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Abstract

:

In this paper, the (G′/G,1/G)-expansion method is applied to acquire some new, exact solutions of certain interesting, nonlinear, fractional-order partial differential equations arising in mathematical physics. The considered equations comprise the time-fractional, (2+1)-dimensional extended quantum Zakharov-Kuznetsov equation, and the space-time-fractional generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) system in the sense of the conformable fractional derivative. Applying traveling wave transformations to the equations, we obtain the corresponding ordinary differential equations in which each of them provides a system of nonlinear algebraic equations when the method is used. As a result, many analytical exact solutions obtained of these equations are expressed in terms of hyperbolic function solutions, trigonometric function solutions, and rational function solutions. The graphical representations of some obtained solutions are demonstrated to better understand their physical features, including bell-shaped solitary wave solutions, singular soliton solutions, solitary wave solutions of kink type, and so on. The method is very efficient, powerful, and reliable for solving the proposed equations and other nonlinear fractional partial differential equations with the aid of a symbolic software package.
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1. Introduction


Nonlinear evolution equations (NLEEs), which can be described using partial differential equations (PDEs), play a significant role for understanding qualitative behaviors of many real-world phenomena. Obtaining exact solutions of a complicated nonlinear evolution system makes it possible to visually comprehend the mechanism of the system considered. Nonlinear wave phenomena occur in various scientific and engineering fields, such as quantum mechanics [1], fluid mechanics [2], optical fibers [3], chemical physics and geochemistry [4], solid-state physics [5], and biology [6]. With the advanced development of symbolically computational packages, such as Maple or Mathematica, constructing for the exact traveling wave solutions of NLEEs has become one of the important themes of challenging interest in mathematical physics and the applied sciences.



Over the last few decades, many kinds of solutions of NLEEs, including exact solutions, analytical approximate solutions, and numerical solutions, have been successfully obtained using various and efficient methods. Examples of the methods for obtaining analytical approximate solutions of NLEEs are the Adomian decomposition method (ADM) [7,8], the revised variational iteration method (RVIM) [9], the reduced differential transform method [10], and the homotopy perturbation method (HPM) [11,12]. Useful methods for solving NLEEs numerically are those such as the finite element method [13], the finite volume method [14], and the finite-difference predictor–corrector method [15]. Several efficient and reliable methods which have recently been developed to obtain exact explicit solutions for NLEEs are, for instance, the Jacobi elliptic function method [16], the (G′/G)-expansion method and its various modifications [17,18,19,20], the Exp-function method [21], the sub-equation method [22], the first integral method [23], the modified trial equation method [24,25], and the simplest equation method [26].



Recently, fractional differential equations (FDEs) has been able to be used extensively as the generalized type of integer-order differential equations, including ordinary differential equations and partial differential equations. FDEs have attracted the researchers’ attention for modeling real-world phenomena, such as modeling anomalous diffusion using a nonlinear fractional Fokker–Planck equation with fractional velocity derivatives and Langevin dynamics to elucidate the effect of non-local transport in the plasma turbulence [27]. More examples of applications of FDEs for real-world problems can be found in [28,29,30] and the references therein. In general, systems actually may not rely only on the local time but also on the former time in history. Hence, the memory and hereditary properties of materials and processes can be described using the theory of fractional derivatives and integrals [31,32,33]. In consequence, nonlinear fractional evolution equations (NLFEEs) have been widely investigated in many aspects, for example, solving the equations for solutions and establishing conditions for which their solutions are asymptotically stable. The exploration for exact solutions of NLFEEs is currently of high interest in applied mathematics and engineering research [19,34,35]. However, the objective of our work is to use the (G′/G,1/G)-expansion method to construct exact traveling wave solutions of the following two NLFEEs in the sense of the conformable fractional derivative.



1. The time-fractional (2+1)-dimensional extended quantum Zakharov-Kuznetsov equation [36] is written as:


Dtαu+auux+b(uxxx+uyyy)+c(uxyy+uyxx)=0,



(1)




where Dtαu denotes the conformable fractional derivative of u with respect to t of order α and a,b,c are real constants, and the solution u(x,y,t), which is a function of the time variable t and space variables x and y, represents the potential of electrostatic wave in space. Solutions of the equation elucidates the spreading of optical pulse in fiber optics [36]. Some articles involved in finding exact solutions of Equation (1) are as follows. Raza et al., [36] found the exact solutions of Equation (1), consisting of the trigonometric function, Jacobi elliptic sine-cosine functions, and hyperbolic function solutions, using the trial equation method. Conversely, Ali et al., [37] obtained the exact solutions of Equation (1) using the (G′/G2)-expansion method and the modified Kudryashov method. Their exact solutions include the trigonometric, hyperbolic, and rational solutions.



2. The space-time-fractional generalized Hirota-Satsuma coupled Korteweg de Vries (KdV) system [38] can be expressed as:


Dtρu=14Dx3ηu+3uDxηu+3Dxη(−v2+w),Dtρv=−12Dx3ηv−3uDxηv,Dtρw=−12Dx3ηw−3uDxηw,



(2)




where Dtρφ and Dxηφ denote the conformable fractional derivative of φ with respect to t of order ρ and to x of order η, respectively. The first-order Hirota-Satsuma coupled KdV system [39], which was first proposed by Satsuma and Hirota in 1981 and obtained from the four reductions of Kadomtsev-Petviashvili (KP) hierarchy [40], describes interactions of two long waves with different dispersion relations, while the generalized first-order Hirota-Satsuma coupled KdV system [40] is one of the essential nonlinear equations in applied mathematics and physics. The system emerges as a special case of the Toda lattice equation, which is used to describe the interaction of neighboring particles of equal mass in a lattice formation with a crystal [41]. The interesting applications of the generalized Hirota-Satsuma coupled KdV system are as follows [41,42,43]. Firstly, it can be used to explain generic properties of string dynamics for strings and multi-strings in constant curvature space. Secondly, the system is associated with most types of long waves with weak dispersion, internal, acoustic, and planetary waves in geophysical hydrodynamics. Therefore, finding solutions of Equation (2) is potentially useful to describing the physical behaviors of the applications, as mentioned above. The associated equations of the generalized Hirota-Satsuma coupled KdV system have been solved using different methods as follows. In 2007, Zhang [44] used the direct algebraic method to construct the exact solutions for the first-order generalized Hirota-Satsuma coupled KdV systems. In 2010, Zigao et al., [45] applied the improved F-expansion method to the variable-coefficient first-order generalized Hirota-Satsuma coupled KdV system for obtaining the new exact solutions. In 2017, Khater et al., [46] found the exact traveling wave solutions of the system using the modified simple equation method, while the time-fractional generalized Hirota-Satsuma coupled KdV system was solved using the direct algebraic method by Neirameh [41] in 2015.



The rest of this article is organized as follows. In Section 2, the description of the conformable fractional derivative and its important properties are presented. In Section 3, the main steps of the (G′/G,1/G)-expansion method is provided. The applications of the method for solving the two problems mentioned are given in Section 4. Finally, the conclusions of this paper are discussed in Section 5.




2. Conformable Fractional Derivative and Its Properties


In this section, the definition of the conformable fractional derivative and its important properties are given as follows.



Definition 1.

Given a function f:[0,∞)→R, the conformable fractional derivative of f of order α is defined by [47,48]


Dtαf(t)=limε→0f(t+εt1−α)−f(t)ε,forallt>0,0<α≤1.



(3)







If the limit in Equation (3) exists, then we say that f is α-conformable differentiable at a point t>0.





Theorem 1.

