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Abstract: For positive integers s and ¢, the Ramsey number R(s, t) is the smallest positive integer n
such that every graph of order n contains either a clique of order s or an independent set of order
t. The triangle-free process begins with an empty graph of order n, and iteratively adds edges
chosen uniformly at random subject to the constraint that no triangle is formed. It has been an
important tool in studying the asymptotic lower bound for R(3, t). Cyclic graphs are vertex-transitive.
The symmetry of cyclic graphs makes it easier to compute their independent numbers than related
general graphs. In this paper, the cyclic triangle-free process is studied. The sizes of the parameter
sets and the independence numbers of the graphs obtained by the cyclic triangle-free process are
studied. Lower bounds on R(3,t) for small t’s are computed, and R(3,35) > 237, R(3,36) > 244,
R(3,37) > 255, R(3,38) > 267, etc. are obtained based on the graphs obtained by the cyclic
triangle-free process. Finally, some problems on the cyclic triangle-free process and R(3,t) are
proposed.
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1. Introduction

All graphs considered in this paper are finite and undirected graphs. For any positive integer 7,
the complete graph of order n is denoted by K, and K3 is also called triangle. An empty graph of
order 1, denoted by E,;, is a graph on n vertices of which the edge set is empty. The independence
number of graph G, denoted by a(G), is the cardinality of the largest independent set in G. A clique
of order k is called a k-clique, and an independent set of order k is called a k-independent set. For a
positive integer d, if every vertex in G is adjacent to d vertices, then G is called d-regular.

Suppose that s and t are two positive integers. The Ramsey number R(s, t) is the smallest positive
integer n such that every graph of order n contains either an s-clique or a t-independent set. By the
well-known Ramsey Theorem [1], we know that, for any positive integers s and t, R(s, t) is finite.

A graph is called an (s,t)-graph if it contains neither an s-clique nor a t-independent set.
An (s, t)-graph of order R(s,t) — 1 is called an (s, t)-Ramsey graph.

Given an integer n > 5, suppose that S C {1,---,[n/2]}. Let G be a graph with the vertex set
V(G) = {1, -+ ,n} and the edge set E(G) = {(x,y) | min{|x —y|,n — |[x —y|} € S}. Graph G is
called a cyclic graph of order 1, denoted by G, (S), and S is called the parameter set of G, (S).

A vertex-transitive graph is a graph G such that given any two vertices u and v in V(G), there is
some automorphism f : V(G) — V(G) such that f(u) = v. Any cyclic graph is vertex-transitive.
In fact, the cyclic graph is a special kind of the Cayley graph, and any Cayley graph is vertex-transitive.
Cyclic graphs are symmetric because they are vertex-transitive, and it is easier to compute their
independence numbers. In fact, we can compute the independence number of a cyclic graph G by
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computing the independence number of the subgraph of G induced by the non-neighbors of any
vertex in G. Cyclic graphs are often used in studying lower bounds for small Ramsey numbers.
On the other hand, it is known that finding the maximum clique is NP-hard even if restricted to cyclic
graphs [2]. Thus, it may be difficult to compute the clique number or the independence number of a
large cyclic graph.

The triangle-free process begins with E,;, an empty graph of order #, and iteratively adds edges
chosen uniformly at random subject to the constraint that no triangle is formed. It was used in studying
the asymptotic lower bound for R(3,¢t) in [34].

There are other types of random processes similar to the triangle-free process, which have striking
applications in extremal graph theory. The H-free process was studied by Bohman and Keevash [5],
and in a recent paper [6], the k-matching-free process was considered by Krivelevich, Kwan, Loh
and Sudakow.

The parameter set of a K3-free cyclic graph is related to sum-free sets of {1, - - - , n} or Z,. There are
few references on small sum-free sets of {1, -- - ,n} or Z,, and there are some references on large ones.
Tuan Tran provided a structural characterization of sum-free subsets of {1, - - - ,n} of density at least
2/5 — ¢, where c is an absolute positive constant [7]. For Z, where p is a prime, the well-known
Cauchy-Davenport Theorem yields that every sum-free set has size at most LPTHJ . § is complete if
for every z € V(G) — S there exist x,y € S for which x + y = z. Haviv and Levy [8] provided a full
characterization of the symmetric complete sum-free subsets of Z,, of size at least (% —c)p, where p is
a prime and c is a positive universal constant.

