk of every task is never greater than Dk. With Nk
of every task τk, TL-NMR makes Nk identical copies of each job and schedules a task set τ according
to the given FP scheduling algorithm. To address question 2, we develop a new RTA for TL-NMR to
guarantee that there is no deadline miss while Nk identical copies of each job are scheduled by the
given FP scheduling algorithm.

Algorithm 1 presents the operation of TL-NMR. At the beginning, Nk for every task τk is set to one.
Then, Nk of each task is determined (Lines 2–8). For every task τk in τ, schedulability is tested with a
value of Nk + 1 using RTA for TL-NMR, and Nk + 1 is assigned for τk if τk is deemed schedulable by the
test (Lines 4–6). This procedure is conducted m− 1 times (Lines 2–8) because at most m copies of each
job are allowed by TL-NMR on an m processor platform. Thereafter, a given task set τ is scheduled
(Lines 9–17). For every time instant t, a job Jq

k of a task τk is inserted in a ready queue Q whenever Jq
k is

released (Lines 9–11). Released jobs in Q are scheduled according to the base FP scheduling algorithm
(Line 13). Finally, Jq

k is removed from Q when the execution of all the copied jobs Jq,p
k of Jq

k is completed.

Algorithm 1 TL-NMR

1: Nk ← 1 for all tasks τk ∈ τ

2: for from 1 to m− 1 do
3: for τk in τ do
4: if τ is deemed schedulable with Nk + 1 by a given new RTA then
5: Nk ← Nk + 1
6: end if
7: end for
8: end for
9: for Every time instance t do

10: if Jq
k is released by τk then

11: Insert Jq
k into Q

12: end if
13: Schedule jobs (Nk copied jobs Jq,p

k for each job Jq
k ) in Q according to a given FP scheduling

14: if All copied jobs Jq,p
k of Jq

k finish its execution then
15: Delete Jq

k from Q
16: end if
17: end for

4. New RTA for TL-NMR

Because our goal is to improve reliability while guaranteeing schedulability under TL-NMR,
we should be able to judge whether the task set τ is schedulable with the given values of Nk for every
task τk while Nk is assigned by TL-NMR. Hence, we develop a new RTA that can be incorporated
into TL-NMR.

The response time Rk of a task τk can be upper-bounded by the summation of the worst case
execution time Ck and the worst case time instance hindering the execution of a job Jq

k of τk. Because
Ck is given, RTA for TL-NMR upper bounds the latter by exploiting the notion of interference in an
interval [rq

k , rq
k + `) (where ` is limited to Dk).

The interference Ik(r
q
k , rq

k + `) on a copied job Jq,p
k in the interval [rq

k , rq
k + `) is defined as the

cumulative length of all the intervals in which Jq,p
k is ready to be executed but cannot be scheduled on

any processor owing to m higher priority jobs [12].
When interference occurs on Jq,p

k at a certain time instance, at least m higher priority jobs exist
to hinder the execution of Jq,p

k . Thus, we need to calculate how much of the execution of the higher
priority job contributes to the interference Ik(r

q
k , rq

k + `) on Jq
k to upper bound Ik(r

q
k , rq

k + `). An important
property of schedules under TL-NMR is that the execution of a copied job Jq,p

k can be hindered by
jobs of not only other tasks τi but also by other copied jobs (of τk) sharing the same release time rq

k
and absolute deadline dq

k. For example, J1,2
3 in Figure 1b cannot execute in the interval [2, 4) owing
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to J1,1
2 , J1,2

2 , (of τ2) and J1,1
3 (of τ3) occupying three processors. Hence, we first let Jp

i be the set of the
p-th copied jobs of τi. Then, we define the interference Ik←i(r

q
k , rq

k + `) of Jp
i on Jq,p

k and the interference
Ik←k(r

q
k , rq

k + `) of the other copied job Jq,g
k (i.e., except the job of interest Jq,p

k ) of τk on Jq,p
k in an

interval [rq
k , rq

k + `).
The interference Ik←i(r

q
k , rq

k + `) of Jp
i on Jq,p

k in the interval [rq
k , rq

k + `) is defined as the cumulative
length of all the intervals in which Jq,p

k is ready to be executed but cannot be scheduled on any processor
while jobs of Jp

i execute.
The interference Ik←k(r

q
k , rq

k + `) of the other copied job Jq,g
k (i.e., except the job of interest Jq,p

k ) of
τk on Jq,p

k in the interval [rq
k , rq

k + `) is defined as the cumulative length of all the intervals in which Jq,p
k

is ready to be executed but cannot be scheduled on any processor while Jq,g
k executes.