Let α∈(0,1], and f(t),g(t) be α-conformable differentiable at a point t>0, then


Dtα(λ)=0,whereλ=constant,Dtα(tμ)=μtμ−α,forallμ∈R,Dtα(af(t)+bg(t))=aDtαf(t)+bDtαg(t),foralla,b∈R,Dtα(f(t)g(t))=f(t)Dtαg(t)+g(t)Dtαf(t),Dtαf(t)g(t)=g(t)Dtαf(t)−f(t)Dtαg(t)g(t)2.













Remark 1.

Conformable fractional derivative of some functions are as follows [47].




	(1) 

	
Dtα(ect)=ct1−αect,c∈R.




	(2) 

	
Dtα(sinbt)=bt1−αcosbt,b∈R.




	(3) 

	
Dtα(cosbt)=−bt1−αsinbt,b∈R.




	(4) 

	
Dtα(1αtα)=1.




	(5) 

	
Dtα(f(t))=t1−αdf(t)dt, provided that f(t) is differentiable.









The following chain rule is very useful for transforming a partial differential equation into an ordinary differential equation, which is required for the methods in finding exact solutions of the equations.





Theorem 2.

Let f:(0,∞)→R be a function such that f is differentiable and α-conformable differentiable. Also, let g be a differentiable function defined in the range of f. Then,


Dtα(f∘g)(t)=t1−αf′(g(t))g′(t),








where the prime notation (′) represents the ordinary derivative.






3. Algorithm of the (G′/G,1/G)-Expansion Method


In this section, the description of the (G′/G,1/G)-expansion method [19,49,50,51] is concisely provided. Consider a nonlinear fractional evolution partial differential equation in three independent variables, x,y, and t, as follows:


F(u,Dtαu,Dxβu,Dyγu,Dt2αu,DtαDxβu,DtαDyγu,…)=0,0<α,β,γ≤1,



(4)




where Dtαu, Dxβu, and Dyγu are the conformable derivatives of a dependent variable u with respect to independent variables t,x, and y when F is a polynomial of unknown function u=u(x,y,t), and its various partial derivatives are those in which the highest order derivatives and nonlinear terms are involved.



Using the following traveling wave transformation


u(x,y,t)=U(ξ),ξ=kxββ+lyγγ+ctαα,



(5)




where k,l,andc are constants to be determined later, then Equation (4) is reduced to an ODE in U=U(ξ) as


P(U,U′,U″,…)=0,



(6)




where P is a polynomial of U(ξ) and its various derivatives. The prime notation (′) in the above equation denotes the derivative with respect to ξ.



The following necessary concepts are introduced before providing the main steps of the (G′/G,1/G)-expansion method. Consider the following second-order linear ODE:


G″(ξ)+λG(ξ)=μ,



(7)




where the prime notation (′) denotes the derivative with respect to ξ and where λ,μ, are constants. Next, we set


ϕ(ξ)=G′(ξ)G(ξ)andψ(ξ)=1G(ξ).



(8)







Equations (7) and (8) can be transformed into the system of two nonlinear ODEs, as follows:


ϕ′=−ϕ2+μψ−λ,ψ′=−ϕψ.



(9)







The solutions of Equation (7) can be classified into the following three cases.



Case 1: If λ<0, then the general solution of Equation (7) is written as


G(ξ)=A1sinhξ−λ+A2coshξ−λ+μλ,



(10)




and we have


ψ2=−λλ2σ1+μ2ϕ2−2μψ+λ,



(11)




where A1 and A2 are arbitrary constants and σ1=A12−A22.



Case 2: If λ>0, then the general solution of Equation (7) can be given as


G(ξ)=A1sinξλ+A2cosξλ+μλ,



(12)




and we have the following relation


ψ2=λλ2σ2−μ2ϕ2−2μψ+λ,



(13)




where A1 and A2 are arbitrary constants and σ2=A12+A22.



Case 3: If λ=0, then the general solution of Equation (7) can be provided as


G(ξ)=μ2ξ2+A1ξ+A2,



(14)




and the corresponding relation is


ψ2=1A12−2μA2ϕ2−2μψ,



(15)




where A1 and A2 are arbitrary constants.



The main steps of the (G′/G,1/G)-expansion method are described as follows.



Step 1: Suppose that the solution to Equation (6) can be expressed by a polynomial of the two variables ϕ and ψ, as follows:


U(ξ)=a0+∑j=1Najϕj+∑j=1Nbjϕj−1ψ,



(16)




where a0,aj and bj(j=1,2,…,N) are constants to be determined later with aN2+bN2≠0 and where the functions ϕ=ϕ(ξ) and ψ=ψ(ξ) are implicitly associated with Equation (7) using the relations in Equation (8).



Step 2: Determine the positive integer N in Equation (16) by inserting Equation (16) into Equation (6), and then using the homogeneous balance between the highest-order derivatives and the nonlinear terms in Equation (6). If the degree of U(ξ) is Deg[U(ξ)]=N, then the degree of other terms will be formulated as follows:


DegdqU(ξ)dξq=N+q,Deg(U(ξ))pdqU(ξ)dξqs=Np+s(N+q).



(17)







In particular, if the balance number N of some nonlinear equations is not a positive integer (e.g., a fraction and a negative integer), then the special transformations are applied for U(ξ) in Equation (6) to have a new equation in terms of the new function W(ξ) with a positive integer balance number (see details in [51,52]).



Step 3: Substituting the resulting equation of Equation (16) into Equation (6) with the aid of Equations (9) and (11), the function P in Equation (6) can be transformed into a polynomial in ϕ and ψ, in which the degree of ψ is not larger than one. Equating each coefficient of the resulting polynomial to zero, we obtain a system of algebraic equations, which can be solved using symbolic computational packages, such as Maple or Mathematica, for the following unknowns: a0,aj,bj(j=1,2,…,N),k,l,c,μ,λ(<0),A1,andA2. The resulting traveling wave solutions generated by this step with the transformation in Equation (5) are expressed in terms of hyperbolic functions.



Step 4: In the same manner as Step 3, substituting the resulting equation of Equation (16) into Equation (6) with the aid of Equations (9) and (13) for the case λ>0, we can obtain the exact solutions of Equation (4) by using the transformation in Equation (5). They are written as trigonometric functions.



Step 5: Similarly to Step 3, substituting the resulting equation of Equation (16) into Equation (6) with the aid of Equations (9) and (15) for the case λ=0, we can obtain the traveling wave solutions of Equation (4) by using the transformation in Equation (5). The resulting exact solutions are expressed as rational functions.



Remark 2.

The two-variable (G′/G,1/G)-expansion method reduces to the (G′/G)-expansion method when μ=0 and bj=0 in Equations (7) and (16), respectively. In consequence, the (G′/G,1/G)-expansion method is an extension of the (G′/G)-expansion method. Hence, the strength of the (G′/G,1/G)-expansion method beyond the (G′/G)-expansion method is that the solutions obtained using the second method can be drawn from the solutions obtained using the first one. This is the reason why the (G′/G,1/G)-expansion method is used in our work instead of the (G′/G)-expansion method.






4. Applications of the (G′/G,1/G)-Expansion Method


4.1. The Time-Fractional (2+1)-Dimensional Extended Quantum Zakharov-Kuznetsov Equation


Applying the transformation ξ=−ktαα+x+y to Equation (1), we attain the following ordinary differential equation


−kU′+aUU′+2(b+c)U‴=0.



(18)







Integrating (18) with respect to ξ, it gives


−kU+a2U2+2(b+c)U″+p=0,



(19)




where p is a constant of integration. Applying the homogeneous balance principle to the terms U2 and U″ in Equation (18), we obtain N=2. Hence, the specific form of the solution in Equation (16) is written as


U(ξ)=a0+a1ϕ(ξ)+a2ϕ(ξ)2+b1ψ(ξ)+b2ψ(ξ)ϕ(ξ),



(20)




where the constant coefficients a0,a1,a2,b1, and b2 are determined at a later step, provided that a22+b22≠0. Using the (G′/G,1/G)-expansion method, there are three cases of the function G(ξ) associated with the functions ϕ(ξ) and ψ(ξ), depending on the sign of λ in Equation (7) as described above.