The remainder of this paper is organized as follows. In Section 2, some basic known results
on R(3,t) and the triangle-free process are briefly surveyed. Then, the cyclic triangle-free process is
studied in Section 3. The sizes of the parameter sets of graphs obtained by the cyclic triangle-free
process are studied in Section 4. Independence numbers of graphs obtained by the cyclic triangle-free
process and the lower bound on R(3, t) for small ¢ are studied in Section 5. Some unsolved problems
on the cyclic triangle-free process and R(3, ) are discussed in Section 6.

2. Preliminary

Ramsey theory is a generalization of the Drawer principle. The philosophy of Ramsey theory lies
in that if a structure is large enough, then there must be a large substructure that is highly ordered.
In Section 2.1, we discuss the Ramsey number R(s, t) briefly.

2.1. The Ramsey Number R(s, t)

The Ramsey number R(s, t) is one of the most important and interesting topics in Ramsey theory.
The research in Ramsey theory has led to some powerful methods. For instance, the study on the lower
bound for R(k, k) led to the probabilistic method, of which the influence is both wide and deep.
Suppose that integers s, ¢ > 2. It is known that

R(s,t) <R(s—1,t) + R(s,t — 1).

In particular,
R(3,t) <R(3,t—1)+t.

In a Dynamic Survey on small Ramsey numbers by Radziszowski [9], many known results on the
values and bounds on small Ramsey numbers are surveyed.

In this paper, we focus on the Ramsey number R(3,t). Suppose thats > 4 and t > 3. The structure
of a (3,t)-graph G is often simpler than that of an (s, t)-graph, because for any vertex v € V(G),
the neighbors of v form an independent set.

In the next subsection, we survey some known results on R(3,t) and the triangle-free process.
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2.2. R(3,t) and the Triangle-Free Process

The research of R(3, t) has a long history, including the work of Erdés on the lower bound [10],
and the work of Ajtai, Komlés and Szemerédi on the upper bound [11]. Spencer wrote an article [12]
on the history of R(3, t) until 2009. The best known lower and upper bounds for R(3,t) are
o) <REH < (1t o(1)
4 logt = 77— logt

The upper bound is implicit in a 1983 paper by Shearer [13]. We know that the following theorem
holds [13].

Theorem 1. Define f(d) = (dlogd —d +1)/(d — 1)?, where d is neither 1 nor 0. Let G be a triangle-free
graph of order n and average degree d. Then, the independence number a(G) > f(d)n.

The lower bound for R(3, t) cited above was obtained in 2013 by Bohman and Keevash [3], and by
Pontiveros, Griffiths and Morris [4] independently and simultaneously. The triangle-free process
was used in [3,4]. As pointed out in [3], both proofs exploit self-correction, but are different in some
important ways. The lower bound for R(3, ) was proved by proving the following theorem.

Theorem 2. Let G be the maximal triangle-free graph of order n at which the triangle-free process terminates.
With high probability, G has independence number at most (14 0(1))+/2nlogn.

In 1995, Kim proved that R(3,¢) > c% [14], which was an important improvement on the
lower bound for R(3,t). Kim employed a semi-random construction that is loosely related to the
triangle-free process.

Among small Ramsey numbers, the lower bound for R(3, t) has attracted considerable attention,
and has been studied by many researchers. The exact values of R(3, t) are known only for positive
integer t < 9. For larger small positive integer t < 38, the best known lower bounds for R(3,t)
are surveyed in [9]. Most of these best known lower bounds for small R(3,t) were obtained by
finding cyclic (3, t)-graphs (see [9]). They include R(3,24) > 143 and R(3,26) > 159 obtained in [15],
and R(3,22) > 131 and R(3,25) > 154 obtained in [16]. Furthermore, the best known lower bound on
R(3,t) for any integer t € {27, - - ,38} was obtained in [17].