To upper bound Ik←i(r
q
k , rq

k + `) of Jp
i on Jq,p

k , RTA for TL-NMR uses the notion of the workload
of Jp

i in an interval of length `, which is defined as the amount of computation time required for
Jp
i in ` [13]. The upper part of Figure 2 illustrates the scenario in which the workload of a task τi

is maximized under preemptive work-conversing TL-NMR scheduling. Let us assume that p = 1.
The first job Jq,1

i of τi, in the upper side of Figure 2, starts its execution at the beginning of the interval
` and completes its execution at dq

i , thereby executing for Ci time units without any interference or

delay. Thereafter, the following jobs (i.e., Jq+1,1
i and Jq+2,1

i ) are released and scheduled subsequently.
Considering the number of executions of jobs fully executing for Ci, the other jobs executing for a
portion of Ci, and the number of copies Ni, the upper-bounded workload Wi(`) is calculated by

Ik←i(r
q
k , rq

k + `) = Wi(`) = Fi(`) · Ci + min
(

Ci, `+ Di − Ci − Fi(`) · Ti

)
, (4)

where Fi(`) is the number of jobs executing for Ci calculated by

Fi(`) =

⌊
`+ Di − Ci

Ti

⌋
. (5)

job release/deadline

ℓ
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𝑑𝑖
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𝐽𝑖
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𝑞
+ℓ

𝐷𝑘

𝐷𝑖 - 𝐶𝑖

𝐽𝑘
𝑞,3
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𝑞+2,2

𝑟𝑖
𝑞+2

𝑑𝑖
𝑞+1 𝑑𝑖

𝑞+2

Figure 2. Worst case scenario in which workload of Jp
i (set of p-th copied jobs of τk) and execution of Jq,g

k
(the other copied job Jq,g

k of τk except Jq,p
k ) are maximized in an interval [rq

k , rq
k + `) under preemptive

work-conserving TL-NMR scheduling for Ni = 2 and Nk = 3.

Because the other copied jobs of τk share the same release time rq
k and absolute deadline dq

k, ` is
limited to Dk. The interference Ik←k(r

q
k , rq

k + `) of the other copied job Jq,g
k of τk on Jq,p

k in the interval
[rq

k , rq
k + `) can be upper-bounded by

Ik←k(r
q
k , rq

k + `) = min(Ck, `), (6)
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as shown in the lower part of Figure 2. As seen in Figure 2, Ni times of Jp
i and Nk − 1 times of Jq,g

k
can contribute to Ik(r

q
k , rq

k + `). In addition, because a job cannot execute in a time instant if m other
higher priority jobs execute, using upper-bounded Ik←i(r

q
k , rq

k + `) and Ik←k(r
q
k , rq

k + `), Ik(r
q
k , rq

k + `) is
upper-bounded by

Ik(r
q
k , rq

k + `) =

⌊
1
m
·
(

∑
τi∈τ−{τk}

Ni ·
(

Ii
k(r

q
k , rq

k + `)
)
+ (Nk − 1) · Ik←k(r

q
k , rq

k + `)

)⌋
. (7)

Therefore, if Ik(r
q
k , rq

k + `) is not larger than `− Ck, Jq,p
k can finish its execution at or before rq,p

k + `,
where ` is limited to Dk.

Although (7) safely upper-bounds Ik(r
q
k , rq

k + `), the value derived by (7) is highly overestimated
because it includes the amount of execution of Jp

i and Jq,g
k , which can be performed in parallel with

Jq,p
k . As seen in Figure 3, a portion of the execution of Jp

i is performed in parallel with a job Jq,1
k of

interest, which cannot contribute to Ik(r
q
k , rq

k + `). This phenomenon will also occur with Jq,2
k or Jq,3

k if
Ck is larger than `− Ck. Thus, RTA for TL-NMR limits the amount of Ik←i(r

q
k , rq

k + `) of Jp
i (similarly

Ik←k(r
q
k , rq

k + `) of Jq,g
k ), which potentially contributes to Ik(r

q
k , rq

k + ` and `− Ck + 1. Here, Ik(r
q
k , rq

k + `

is more tightly upper-bounded than (7) and is given by

Ik(r
q
k , rq

k + `) =

⌊
1
m
·
(

∑
τi∈τ−{τk}

Ni ·
(

min
(

Ii
k(r

q
k , rq

k + `), `− Ck + 1
))

(8)
+ (Nk − 1) ·min

(
Ik←k(r

q
k , rq

k + `), `− Ck + 1
))⌋

.