Case 1: Hyperbolic function solutions (λ<0)



If λ<0, we substitute Equation (20) into Equation (19) along with the use of Equation (9) and Equation (11). Then, the left-hand side of (19) turns out to be a polynomial in ϕ(ξ) and ψ(ξ). Equating all the coefficients of the resulting polynomial to be zero, we obtain the following system of nonlinear algebraic equations in a0,a1,a2,b1,b2,A1,A2,λ,μ,k, and p, provided that λ2A12−A22+μ2≠0.


ϕ4(ξ):2aλ2A12a1b2+2aλ2A12a2b1−2aλ2A22a1b2−2aλ2A22a2b1−40bλ2μA12a2+8cμ2b1+40bλ2μA22a2−40cλ2μA12a2+40cλ2μA22a2+8bλ2A12b1−8bλ2A22b1+8cλ2A12b1−8cλ2A22b1+2aλμb22+2aμ2a1b2+2aμ2a2b1−40bμ3a2−40cμ3a2+8bμ2b1=0,ϕ3(ξ):2aλ2A12a1a2−2aλ2A22a1a2+8bλ2A12a1−8bλ2A22a1+8cλ2A12a1−8cλ2A22a1+2aμ2a1a2−2aλb1b2+24bλμb2+8bμ2a1+24cλμb2+8cμ2a1=0,ϕ3(ξ)ψ(ξ):2aλ2A12a2b2−2aλ2A22a2b2+24bλ2A12b2−24bλ2A22b2+24cλ2A12b2−24cλ2A22b2+2aμ2a2b2+24bμ2b2+24cμ2b2=0,ϕ2(ξ):2aλ2A12a0a2+aλ2A12a12−2aλ2A22a0a2−aλ2A22a12+32bλ3A12a2−32bλ3A22a2+32cλ3A12a2−32cλ3A22a2−2kλ2A12a2+2kλ2A22a2−aλ2b22+2aμ2a0a2+aμ2a12+24bλμ2a2+24cλμ2a2−aλb12+4bλμb1+4cλμb1−2kμ2a2=0,ϕ2(ξ)ψ(ξ):2aλ2A12a1b2+2aλ2A12a2b1−2aλ2A22a1b2−2aλ2A22a2b1−40bλ2μA12a2+2aλμb22−40cλ2μA12a2+40cλ2μA22a2+8bλ2A12b1−8bλ2A22b1+8cλ2A12b1−8cλ2A22b1+2aμ2a1b2+2aμ2a2b1−40bμ3a2−40cμ3a2+8bμ2b1+8cμ2b1+40bλ2μA22a2=0,ϕ(ξ):2aλ2A12a0a1−2aλ2A22a0a1+8bλ3A12a1−8bλ3A22a1+8cλ3A12a1−8cλ3A22a1−2kλ2A12a1+2kλ2A22a1−2aλ2b1b2+2aμ2a0a1+24bλ2μb2+8bλμ2a1+24cλ2μb2+8cλμ2a1−2kμ2a1=0,ϕ(ξ)ψ(ξ):2aλ2A12a0b2+2aλ2A12a1b1−2aλ2A22a0b2−2aλ2A22a1b1+20bλ3A12b2−20bλ3A22b2−12bλ2μA12a1+12bλ2μA22a1+20cλ3A12b2−20cλ3A22b2−12cλ2μA12a1−2kμ2b2−2kλ2A12b2+2kλ2A22b2+4aλμb1b2+2aμ2a0b2+2aμ2a1b1−28bλμ2b2−12bμ3a1−28cλμ2b2−12cμ3a1+12cλ2μA22a1=0,ψ(ξ):−16bλ3μA12a2+16bλ3μA22a2−16cλ3μA12a2+16cλ3μA22a2+2aλ2A12a0b1−2aλ2A22a0b1+4bλ3A12b1−4bλ3A22b1+4cλ3A12b1−4cλ3A22b1−2kλ2A12b1+2kλ2A22b1+2aλμb12+2aμ2a0b1−4bλμ2b1−4cλμ2b1−2kμ2b1=0,ϕ(ξ)0:8bλ4A12a2−8bλ4A22a2+8cλ4A12a2−8cλ4A22a2+aλ2A12a02−aλ2A22a02−2λ2pA22−2kλ2A12a0+2kλ2A22a0−aλ2b12+aμ2a02+4bλ2μb1+4cλ2μb1+2λ2pA12+2μ2p−2kμ2a0=0.



(21)







Using the Maple package program to solve the above algebraic system, we obtain the following results.



Result 1:


a0=−16(b+c)−ka,a1=0,a2=−24(b+c)a,b1=0,b2=0,p=−64b+c2λ2−k22a,μ=0,λ=λ,k=k,



(22)




where a≠0,b,c,λ(<0),μ,k are arbitrary constants. From Equations (10), (20), and (22), we obtain the traveling wave solution of Equation (1) as follows:


u(x,y,t)=−16(b+c)+ka+24λcoshξ−λA1+sinhξ−λA22b+cA1sinhξ−λ+A2coshξ−λ2a,



(23)




where ξ=−ktαα+x+y and A1,A2 are arbitrary constants.



Result 2:


a0=a0,a1=0,a2=−12b+ca,b1=12μb+ca,b2=±12(b+c)a−σ1λ2−μ2λ,p=12λb+c+aa08λb+c+aa02a,μ=μ,λ=λ,k=aa0+10bλ+10cλ,



(24)




where a0,a≠0,b,c,λ(<0),μ are arbitrary constants and σ1=A12−A22, where A1,A2 are arbitrary constants. From Equations (12), (20), and (24), we obtain the exact solution of Equation (1) as follows:


u(x,y,t)=a0+12λ3coshξ−λA1+sinhξ−λA22b+cA2coshξ−λλ+A1sinhξ−λλ+μ2a+12λμb+cA2coshξ−λλ+A1sinhξ−λλ+μa∓12−λ3/2λcoshξ−λA1+sinhξ−λA2−σ1λ2−μ2b+cA2coshξ−λλ+A1sinhξ−λλ+μ2a,



(25)




where ξ=−ktαα+x+y with k defined in Equation (24).



Case 2: Trigonometric function solutions (λ>0)



If λ>0, we insert Equation (20) into Equation (19) along with the use of Equations (9) and (13). Then, the left-hand side of (19) becomes a polynomial in ϕ(ξ) and ψ(ξ). Setting all of coefficients of this resulting polynomial to be zero, we have the following system of nonlinear algebraic equations in a0,a1,a2,b1,b2,A1,A2,λ,μ,k, and p, provided that λ2A12+A22−μ2≠0.