For any positive integer n < 121, there are no cyclic (3, t)-graphs of order n that can be used to
improve the best known lower bound for R(3, t) surveyed in [9] (see [18]).

In [19], a paper titled “An algorithmic framework for obtaining lower bounds for Ramsey
numbers”, some results on anti-Ramsey problems or hypergraph problems were obtained. It seems
that the methods used cannot be used on classical Ramsey numbers to obtain interesting lower bounds.

In [20], Burr, Erdés, Faudree and Schelp proved that

R(k,t+1) > R(k,t) 4+ 2k — 3.
The following inequality is a sub-case of this inequality in [20]:
R(3,t+1) > R(3,t) + 3.

In [21], the following inequality was proved constructively. It is a sub-case of a more general
theorem in [21].

Theorem 3. If s and t are two integers and 2 < s < t, then

R(3,s+t—1) > R(3,5) + R(3,t) +s—2.
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By Theorem 3 and related known data on the lower bound for small R(3, k), we can compute the
lower bound on R(3, t) for t > 38. The lower bounds obtained by this method are often weak.
In [22],
R(3,4k+1) > 6R(3,k+1) —5

was proved constructively. By this inequality and the best known lower bounds R(3,11) > 47,
R(3,12) > 53 and R(3,13) > 60, we have R(3,41) > 277,R(3,45) > 313 and R(3,49) > 355.
By R(3,t+1) > R(3,t) + 3, we have R(3,42) > R(3,41) +3 > 277+ 3 = 280. By Theorem 3,
we have R(3,43) > R(3,41) + R(3,3) +3—2 > 277 4+ 7 = 284, R(3,44) > R(3,41) + R(3,4) +4—2 >
277 +11 = 288 and R(3,48) > R(3,45) + R(3,4) + 4 —2 > 313 + 11 = 324.

3. The Cyclic Triangle-Free Process

In this section, we study the cyclic analog of the triangle-free process. Studying the lower bound
for small R(3, t) by the cyclic analog of the triangle-free process was suggested in a subsection titled
“Problems of algorithms on off-diagonal Ramsey numbers” in [23] by Xu, Liang and Luo. There is no
detailed study on the cyclic triangle-free process in [23].

The cyclic triangle-free process begins with an empty graph of order 1, and generates a cyclic
graph of order n by iteratively adding parameters chosen uniformly at random subject to the constraint
that no triangle is formed in the cyclic graph obtained, until no more parameters can be added.

Known asymptotic lower bounds for the Ramsey number R(3, t) were based on non-constructive
methods which cannot be used to study R(3, t) for small #’s. For small #’s, in most cases, the best known
lower bound for R(3, ) was obtained based on a Kj-free cyclic graph. Most of those cyclic graphs
were obtained by searching in the following way. Given integers n > 10 and t > 3, we can generate
K3-free cyclic graphs of order n by generating their parameter sets lexicographically. We can search
for (3, t)-graphs among cyclic graphs generated. If we find one, then we obtain that R(3,t) > n + 1.
We may also choose some parameter sets of K3-free cyclic graphs of order n, and generate more K3-free
cyclic graphs lexicographically from each parameter set chosen, respectively. Most best known lower
bounds on R(3,t) were obtained this way. Such a method works well in studying lower bounds on
R(3,t) in small cases. However, it may lead to locally optimal solutions, in particular in the cases when
n is much larger than 200. The cyclic triangle-free process may work better in these cases.

The cyclic triangle-free process, the cyclic analog of the triangle-free process, is interesting in its
own right. It is a natural idea that it may work better than the triangle-free process in giving lower
bounds for small R(3, ).

In [3,4], the following theorem on the triangle-free process was proved.

Theorem 4. Let G be the maximal triangle-free graph of order n at which the triangle-free process terminates.
With high probability, every vertex of G has degree (14 0(1))+/(1/2)nlogn.