job release/deadline

𝐽𝐽𝑖𝑖
𝑝𝑝

𝑟𝑟𝑘𝑘
𝑞𝑞

𝐽𝐽𝑘𝑘
𝑞𝑞,2 𝑑𝑑𝑘𝑘

𝑞𝑞
𝐶𝐶𝑘𝑘

𝐷𝐷𝑘𝑘

𝐽𝐽𝑘𝑘
𝑞𝑞,3

𝐽𝐽𝑘𝑘
𝑞𝑞,1

ℓ
ℓ− 𝐶𝐶𝑘𝑘 +1

𝐼𝐼𝑘𝑘 (𝑟𝑟𝑘𝑘
𝑞𝑞, 𝑟𝑟𝑘𝑘

𝑞𝑞 + ℓ)

Figure 3. Scenario in which the amount of interference Ik←i(r
q
k , rq

k + `) of Jp
i that can contribute to

Ik(r
q
k , rq

k + `) on job Jq,p
k is limited to `− Ck + 1 for a task set τ = {τi, τk}, and Ni = 2 and Nk = 3.

Based on this reasoning, RTA for TL-NMR tests the schedulability of τk as follows.

Theorem 1. A task τk ∈ τ is schedulable under TL-NMR, if a copied job Jq,p
k satisfies the following for any `

that holds Ck ≤ ` ≤ Dk.

Ck + Ik(r
q
k , rq

k + `) ≤ `. (9)

Proof. Suppose that Jq,p
k cannot complete its execution in [rq

k , rq
k + `) even if Equation (9) holds. By the

definition of Ik(r
q
k , rq

k + `), Jq,p
k ’s execution is hindered by higher priority jobs in [rq

k , rq
k + `) for at

most Ik(r
q
k , rq

k + `). In addition, the worst case execution time for Jq,p
k to complete its execution is

Ck. Thus, Jq,p
k can complete its execution in Ck + Ik(r

q
k , rq

k + `) after the release of rq
k . By Equation (9),

Ck + Ik(r
q
k , rq

k + `) ≤ ` holds, and ` is less than or equal to Dk. Therefore Jq,p
k is schedulable if Equation (9)

holds, which contradicts the supposition.
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The remaining issue is to find a value of ` and an upper bound Ii
k(r

j
k, rj

k + `). RTA for TL-NMR
works as follows. Initially, ` is set to Ck and RTA tests whether the inequality holds. If the inequality
holds, the task is deemed schedulable. Otherwise, RTA resets ` to the previous value of the LHS of the
inequality, until the inequality holds or ` > Dk; ` > Dk represents that τk is deemed unschedulable.
If the inequality holds, τk is deemed schedulable and the value of ` satisfying the inequality is Rk,
i.e., Rk ≤ Dk holds.

Figure 4 illustrates how RTA judges the schedulability of τk scheduled by TL-NMR.

≤ ℓ ?

𝐼𝑘←𝑖

min(    ,ℓ-𝐶𝑘+1)

𝐼𝑘←𝑘

min(    ,ℓ-𝐶𝑘+1)

x (𝑁𝑘-1)

x 𝑁𝑖

+

for all τ𝑖 ∊ (τ-τ𝑘)

⨯
1

𝑚
= 𝐼𝑘

schedulable

ℓ ≤ 𝐷𝑘?

unschedulable

+ 𝐶𝑘

ℓ =𝐶𝑘 + 𝐼𝑘

yes

yes

no

no

initial ℓ = 𝐶𝑘

Figure 4. Flux diagram illustrating how RTA judges the schedulability of τk scheduled by TL-NMR.

5. Results

In this section, we evaluate the performance of the proposed TL-NMR compared to that of the
existing fault-tolerant techniques. For performance metrics, we measure the number of randomly
generated task sets that are deemed schedulable (called schedulable ratio) and the average of
considered task sets’ system safety (called average system safety). Task sets for our evaluation are
randomly generated based on a popular task set generation method that has been exploited in a number
of existing studies regarding real-time scheduling [14–16]. The task set generation method used in
our study has two parameters such that the number of processors m ∈ {2, 4, 8, 16}, and the input
parameter α or 1/β ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for individual task use (Ci/Ti) distribution. If α is given,
a value for Ci/Ti is uniformly selected in [0, 0.5) and [0.5, 1) with probability α and 1− α, respectively,
according to a given bimodal distribution. On the other hand, when 1/β is given, the value is selected
according to the exponential distribution whose probability density function is β · exp(−β · x). Then,
the parameters of a task in a task set are determined as follows. Ti is uniformly determined in [1, 1000],
Ci is chosen by the bimodal or exponential parameter with Ti already determined, and Di is uniformly
chosen in [Ci, Ti]. Ten thousand task sets are randomly generated for each value of m.