ϕ4(ξ):aλ2A12a22+aλ2A22a22+24bλ2A12a2+24bλ2A22a2+24cλ2A12a2+24cλ2A22a2−aμ2a22+aλb22−24bμ2a2−24cμ2a2=0,ϕ3(ξ):2aλ2A12a1a2+2aλ2A22a1a2+8bλ2A12a1+8bλ2A22a1+8cλ2A12a1+8cλ2A22a1−2aμ2a1a2+2aλb1b2−24bλμb2−8bμ2a1−24cλμb2−8cμ2a1=0,ϕ3(ξ)ψ(ξ):2aλ2A12a2b2+2aλ2A22a2b2+24bλ2A12b2+24bλ2A22b2+24cλ2A12b2+24cλ2A22b2−2aμ2a2b2−24bμ2b2−24cμ2b2=0,ϕ2(ξ):2aλ2A12a0a2+aλ2A12a12+2aλ2A22a0a2+aλ2A22a12+32bλ3A12a2+32bλ3A22a2+32cλ3A12a2+32cλ3A22a2−2kλ2A12a2−2kλ2A22a2+aλ2b22−2aμ2a0a2−aμ2a12−24bλμ2a2−24cλμ2a2+aλb12−4bλμb1−4cλμb1+2kμ2a2=0,ϕ2(ξ)ψ(ξ):2aλ2A12a1b2+2aλ2A12a2b1+2aλ2A22a1b2+2aλ2A22a2b1−40bλ2μA12a2−8cμ2b1−40bλ2μA22a2−40cλ2μA12a2−40cλ2μA22a2+8bλ2A12b1+8bλ2A22b1+8cλ2A12b1+8cλ2A22b1−2aλμb22−2aμ2a1b2−2aμ2a2b1+40bμ3a2+40cμ3a2−8bμ2b1=0,ϕ(ξ):2aλ2A12a0a1+2aλ2A22a0a1+8bλ3A12a1+8bλ3A22a1+8cλ3A12a1+8cλ3A22a1−2kλ2A12a1−2kλ2A22a1+2aλ2b1b2−2aμ2a0a1−24bλ2μb2−8bλμ2a1−24cλ2μb2−8cλμ2a1+2kμ2a1=0,ϕ(ξ)ψ(ξ):2aλ2A12a0b2+2aλ2A12a1b1+2aλ2A22a0b2+2aλ2A22a1b1+20bλ3A12b2+2kμ2b2+20bλ3A22b2−12bλ2μA12a1−12bλ2μA22a1+20cλ3A12b2+20cλ3A22b2+12cμ3a1−12cλ2μA12a1−12cλ2μA22a1−2kλ2A12b2−2kλ2A22b2−4aλμb1b2−2aμ2a0b2−2aμ2a1b1+28bλμ2b2+12bμ3a1+28cλμ2b2=0,ψ(ξ):−16bλ3μA12a2−16bλ3μA22a2−16cλ3μA12a2−16cλ3μA22a2+2aλ2A12a0b1+2aλ2A22a0b1+4bλ3A12b1+4bλ3A22b1+4cλ3A12b1+4cλ3A22b1−2kλ2A12b1−2kλ2A22b1−2aλμb12−2aμ2a0b1+4bλμ2b1+4cλμ2b1+2kμ2b1=0,ϕ(ξ)0:8bλ4A12a2+8bλ4A22a2+8cλ4A12a2+8cλ4A22a2+aλ2A12a02+aλ2A22a02−2μ2p−2kλ2A12a0−2kλ2A22a0+aλ2b12−aμ2a02−4bλ2μb1−4cλ2μb1+2λ2pA12+2kμ2a0+2λ2pA22=0.



(26)







By solving the above algebraic system using the Maple package program, we obtain the following results.



Result 1:


a0=−16(b+c)−ka,a1=0,a2=−24(b+c)a,b1=0,b2=0,p=−64b+c2λ2−k22a,μ=0,λ=λ,k=k,



(27)




where a≠0,b,c,λ(>0),k are arbitrary constants. From Equations (12), (20) and (27), we obtain the exact solution of Equation (1) as follows:


u(x,y,t)=−16(b+c)−ka−24λcosξλA1−sinξλA22b+cA1sinξλ+A2cosξλ2a,



(28)




where ξ=−ktαα+x+y and A1,A2 are arbitrary constants.



Result 2:


a0=a0,a1=0,a2=−12(b+c)a,b1=12μb+ca,b2=±12(b+c)aσ2λ2−μ2λ,p=12λb+c+aa08λb+c+aa02a,μ=μ,λ=λ,k=aa0+10bλ+10cλ,



(29)




where a0,a≠0,b,c,λ(>0),μ are arbitrary constants and σ2=A12+A22, where A1,A2 are arbitrary constants. From Equations (12), (20), and (29), we obtain the exact solution of Equation (1) as follows:


u(x,y,t)=a0−12λ3cosξλA1−sinξλA22b+cA2cosξλλ+A1sinξλλ+μ2a+12λμb+cA2cosξλλ+A1sinξλλ+μa±12λ5/2cosξλA1−sinξλA2σ2λ2−μ2b+cA2cosξλλ+A1sinξλλ+μ2a,



(30)




where ξ=−ktαα+x+y with k defined in Equation (29).



Case 3: Rational function solutions (λ=0)



If λ=0, we substitute Equation (20) into Equation (19) along with the use of Equations (9) and (15). Then, the left-hand side of (19) becomes a polynomial in variables ϕ(ξ) and ψ(ξ). Setting all of the coefficients of the resulting polynomial to be zero, we have the following system of nonlinear algebraic equations in a0,a1,a2,b1,b2,A1,A2,λ,μ,k, and p, provided that A12−2μA2≠0.


ϕ4(ξ):−2aμA2a22+aA12a22−48bμA2a2+24bA12a2−48cμA2a2+24cA12a2+ab22=0,ϕ3(ξ):−4aμA2a1a2+2aA12a1a2−16bμA2a1+8bA12a1−16cμA2a1+8cA12a1+2ab1b2−24bμb2−24cμb2=0,ϕ3(ξ)ψ(ξ):−4aμA2a2b2+2aA12a2b2−48bμA2b2+24bA12b2−48cμA2b2+24cA12b2=0,ϕ2(ξ):−4aμA2a0a2−2aμA2a12+2aA12a0a2+aA12a12+8bμ2a2+8cμ2a2+4kμA2a2−2kA12a2+ab12−4bμb1−4cμb1=0,ϕ2(ξ)ψ(ξ):−4aμA2a1b2−4aμA2a2b1+2aA12a1b2+2aA12a2b1+80bμ2A2a2−40bμA12a2+80cμ2A2a2−40cμA12a2−2aμb22−16bμA2b1+8bA12b1−16cμA2b1+8cA12b1=0,ϕ(ξ):−4aμA2a0a1+2aA12a0a1+4kμA2a1−2kA12a1=0,ϕ(ξ)ψ(ξ):−4aμA2a0b2−4aμA2a1b1+2aA12a0b2+2aA12a1b1+24bμ2A2a1−12bμA12a1+24cμ2A2a1−12cμA12a1−4aμb1b2+48bμ2b2+48cμ2b2+4kμA2b2−2kA12b2=0,ψ(ξ):−4aμA2a0b1+2aA12a0b1−16bμ3a2−16cμ3a2−2aμb12+8bμ2b1+8cμ2b1+4kμA2b1−2kA12b1=0,ϕ(ξ)0:−2aμA2a02+aA12a02+4kμA2a0−2kA12a0−4μpA2+2pA12=0.



(31)







On solving the above algrebraic system using the Maple package program, we obtain the following results.



Result 1:


a0=a0,a1=0,a2=−24(b+c)a,b1=0,b2=0,p=aa022,μ=0,k=aa0,



(32)




where a0,a≠0,b,c are arbitrary constants. From Equations (14), (20) and (32), we obtain the traveling wave solution of Equation (1) as follows:


u(x,y,t)=a0−A1224b+24cA1ξ+A22a,



(33)




where ξ=−ktαα+x+y with k defined in Equation (32) and A1,A2 are arbitrary constants.



Result 2:


a0=a0,a1=0,a2=−12(b+c)a,b1=144b+c2A12−a2b2224aA2b+c,b2=b2,p=aa022,μ=b1a12(b+c),k=aa0,



(34)




where a0,b2,a,b,c,A1,A2 are arbitrary constants such that aA2b+c≠0. From Equations (14), (20), and (34), we obtain the traveling wave solution of Equation (1) as follows:


u(x,y,t)=−48b+c12b+cA1+b1aξ224A1ξb+c+b1aξ2+24A2b+c2a+24b1b+c24A1ξb+c+b1aξ2+24A2b+c+48b2b+c12b+cA1+b1aξ24A1ξb+c+b1aξ2+24A2b+c2,



(35)




where ξ=−ktαα+x+y with k defined in Equation (34).