For small cases, the lower bounds for R(3, t) based on the triangle-free process are much smaller
than the best known ones. We have done some computation on the independence numbers of some
graphs obtained by the triangle-free process. For example, the independence numbers of 100 graphs of
order 200 obtained by the triangle-free process range from 36 to 40. We have found a graph of order
200 with independence number 31 by the cyclic triangle-free process. Note that the best known lower
bound for R(3,32) is 217.

Since the degree of a cyclic K3-free graph is closely related to its independence number, we
study the sizes of parameter sets of cyclic graphs obtained by the cyclic triangle-free process in the
next section.

4. The Sizes of Parameter Sets of Cyclic Graphs Obtained by the Cyclic Triangle-Free Process

The degrees and the independence numbers of cyclic graphs of order n generated by the cyclic
triangle-free process may have a large range when the order is not large, say, between 100 and
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400. For instance, we have generated 100 graphs of order 240 by the cyclic triangle-free process.
Among these graphs, the one with the maximum degree is 120-regular and the one with the minimum
degree is 34-regular. The independence numbers of these cyclic graphs range from 36 to 120. On the
other hand, the independence numbers of the 100 graphs of order 240 that we generated by the
triangle-free process range from 41 to 43.

If n is between 400 and 500, then the computing results show us that the degrees of the graphs
obtained by the cyclic triangle-free process often vary more widely than those of the graphs obtained
by the triangle-free process. However, we have done only a little computation on the independence
numbers of these graphs because it is much more difficult than in smaller cases.

In the first subsection of this section, we consider the sizes of parameter sets of cyclic graphs
obtained by the cyclic triangle-free process in large cases, and contrast the results with those obtained
by the triangle-free process.

4.1. Computation on the Sizes of Parameter Sets of Cyclic Graphs in Large Cases

In this subsection, let us survey more computing results on the degrees of graphs obtained by the
cyclic triangle-free process in larger cases as follows.

We have generated 100 graphs of order 1000 by the cyclic triangle-free process, and the degrees
of graphs range from 84 to 140. We have also generated 100 graphs of order 1000 by the triangle-free
process. The maximum of the averaging degrees of these graphs is 71.216 and the minimum of the
averaging degrees of these graphs is 70.728. The maximum degrees range from 78 to 84, and the
minimum degrees range from 58 to 63. By these data on graphs of order 1000, we can see that the
number of edges in a graph obtained by the cyclic triangle-free process, is with high probability
larger than the number of edges in a graph obtained by the triangle-free process. On the other hand,
|/ (1/2)nlogn] in Theorem 4 equals 58 when n = 1000.

We have generated 100 graphs of every order n among 2000, 3000, 4000, 5000, 6000, 7000, and 8000
by the cyclic triangle-free process, and the smallest degrees that we have generated are 132, 166, 200,
224,250, 276 and 294, respectively. Note that | \/(1/2)nlogn | equals 87, 109, 128, 145, 161, 176 and 189
for n = 2000, 3000, 4000, 5000, 6000, 7000, and 8000, respectively. As we can see, the degrees are larger
than | /(1/2)nlogn | in these cases. On the other hand, the largest degrees that we have generated
are 198, 218, 256, 283, 314, 320 and 330 for n = 2000, 3000, 4000, 5000, 6000, 7000, and 8000, respectively.

4.2. A Simple Lower Bound on the Sizes of Parameter Sets

Suppose that G is a Kz-free graph obtained by the cyclic triangle-free process. Let its parameter
setbe S = {s1,---,s,}and n = |V(G)| > 10. Since G is a maximum cyclic K3-free graph, r cannot be
very small if # is not small.

In fact, for any s; € S, s; itself, 2s; and t; are forbidden, where ¢; is %si for even s; and odd n, t; is
either %si or %(n —s;) for even s; and even n, and t; = %(n —s;) for odd s; and odd n. Furthermore,
for any different i and jamong {1, - - - ,r},s; — s; and s; + s; are forbidden. Since G is a maximum cyclic
Ks-free graph, we can see that 2C% + 4r > | 4| if n is even. By 2C2 = 12 — r we have r* 4+ 3r > | %],
where C? is the combinatorial number that denotes the number of different ways to choose two objects

among r ones. We can see that, if n is odd, then r* +2r > [ 4].