Next, we discuss the performance (i.e., schedulable ratio and average system safety) and properties
of the following techniques:

• TL-NMR-RM: RM scheduling incorporating the proposed TL-NMR is discussed in Section 3, and
• xMR-RM: RM scheduling incorporating NMR in which x identical copies are executed to improve

reliability (e.g., 3M-RM represents the scheduler where three identical copies of each job are
executed under RM scheduling) proposed in the existing studies [4–6].

Please note that although we conducted experiments for well performing FP scheduling such as
earliest quasi-deadline first and deadline monotonic, we do not explicitly discuss the performance of
such scheduling because they show a trend similar to RM scheduling. 1MR-RM may also represent
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RM scheduling without NMR because a single copy of each job of each task is executed under vanilla
RM scheduling.

Figure 5 presents the experimental results regarding the schedulable ratio and average system
safety of the considered techniques. Figure 5a,b shows the schedulable ratio of the considered
techniques according to varying task set use (∑τk∈τ Ck/Tk) for m = 2 and m = 16, respectively.
TOT represents the number of generated task sets whose task set use is represented by the axis of task
set use. For example, the number of generated task sets whose task set use is about 1.5 is approximately
430 (represented by z-axis). Furthermore, Figure 5c–f plots the average system safety of task sets of the
considered techniques for γ = 0.001 and γ = 0.01, respectively.

From the figures, we make the following observations:

• TL-NMR-RM maintains the same performance in schedulable ratio (i.e., the number of task sets
deemed schedulable) compared to 1MR-RM for both m = 2 and 16 (Figure 5a,b),

• TL-NMR-RM improves the average system safety more for all task set use compared to 1MR-RM,
while higher number of job-copies in NMR decreases both the schedulable ratio and average
system safety (Figure 5c–f), and

• TL-NMR-RM better outperforms 1MR-RM for greater values of γ (Figure 5c–f).

Observation 1 is due to the key property of TL-NMR. That is, it improves the system reliability
without schedulability loss by determining the individual number of copies of each task (in conjunction
with the proposed RTA in Section 4) according to Algorithm 1. Thus, a schedulable task set under
1MR-RM (i.e., vanilla RM) never become unschedulable under TL-NMR-RM.

Observation 2 is the natural consequence stemming from Observation 1 in that the system
reliability is enhanced owing to increased Nk (as Equation (2) indicates), while the schedulability is
not changed under TL-NMR-RM compared to that in 1MR-RM. However, the average system safety
decreases for the higher number of job-copies in NMR. This counterintuitive phenomenon happens
because the schedulability plays a more important role to improve the average system safety than to
increase the system reliability. Recall that the system safety is zero when the task set is unschedulable.
System reliability is inevitably improved if Nk of each task increases, but the schedulability is not
guaranteed when such an increase of Nk is conducted not in conjunction with schedulability analysis
such as RTA. Thus, the higher number of copies in NMR aggravates the average system safety by
compromising schedulability even though it may improve reliability.

Observation 3 highlights the advantage of TL-NMR such that the system reliability under
TL-NMR increases more compared to that under 1MR-RM when the arrival rate of transient error
increases. As Equation (2) indicates, the system reliability is disproportional to γ but proportional to
Nk. Thus, the average system safety under 1MR-RM (and the other xMR-RM series) sharply decreases
with increasing γ, while TL-NMR-RM makes up for such a degradation by increasing Nk without
schedulability loss.

(a) for m = 2 (b) for m = 16

Figure 5. Cont.
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(a) for m = 2 and γ = 0.001 (b) for m = 16 and γ = 0.001

(c) for m = 2 and γ = 0.01 (d) for m = 16 and γ = 0.01

Figure 5. Evaluation results of considered *-RM series for m = 2 and 16.

6. Conclusions

In this study, we proposed a TL-NMR technique that improves the system reliability of a target system
in which tasks are scheduled by any FP scheduling without schedulability loss. TL-NMR overcomes
a limitation of the existing NMR, i.e., some tasks may miss their deadlines while multiple copies of
tasks are executed in parallel to improve system reliability. The TL-NMR framework determines the
number of copies of each job Jq

k of a task τk while ensuring that every copied job completes its execution
before its absolute deadline in conjunction with an RTA framework proposed in this paper. Through our
experiments, we demonstrated that TL-NMR maintains schedulability while it improves average system
safety compared to the existing vanilla RM scheduling technique. The performance gap between TL-NMR
and vanilla RM becomes larger for systems where transient error occurs frequently (i.e., for a larger value
of γ). For future work, we plan to extend our work to consider multiple shared resources and derive
resource-locking protocols [17,18] to improve the analytical capability.
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