In the following part, the selected exact solutions of Equation (1), which are expressed in Equations (25), (28) and (35), are plotted for the three-dimensional representations. They will be portrayed on −10≤x,t≤10 by varying the fractional order α∈{1,0.9,0.8}. The graphical results are as follows.



The following fixed values a0=1,μ=1,λ=−0.1,A1=2,A2=1,a=1,b=1,c=1 and the variation of α∈{1,0.9,0.8} are utilized to plot associated graphs of u(x,y,t) expressed in Equation (25). In Figure 1a, the solution u(x,y,t) with α=1 is plotted to describe the bell-shaped solitary wave solution. The graphs of the solution u(x,y,t) for α=0.9 and α=0.8 are shown in Figure 1b,c, respectively. The graph of |u(x,y,t)| for α=0.8 is depicted in Figure 1d. Figure 1b,c cannot show a graphical representation for −10<t<0 since u(x,y,t) is a complex-valued function on this interval.



In Figure 2a, the periodic traveling wave solution, obtained using the solution u(x,y,t) in Equation (28), is displayed using the parameter values k=1,λ=2,A1=2,A2=1,a=−1,b=1,c=1, and the fractional orders α=1. Using the above parameter values, Figure 2b,c, represent the solution u(x,y,t) describing singular soliton solutions for α=0.9 and α=0.8, respectively. The graph of |u(x,y,t)| with α=0.8 is portrayed in Figure 2d. We can observe that Figure 2b,c cannot give a graphical representation for −10<t<0, since u(x,y,t) is a complex-valued function on this interval.



For the fixed values a0=1,b2=1,A1=2,A2=1,a=−1,b=1,c=1, the graphs of the exact solutions u(x,y,t) in Equation (35) of Equation (1) corresponding to the given variation of α are investigated. The solution u(x,y,t) with α=1, describing the solitary wave solution of singular soliton type, is depicted in Figure 3a. The solutions u(x,y,t) with α=0.9 and α=0.8, showing the discontinuous singular single-soliton solution, are presented in Figure 3b,c, respectively. Since u(x,y,t) is a complex-valued function on −10<t<0, then these figures do not present any graph for this interval. The graph of |u(x,y,t)| with α=0.8 is plotted in Figure 3d.



Next, we compare our exact solutions of Equation (1), achieved using the (G′/G,1/G)-expansion method to the ones obtained using the different methods, which were reported before. In 2019, Ali et al., [37] analytically solved Equation (1) using the modified Kudryashov method and the (G′/G2)-expansion method. They found that the former method provided the two exact solutions written in terms of the reciprocal of exponential function solutions. The latter method, which they employed, released six sets of the coefficients and parameter values in which each set generated three classes of the solutions, including trigonometric, hyperbolic, and rational function solutions, while our results generated using the (G′/G,1/G)-expansion method included two hyperbolic function solutions, two trigonometric function solutions, and two rational function solutions. When comparing the number of solution classes obtained using the (G′/G2)-expansion method and the (G′/G,1/G)-expansion method, they are the same number. However, their solutions and our solutions are not exactly the same. Applying the (G′/G,1/G)-expansion method to Equation (1), our solutions are new and distinct from the results in [37].




4.2. The Space-Time-Fractional Generalized Hirota-Satsuma Coupled KdV System


Before finding exact traveling wave solutions of the space-time-fractional generalized Hirota-Satsuma coupled KdV system in Equation (2) by using the (G′/G,1/G)-expansion method, we must convert it to a system of ordinary differential equations using the following transformations


u(x,t)=U(ξ),v(x,t)=V(ξ),w(x,t)=W(ξ),ξ=kxηη−ctρρ,



(36)




where k and c are non-zero arbitrary constants to be determined later. Substituting Equation (36) into Equation (2), we yield a system of ODEs, as follows:


−ckU′=14k3U‴+3kUU′+3k(−V2+W)′,



(37)






−ckV′=−12k3V‴−3kUV′,



(38)






−ckW′=−12k3W‴−3kUW′..



(39)







Let [53]


U=αV2+βV+γ,W=AV+B,



(40)




where α,β,γ,A and B are constants to be determined later.



Substituting Equation (40) into Equations (38) and (39), and then integrating once, we know that Equations (38) and (39) give the same resulting equation as follows:


k2V″=−2αV3−3βV2+2(c−3γ)V+c1,



(41)




where c1 is a constant of integration. Multiplying Equation (41) by V′ and then integrating the resulting equation with respect to ξ, we obtain


k2(V′)2=−αV4−2βV3+2(c−3γ)V2+2c1V+c2,



(42)




where c2 is also a constant of integration.



Differentiating Equation (40) with respect to ξ and then using Equations (41) and (42), we obtain


k2U″=2αk2(V′)2+k2(2αV+β)V″,=2α−αV4−2βV3+2(c−3γ)V2+2c1V+c2+(2αV+β)−2αV3−3βV2+2(c−3γ)V+c1.



(43)







Integrating Equation (37) once, we get


14k2U″+32U2+cU+3(−V2+W)+c3=0,



(44)




where c3 is a constant of integration. Substituting Equations (40) and (43) into Equation (44), we obtain that the following coefficients of the resulting polynomial are zero, as follows:


3αc−3αγ+34β2−3=0,12αc1+βc+γβ+A=0,142αc2+βc1+32γ2+cγ+3B+c3=0.



(45)







Let


c1=12α2(β3+2cαβ−6αβγ),V(ξ)=aP(ξ)−β2α.



(46)







We find from (45) that


α=β2−44(γ−c),A=4β(c−γ)β2−4,B=16−γ+cβ2−42(16c3cβ2−2c3cβ4−16c3γβ2+2c3γβ4+56c2γβ2−48γ2cβ2−16c2+14c2β6−3c2β4+12c2β2−16γ2c−32c2γ−8c3β2+β4γ3−2β4c3+32c3γ−32c3c+48γ3+β4γ2c).



(47)







From (41), we hence acquire


ak2P″−a2c−6γ+3β22αP+2αa3P3=0.



(48)







Applying the homogeneous balance principle and the formulas in Equation (17) mentioned in Step 3 to the terms P″ and P3, we then have that


DegP″=N+2=DegP3=3N,



(49)




which leads to N=1. Hence, the form of exact solutions of the ODE in Equation (48) using the method is


P(ξ)=a0+a1ϕ(ξ)+b1ψ(ξ),



(50)




where the constant coefficients a0,a1 and b1 are determined at a later step, provided that a12+b12≠0. Using the (G′/G,1/G)-expansion method, the following three cases of the obtained exact traveling solutions of Equation (2), depending on the function G(ξ) which is a solution of the auxiliary Equation (7), are as follows.



Case 1: Hyperbolic function solutions (λ<0)



If λ<0, we substitute Equation (50) into Equation (48), along with the use of Equations (9) and (11). Then, the left-hand side of Equation (48) becomes a polynomial in ϕ(ξ) and ψ(ξ). Setting all of the coefficients of this resulting polynomial to be zero, we obtain the following system of nonlinear algebraic equations in a0,a1,b1,A1,A2,λ,μ,k, and c, provided that λ2A12−A22+μ2≠0.