Theorem 5. Suppose that n is an integer and n > 10, and G is any graph of order n that is obtained by
the cyclic triangle-free process. Let its parameter set be S = {sy,- -+ ,s,}. Then, r*> +2r > | 4] if nis odd,
and r* +3r > | 3] if n is even.

This theorem may be weak. For instance, the smallest parameter set that we have found of the
cyclic graph of order 200 obtained by the cyclic triangle-free process, has 13 parameters. However,
by Theorem 5, we can only prove that r > 9.
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4.3. More Computation on the Sizes of Parameter Sets of Cyclic Graphs

In Table 1, we list the averages of the sizes of the parameter sets of 100 cyclic K3-free graphs of
given orders that were generated by the cyclic triangle-free process.

Table 1. The averages of the sizes of 100 parameter sets of given orders.

Order Average Range Order Average Range

122 14.33 11-31 290 25.44 2049
197 18.95 15-33 299 25.57 1945
200 19.44 15-32 308 26.02 21-42
236 21.45 17-35 315 26.09 2046
240 21.86 17-60 361 27.62 23-47
243 22.05 17-40 400 30.13 22-47
254 22.51 1848 500 34.81 29-54
266 23.75 1940 1000 51.80 43-70

We deal with orders such as 122, 197, 236, etc., since we wish to find graphs of these orders with
small independence numbers, so as to improve the best known lower bounds for related R(3, t).

We have done some computation to search cyclic graphs with small parameter sets by the cyclic
triangle-free process. In the following Table 2, we list the parameter sets of the K3-free graphs with the
smallest sizes of parameter sets in 100 cyclic graphs obtained by the cyclic triangle-free process for
each order from 101 to 220. We have not done more computation to determine the minimum sizes,
because it is of little use in improving the best known lower bound for small R(3, t).

Table 2. Sizes of small parameter sets of K3-free cyclic graphs of given orders.

101 102 103 104 105 106 107 108 109 110
8 8 8 8 8 8 9 8 9 9
111 112 113 114 115 116 117 118 119 120
8 8 8 8 9 8 8 9 8 9
121-138  139-150 151-172 173-187 188-220 / / / / /
9 10 11 12 13 / / / / /

We have generated some cyclic graphs by the cyclic triangle-free process. In Table 3, we list the
parameter sets of some cyclic graphs with fewest parameters among these graphs.

Table 3. Some cyclic graphs obtained by the cyclic triangle-free process with few parameters.

Order Size Parameter Set
197 13 4,14,17,30, 35,53,54,59,77,78,87,97,98
200 13 14, 20, 45, 57, 67,69, 70, 80, 82, 91, 92, 97, 99
236 14 2,11,24, 28,51, 61, 69,76,81,90,103, 107, 110, 113
243 14 18, 20, 21, 24, 43,47, 50, 52, 56, 59, 101, 105, 113, 116
254 15 11,17,31,59,67,72,74,86,92,93,100, 116, 119, 122, 125
266 15 3,8,19,34,47,48,54, 63,69, 84, 89,99, 112,122, 124
290 17 12,22,32,33,56,63,71,73,79, 81, 82,84, 86,92,100, 107, 121
299 18 12,16,19,37,45,76, 81, 83, 89,94, 96, 98, 119, 123, 130, 144, 145, 148
308 18 8,9,14,26,31,37,42,43,47,49, 64, 67,87,108, 112, 127, 142, 146
315 18 26,54,74,79, 89,104,119, 120, 127, 131, 135, 136, 138, 144, 149, 150, 155, 156
361 20 3,9,13,17,23,24,28,29,82,83,101, 102, 103, 141, 145, 151, 152, 153, 163, 171

400 21 18,21, 24, 35,37, 49, 52, 62, 64, 100, 108, 110, 115, 119, 130, 141, 142, 186, 189, 198, 199

Note that the independence numbers of most graphs in Table 3 are large.
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5. Independence Numbers and Lower Bounds for Small R(3, t)

By Theorems 2 and 4, we know that if G is obtained by the triangle-free process and |V (G)| is
large enough, then «(G) may be much larger than the maximum degree of G. Now, let us consider
related facts on the graphs obtained by the cyclic triangle-free process.

For an integer n much larger than 400, the degrees of the graphs obtained by the cyclic triangle-free
process do not vary as much as in the small cases. However, it is difficult to compute the exact value of
the independence number when its order is much larger than 400, and we are not sure how much the
independence numbers of these graphs vary. We conjecture that their independence numbers do not
vary much.

Suppose that 7 is an integer that is not small. Although any edge-maximal K3-free graph of order
n can be generated by the triangle-free process with a positive probability, the probability to generate
one with a very small independence number may be very small. Maybe the cyclic triangle-free process
works better than the triangle-free process in improving lower bounds on R(3,t). For integers n
between 120 and 200, the cyclic triangle-free process does not improve the known results from the
study of cyclic graphs. However, for integers n larger than 230, the computational results that we have
obtained imply that the cyclic triangle-free process is a powerful tool to obtain good lower bounds for
R(3,t). However, for cases with n between 200 and 230, it is not clear whether additional computation
using the cyclic triangle-free process will improve the best known lower bounds on R(3, t) or not.

Furthermore, it is much easier to compute the independence number of a K3-free graph of order n
obtained by the cyclic triangle-free process, than that of a graph of order n obtained by the triangle-free
process. If we can compute the independence numbers of graphs obtained by the cyclic triangle-free
process more quickly, maybe we can obtain interesting results on the lower bound for R(3,t) in
larger cases.

We are interested in improving the best known lower bounds for small R(3, t). Hence, we are
more interested in finding K3-free graphs of given orders with small independence numbers. Let us
consider an example. Observe that, if we wish to obtain a graph G of order 268 with independence
number a(G) < 37, then we need not compute the exact value of a(G) for each graph generated by
the cyclic triangle-free process. Instead, we should check whether V(G) contains a 38-independent
set. Performing this check takes only a few seconds, rather than the few minutes needed to compute
a(G) exactly. If V(G) contains a 38-independent set, then we should consider other graphs. Otherwise,
we should compute the exact value of a(G).

We list the independence numbers of some graphs obtained by the cyclic triangle-free process in
Table 4.

Table 4. Independence numbers of some graphs obtained by the cyclic triangle-free process.

Order «(G) Parameter Set
200 31 5,13,19, 20, 23, 35, 47, 49, 50, 59, 61, 76, 83, 86, 93
236 34 19, 40, 43, 49, 57, 61, 65, 67,72,75,77,78, 88,90, 95, 111, 113
243 35 26,37,42,43,47,50, 71,78, 88,96, 102, 107, 109, 111, 116, 117, 119
254 36 6,9,20,21,31,47,54,57,70, 82,87, 89,99, 112, 116, 123, 126
266 37 3,11,12, 28, 30, 32, 45, 51, 65, 67, 72, 82, 89, 98, 106, 108, 125, 131
290 40 6,9,26,30,34,41, 42, 44, 46, 54, 57, 59, 61, 104, 117, 133, 135, 136, 137
299 41 11,17, 18, 20, 23, 26, 51, 53, 61, 65, 66, 67,75, 94, 96, 97, 100, 110, 125, 129
308 42 4,9,15, 20, 22,28, 51, 62, 63, 76, 101, 103, 108, 109, 115, 120, 132, 134, 150, 153
315 43 1,7,9,17,29, 41, 45,47, 53, 65,73, 78, 84, 89, 104, 116, 128, 139, 141, 144, 155

361 47 3,27,36,41, 64,74, 84, 89, 95, 96, 112, 118, 127, 129, 134, 140, 142, 144, 146, 152, 162, 164, 166

The parameter sets of the K3-free cyclic graphs obtained by the cyclic triangle-free process used in
the following are listed in Table 4.