ϕ3(ξ):4a3α2λ4A14a13−8a3α2λ4A12A22a13+4a3α2λ4A24a13+8a3α2λ2μ2A12a13−8a3α2λ2μ2A22a13−12a3α2λ3A12a1b12+12a3α2λ3A22a1b12+4aαk2λ4A14a1−8aαk2λ4A12A22a1+4aαk2λ4A24a1+4a3α2μ4a13−12a3α2λμ2a1b12+8aαk2λ2μ2A12a1−8aαk2λ2μ2A22a1+4aαk2μ4a1=0,ϕ2(ξ):12a3α2λ4A14a0a12−24a3α2λ4A12A22a0a12+12a3α2λ4A24a0a12+24a3α2λ2μ2A12a0a12−24a3α2λ2μ2A22a0a12−12a3α2λ3A12a0b12+12a3α2λ3A22a0b12+12a3α2μ4a0a12−8a3α2λ2μb13−12a3α2λμ2a0b12+2aαk2λ3μA12b1−2aαk2λ3μA22b1+2aαk2λμ3b1=0,ϕ2(ξ)ψ(ξ):12a3α2λ4A14a12b1−24a3α2λ4A12A22a12b1+12a3α2λ4A24a12b1+24a3α2λ2μ2A12a12b1−24a3α2λ2μ2A22a12b1−4a3α2λ3A12b13+4a3α2λ3A22b13+4aαk2λ4A14b1−8aαk2λ4A12A22b1+4aαk2λ4A24b1+12a3α2μ4a12b1−4a3α2λμ2b13+8aαk2λ2μ2A12b1−8aαk2λ2μ2A22b1+4aαk2μ4b1=0,ϕ(ξ):12a3α2λ4A14a02a1−24a3α2λ4A12A22a02a1+12a3α2λ4A24a02a1−12a3α2λ4A12a1b12+12a3α2λ4A22a1b12+24a3α2λ2μ2A12a02a1−24a3α2λ2μ2A22a02a1+4aαk2λ5A14a1−8aαk2λ5A12A22a1+4aαk2λ5A24a1−12a3α2λ2μ2a1b12+12a3α2μ4a02a1−4aαcλ4A14a1+8aαcλ4A12A22a1−4aαcλ4A24a1+12aαγλ4A14a1−24aαγλ4A12A22a1+12aαγλ4A24a1+8aαk2λ3μ2A12a1−8aαk2λ3μ2A22a1−3aβ2λ4A14a1+6aβ2λ4A12A22a1−3aβ2λ4A24a1−8aαcλ2μ2A12a1+8aαcλ2μ2A22a1+24aαγλ2μ2A12a1−24aαγλ2μ2A22a1+4aαk2λμ4a1−6aβ2λ2μ2A12a1+6aβ2λ2μ2A22a1−4aαcμ4a1+12aαγμ4a1−3aβ2μ4a1=0,ϕ(ξ)ψ(ξ):24a3α2λ4A14a0a1b1−48a3α2λ4A12A22a0a1b1+24a3α2λ4A24a0a1b1+24a3α2λ3μA12a1b12−24a3α2λ3μA22a1b12+48a3α2λ2μ2A12a0a1b1−48a3α2λ2μ2A22a0a1b1−6aαk2λ4μA14a1+12aαk2λ4μA12A22a1−6aαk2λ4μA24a1+24a3α2λμ3a1b12+24a3α2μ4a0a1b1−12aαk2λ2μ3A12a1+12aαk2λ2μ3A22a1−6aαk2μ5a1=0,ψ(ξ):12a3α2λ4A14a02b1−24a3α2λ4A12A22a02b1+12a3α2λ4A24a02b1−4a3α2λ4A12b13+4a3α2λ4A22b13+24a3α2λ3μA12a0b12−24a3α2λ3μA22a0b12+24a3α2λ2μ2A12a02b1−24a3α2λ2μ2A22a02b1+2aαk2λ5A14b1−4aαk2λ5A12A22b1+2aαk2λ5A24b1+12a3α2λ2μ2b13+24a3α2λμ3a0b12+12a3α2μ4a02b1−4aαcλ4A14b1+8aαcλ4A12A22b1−4aαcλ4A24b1+12aαγλ4A14b1−24aαγλ4A12A22b1+12aαγλ4A24b1−3aβ2λ4A14b1+6aβ2λ4A12A22b1−3aβ2λ4A24b1−8aαcλ2μ2A12b1+8aαcλ2μ2A22b1+24aαγλ2μ2A12b1−24aαγλ2μ2A22b1−2aαk2λμ4b1−6aβ2λ2μ2A12b1+6aβ2λ2μ2A22b1−4aαcμ4b1+12aαγμ4b1−3aβ2μ4b1=0,ϕ0(ξ):4a3α2λ4A14a03−8a3α2λ4A12A22a03+4a3α2λ4A24a03−12a3α2λ4A12a0b12+12a3α2λ4A22a0b12+8a3α2λ2μ2A12a03−8a3α2λ2μ2A22a03−8a3α2λ3μb13−12a3α2λ2μ2a0b12+4a3α2μ4a03−4aαcλ4A14a0+8aαcλ4A12A22a0−4aαcλ4A24a0+12aαγλ4A14a0−24aαγλ4A12A22a0+12aαγλ4A24a0+2aαk2λ4μA12b1−2aαk2λ4μA22b1−3aβ2λ4A14a0+6aβ2λ4A12A22a0−3aβ2λ4A24a0−8aαcλ2μ2A12a0+8aαcλ2μ2A22a0+24aαγλ2μ2A12a0−24aαγλ2μ2A22a0+2aαk2λ2μ3b1−6aβ2λ2μ2A12a0+6aβ2λ2μ2A22a0−4aαcμ4a0+12aαγμ4a0−3aβ2μ4a0=0.



(51)







Solving the above algebraic system using the Maple package program, we have the following results.



Result 1:


a0=0,a1=±k−1αa,b1=0,k=k,c=12γ−λk2(β2−4)2(β2+2),μ=0,λ=λ,



(52)




where k,a≠0,β,γ,λ(<0) are arbitrary constants and α is defined in Equation (47). From Equations (10), (50) and (52), we obtain the traveling wave solutions of Equation (2), as follows:


v11(x,t)=±k−1αA1−λcoshξ−λ+A2−λsinhξ−λA1sinhξ−λ+A2coshξ−λ−β2α,u11(x,t)=αv11(x,t)+βv11(x,t)+γ,w11(x,t)=Av11(x,t)+B,



(53)




where ξ is defined in Equation (36) with k,c defined in Equation (52), A1,A2 are arbitrary constants and A,B are defined in Equation (47).



Result 2:


a0=0,a1=±k−1α2a,b1=b1,k=k,c=β2−44γ2σ12+2a2b12β2+2σ1+2γσ1β2+84σ1β2+2,μ=0,λ=4αa2b12k2σ1<0,



(54)




where b1,k,a≠0,β,γ are arbitrary constants, α is defined in Equation (47) and σ1=A12−A22, where A1,A2 are arbitrary constants. From Equations (10), (50) and (54), we obtain the traveling wave solutions of Equation (2) as follows:


v21(x,t)=±k−1αA1−αa2b12k2σ1cosh2ξ−αa2b12k2σ1+A2−αa2b12k2σ1sinh2ξ−αa2b12k2σ1A1sinh2ξ−αa2b12k2σ1+A2cosh2ξ−αa2b12k2σ1+ab1A1sinh2ξ−αa2b12k2σ1+A2cosh2ξ−αa2b12k2σ1−β2α,u21(x,t)=αv21(x,t)+βv21(x,t)+γ,w21(x,t)=Av21(x,t)+B,



(55)




where ξ is defined in Equation (36) with k,c defined in Equation (54) and A,B are defined in Equation (47).



Result 3:



Result 3.1


a0=0,a1=k−1α2a,b1=±k2aλ2σ1+μ2αλ,k=k,c=48γ−λk2(β2−4)8(β2+2),μ=μ,λ=λ,



(56)







Result 3.2


a0=0,a1=−k−1α2a,b1=±k2aλ2σ1+μ2αλ,k=k,c=48γ−λk2(β2−4)8(β2+2),μ=μ,λ=λ,



(57)




where k,a≠0,β,γ,μ,λ(<0) are arbitrary constants, α is defined in Equation (47) and σ1=A12−A22, where A1,A2 are arbitrary constants. From Equations (10), (50) and (56), we obtain the traveling wave solutions of Equation (2) as follows:


v31(x,t)=k−1αA1−λcoshξ−λ+A2−λsinhξ−λ2A1sinhξ−λ+A2coshξ−λ+μλ±kλ2σ1+μ2αλ2A1sinhξ−λ+A2coshξ−λ+μ2λ−β2α,u31(x,t)=αv31(x,t)+βv31(x,t)+γ,w31(x,t)=Av31(x,t)+B,



(58)




where ξ is defined in Equation (36) with k,c defined in Equation (56) and A,B are defined in Equation (47). Similarly, we can use Equations (10), (50) and (57) to obtain the traveling wave solutions of Equation (2), but they are omitted here.



Case 2: Trigonometric function solutions (λ>0)



If λ>0, we substitute Equation (50) into Equation (48), along with the use of Equations (9) and (13). Then, the left-hand side of Equation (48) becomes a polynomial in ϕ(ξ) and ψ(ξ). Setting all of the coefficients of the resulting polynomial to be zero, we obtain the following system of nonlinear algebraic equations in a0,a1,b1,A1,A2,λ,μ,k,c, provided that λ2A12+A22−μ2≠0


ϕ3(ξ):4a3α2λ4A14a13+8a3α2λ4A12A22a13+4a3α2λ4A24a13−8a3α2λ2μ2A12a13−8a3α2λ2μ2A22a13+12a3α2λ3A12a1b12+12a3α2λ3A22a1b12+4aαk2λ4A14a1+8aαk2λ4A12A22a1+4aαk2λ4A24a1+4a3α2μ4a13−12a3α2λμ2a1b12−8aαk2λ2μ2A12a1−8aαk2λ2μ2A22a1+4aαk2μ4a1=0,ϕ2(ξ):12a3α2λ4A14a0a12+24a3α2λ4A12A22a0a12+12a3α2λ4A24a0a12−24a3α2λ2μ2A12a0a12−24a3α2λ2μ2A22a0a12+12a3α2λ3A12a0b12+12a3α2λ3A22a0b12+12a3α2μ4a0a12−8a3α2λ2μb13−12a3α2λμ2a0b12−2aαk2λ3μA12b1−2aαk2λ3μA22b1+2aαk2λμ3b1=0,ϕ2(ξ)ψ(ξ):12a3α2λ4A14a12b1+24a3α2λ4A12A22a12b1+12a3α2λ4A24a12b1−24a3α2λ2μ2A12a12b1−24a3α2λ2μ2A22a12b1+4a3α2λ3A12b13+4a3α2λ3A22b13+4aαk2λ4A14b1+8aαk2λ4A12A22b1+4aαk2λ4A24b1+12a3α2μ4a12b1−4a3α2λμ2b13−8aαk2λ2μ2A12b1−8aαk2λ2μ2A22b1+4aαk2μ4b1=0,ϕ(ξ):−3aβ2μ4a1−24a3α2λ2μ2A22a02a1+12aαγλ4A14a1+12a3α2μ4a02a1−12a3α2λ2μ2a1b12−8aαk2λ3μ2A22a1+12aαγμ4a1−24aαγλ2μ2A12a1+8aαcλ2μ2A12a1+12a3α2λ4A14a02a1+12a3α2λ4A24a02a1−4aαcμ4a1−8aαk2λ3μ2A12a1+24a3α2λ4A12A22a02a1+4aαk2λμ4a1+8aαcλ2μ2A22a1−4aαcλ4A14a1+6aβ2λ2μ2A12a1−24a3α2λ2μ2A12a02a1+12a3α2λ4A12a1b12+12a3α2λ4A22a1b12+12aαγλ4A24a1−8aαcλ4A12A22a1−3aβ2λ4A24a1−6aβ2λ4A12A22a1+4aαk2λ5A24a1+24aαγλ4A12A22a1−4aαcλ4A24a1+6aβ2λ2μ2A22a1−3aβ2λ4A14a1+8aαk2λ5A12A22a1+4aαk2λ5A14a1−24aαγλ2μ2A22a1=0,



(59)






ϕ(ξ)ψ(ξ):24a3α2λ4A14a0a1b1+48a3α2λ4A12A22a0a1b1+24a3α2λ4A24a0a1b1−24a3α2λ3μA12a1b12−24a3α2λ3μA22a1b12−48a3α2λ2μ2A12a0a1b1−48a3α2λ2μ2A22a0a1b1−6aαk2λ4μA14a1−12aαk2λ4μA12A22a1−6aαk2λ4μA24a1+24a3α2λμ3a1b12+24a3α2μ4a0a1b1+12aαk2λ2μ3A12a1+12aαk2λ2μ3A22a1−6aαk2μ5a1=0,ψ(ξ):12aαγμ4b1−2aαk2λμ4b1−24a3α2λ3μA12a0b12−3aβ2μ4b1+24a3α2λ4A12A22a02b1−24a3α2λ3μA22a0b12−24a3α2λ2μ2A22a02b1+4a3α2λ4A22b13+12a3α2λ4A14a02b1+2aαk2λ5A14b1+12a3α2λ4A24a02b1+2aαk2λ5A24b1+12aαγλ4A24b1+6aβ2λ2μ2A12b1+4a3α2λ4A12b13+12a3α2μ4a02b1−4aαcλ4A14b1+4aαk2λ5A12A22b1−24aαγλ2μ2A22b1+24a3α2λμ3a0b12−8aαcλ4A12A22b1−6aβ2λ4A12A22b1+6aβ2λ2μ2A22b1+8aαcλ2μ2A12b1+12α2a3b13λ2μ2+12aαγλ4A14b1−3aβ2λ4A14b1−4aαcλ4A24b1−4aαcμ4b1−24aαγλ2μ2A12b1−24a3α2λ2μ2A12a02b1−3aβ2λ4A24b1+24aαγλ4A12A22b1+8aαcλ2μ2A22b1=0,ϕ0(ξ):−24aαγλ2μ2A22a0−8a3α2λ2μ2A12a03+12a3α2λ4A22a0b12+12a3α2λ4A12a0b12−8a3α2λ2μ2A22a03−4aαcλ4A24a0−8α2a3b13λ3μ+24aαγλ4A12A22a0+12aαγλ4A14a0−4aαcμ4a0−4aαcλ4A14a0−3aβ2λ4A14a0−12a3α2λ2μ2a0b12+4a3α2λ4A24a03+8a3α2λ4A12A22a03+4a3α2λ4A14a03−8aαcλ4A12A22a0+6aβ2λ2μ2A22a0−3aβ2λ4A24a0+12aαγμ4a0+12aαγλ4A24a0−2aαk2λ4μA12b1+2aαk2λ2μ3b1−2aαk2λ4μA22b1−24aαγλ2μ2A12a0+6aβ2λ2μ2A12a0+8aαcλ2μ2A12a0+8aαcλ2μ2A22a0−6aβ2λ4A12A22a0−3aβ2μ4a0+4a3α2μ4a03=0.











On solving the above algebraic system using the Maple package program, we obtain the following results.



Result 1:


a0=0,a1=±k−1αa,b1=0,k=k,c=12γ−λk2(β2−4)2(β2+2),μ=0,λ=λ,



(60)




where k,a≠0,β,γ,λ(>0) are arbitrary constants, α is defined in Equation (47). From Equations (12), (50) and (60), we obtain the traveling wave solutions of Equation (2) as follows:


v12(x,t)=±k−1αA1λcosξλ−A2λsinξλA1sinξλ+A2cosξλ−β2α,u12(x,t)=αv12(x,t)+βv12(x,t)+γ,w12(x,t)=Av12(x,t)+B,



(61)




where ξ is defined in Equation (36) with k,c defined in Equation (60), A1,A2 are arbitrary constants and A,B are defined in Equation (47).