Observe that we have found a K3-free cyclic graph of order 243 with independence number 35 by the
cyclic triangle-free process. Therefore, R(3,36) > 244. Hence, by Theorem 3, R(3,37) > R(3,36) +3 >



Symmetry 2019, 11, 955 8 of 10

244 + 3 = 247. On the other hand, we have obtained a better result that R(3,37) > 255 based on a
graph of order 254 with independence number 36 obtained by the cyclic triangle-free process. Therefore,
we have improved the best known lower bounds R(3,36) > 241 and R(3,37) > 246, respectively.

We have also obtained R(3,35) > 237 and R(3,38) > 267, which improve the best known lower
bounds R(3,35) > 236 and R(3,38) > 259, respectively.

Furthermore, we have obtained R(3,41) > 291, R(3,42) > 300, R(3,43) > 309, R(3,44) > 316
and R(3,48) > 362. They improve related results in Section 2, respectively.

We list these new lower bounds for Ramsey numbers obtained above in the following theorem.

Theorem 6. R(3,35) > 237, R(3,36) > 244, R(3,37) > 255, R(3,38) > 267, R(3,41) > 291, R(3,42) > 300,
R(3,43) > 309, R(3,44) > 316 and R(3,48) > 362 can be obtained by Ks-free cyclic graphs.

6. Conclusions and Problems

In this paper, we have studied the cyclic triangle-free process, and analyzed the parameter sets
and independence numbers of the Ks-free cyclic graphs obtained by it. We have studied the lower
bound for small R(3, t) based on the cyclic triangle-free process, and improved the best known lower
bound for R(3, t) based on some graphs obtained by the cyclic triangle-free process.

It seems that the cyclic triangle-free process is not a very powerful tool to find good constructions
for R(3,t) through computation in the case when ¢ is small and there aren’t many constructions.
For instance, there is a cyclic K3-free graph on 228 vertices of independence number 33. However,
we did not find one by generating 50 maximal cyclic K3-free graphs on 228 vertices with fewer than
16 parameters. On the other hand, for ¢ that is not very small, the earlier works on the lower bound for
R(3, t) based on cyclic K3-free graphs are not efficient in finding good parameter sets. Hence, the cyclic
triangle-free process may be used as a good tool in studying the lower bound for R(3,t) for large t.

It may be interesting to consider a similar Cayley type triangle-free process based on other finite
groups instead of cyclic groups. It is also interesting to know if the cyclic triangle-free process can
be used in studying the lower bound for the multicolor Ramsey number R,,(3). The reader can find
results related to R,,(3) in [24-27]. We will study these problems in the future.

Let us finish this paper by proposing the following problems on the cyclic triangle-free process
and R(3,t). They are interesting for us and may be very difficult. More unsolved problems on Ramsey
numbers can be found in [23].

Problem 1. Let G be the maximal triangle-free graph at which the cyclic triangle-free process terminates.
Does a(G) < (14 0(1))+/2nlogn hold with high probability?

Problem 2. Let G be the cyclic triangle-free graph of order n with smallest independence number. Let t = a(G).
Does limy;—sc0 m =17
If limy e m = 1in Problem 2 holds, then we can conclude that some K3-free cyclic graphs
can be used to give a good asymptotical lower bound for R(3, t).
In [3], Bohman and Keevash conjectured that the upper bound on the independence number in
Theorem 2 is asymptotically best possible. We list it as Problem 3 as follows. In fact, Bohman and
Keevash [3] were tempted to believe that R(3,t) ~ t?/(4logt).

Problem 3. Let G be the maximal triangle-free graph of order n at which the triangle-free process terminates.
Does a(G) ~ (14 0(1))+/2nlogn hold with high probability?

Problem 3 may be very difficult. Computation on small cases will not help with establishing an
asymptotic bound for a(G). We have no idea in which direction to conjecture.

We may also consider related problems on the cyclic triangle-free process similar to Problem 3.
Solving such a problem related to Problem 3 means that we can obtain a lower bound on R(3, t) that
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matches the best one by cyclic graphs. This makes it interesting for us. It may be more difficult, and we
have no powerful tools to use on it. Perhaps the cyclic triangle-free process can work as well as the
triangle-free process when 7 tends to infinity.
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