Result 2:


a0=0,a1=±k−1α2a,b1=b1,k=k,c=β2−4γ2σ22+β2−4b12a2σ2−2γσ2β2+82σ2β2−4,μ=0,λ=−4αa2b12k2σ2>0,



(62)




where b1,k,a≠0,β,γ are arbitrary constants, α is defined in Equation (47) and σ2=A12+A22, where A1,A2 are arbitrary constants. From Equations (12), (50) and (62), we obtain the traveling wave solutions of Equation (2) as follows:


v22(x,t)=±k−1αA1−αa2b12k2σ2cos2ξ−αa2b12k2σ2−A2−αa2b12k2σ2sin2ξ−αa2b12k2σ2A1sin2ξ−αa2b12k2σ2+A2cos2ξ−αa2b12k2σ2+ab1A1sin2ξ−αa2b12k2σ2+A2cos2ξ−αa2b12k2σ2−β2α,u22(x,t)=αv22(x,t)+βv22(x,t)+γ,w22(x,t)=Av22(x,t)+B,



(63)




where ξ is defined in Equation (36) with k,c defined in Equation (62) and A,B are defined in Equation (47).



Result 3:



Result 3.1


a0=0,a1=k−1α2a,b1=±k2aμ2−λ2σ2αλ,k=k,c=48γ−λk2(β2−4)8(β2+2),μ=μ,λ=λ,



(64)







Result 3.2


a0=0,a1=−k−1α2a,b1=±k2aμ2−λ2σ2αλ,k=k,c=48γ−λk2(β2−4)8(β2+2),μ=μ,λ=λ,



(65)




where k,a≠0,β,γ,μ,λ(>0) are arbitrary constants, α is defined in Equation (47) and σ2=A12+A22, where A1,A2 are arbitrary constants. From Equations (12), (50) and (64), we obtain the traveling wave solutions of Equation (2), as follows:


v32(x,t)=k−1αA1λcosξλ−A2λsinξλ2A1sinξλ+2A2cosξλ+2μλ±kμ2−λ2σ2αλ2A1sinξλ+2A2cosξλ+2μλ−β2α,u32(x,t)=αv32(x,t)+βv32(x,t)+γ,w32(x,t)=Av32(x,t)+B,



(66)




where ξ is defined in Equation (36) with k,c defined in Equation (64) and A,B are defined in Equation (47). Similarly, we can use Equations (12), (50) and (65) to construct the traveling wave solutions of Equation (2), but they are omitted here.



Case 3: Rational function solutions (λ=0)



If λ=0, we substitute Equation (50) into Equation (48), along with the use of Equations (9) and (15). Then, the left-hand side of Equation (48) becomes a polynomial in ϕ(ξ) and ψ(ξ). Setting all of the coefficients of this polynomial to be zero, we obtain the following system of nonlinear algebraic equations in a0,a1,b1,A1,A2,λ,μ,k,c, provided that A12−2μA2≠0.


ϕ3(ξ):16a3α2μ2A22a13−16a3α2μA12A2a13+4a3α2A14a13−24a3α2μA2a1b12+12a3α2A12a1b12+16aαk2μ2A22a1−16aαk2μA12A2a1+4aαk2A14a1=0,ϕ2(ξ):48a3α2μ2A22a0a12−48a3α2μA12A2a0a12+12a3α2A14a0a12−24a3α2μA2a0b12+12a3α2A12a0b12−8a3α2μb13+4aαk2μ2A2b1−2aαk2μA12b1=0,ϕ2(ξ)ψ(ξ):48a3α2μ2A22a12b1−48a3α2μA12A2a12b1+12a3α2A14a12b1−8a3α2μA2b13+4a3α2A12b13+16aαk2μ2A22b1−16aαk2μA12A2b1+4aαk2A14b1=0,ϕ(ξ):48a3α2μ2A22a02a1−48a3α2μA12A2a02a1+12a3α2A14a02a1−16aαcμ2A22a1+16aαcμA12A2a1−4aαcA14a1+48aαγμ2A22a1−48aαγμA12A2a1+12aαγA14a1−12aβ2μ2A22a1+12aβ2μA12A2a1−3aβ2A14a1=0,ϕ(ξ)ψ(ξ):96a3α2μ2A22a0a1b1−96a3α2μA12A2a0a1b1+24a3α2A14a0a1b1+48a3α2μ2A2a1b12−24a3α2μA12a1b12−24aαk2μ3A22a1+24aαk2μ2A12A2a1−6aαk2μA14a1=0,ψ(ξ):48a3α2μ2A22a02b1−48a3α2μA12A2a02b1+12a3α2A14a02b1+48a3α2μ2A2a0b12−24a3α2μA12a0b12+16a3α2μ2b13−8aαk2μ3A2b1+4aαk2μ2A12b1−16aαcμ2A22b1+16aαcμA12A2b1−4aαcA14b1+48aαγμ2A22b1−48aαγμA12A2b1+12aαγA14b1−12aβ2μ2A22b1+12aβ2μA12A2b1−3aβ2A14b1=0,ϕ0(ξ):16a3α2μ2A22a03−16a3α2μA12A2a03+4a3α2A14a03−16aαcμ2A22a0+16aαcμA12A2a0−4aαcA14a0+48γaαμ2A22a0−48γaαμA12A2a0+12γaαA14a0−12aβ2μ2A22a0+12aβ2μA12A2a0−3aβ2A14a0=0.



(67)







On solving the above algebraic system using the Maple package program, we obtain the following results.



Result 1:


a0=0,a1=±k−1αa,b1=0,k=k,c=6γβ2+2,μ=0,



(68)




where k,a≠0,β,γ are arbitrary constants, α is defined in Equation (47). From Equations (14), (50) and (68), we obtain the traveling wave solutions of Equation (2) as follows:


v13(x,t)=±k−1αA1A1ξ+A2−β2α,u13(x,t)=αv13(x,t)+βv13(x,t)+γ,w13(x,t)=Av13(x,t)+B,



(69)




where ξ is defined in Equation (36) with k,c defined in Equation (68), A1,A2 are arbitrary constants, and A,B are defined in Equation (47).



Result 2:


a0=0,a1=0,b1=±A1k−1αa,k=k,c=6γβ2+2,μ=0,



(70)




where k,a≠0,β,γ,A1 are arbitrary constants, and α is defined in Equation (47). From Equations (14), (50) and (70), we obtain the traveling wave solutions of Equation (2), as follows:


v23(x,t)=±k−1αA1A1ξ+A2−β2α,u23(x,t)=αv23(x,t)+βv23(x,t)+γ,w23(x,t)=Av23(x,t)+B,



(71)




where ξ is defined in Equation (36) with k,c defined in Equation (70), A2 is an arbitrary constant, and A,B are defined in Equation (47).



Result 3:



Result 3.1


a0=0,a1=±k−1α2a,b1=A1k−1α2a,k=k,c=6γβ2+2,μ=0,



(72)







Result 3.2


a0=0,a1=±k−1α2a,b1=−A1k−1α2a,k=k,c=6γβ2+2,μ=0,



(73)




where k,a≠0,β,γ,A1 are arbitrary constants, and α is defined in Equation (47). From Equations (14), (50) and (72), we obtain the traveling wave solutions of Equation (2) as follows:


v33(x,t)=±k−1αA1A1ξ+A2−β2α,u33(x,t)=αv33(x,t)+βv33(x,t)+γ,w33(x,t)=Av33(x,t)+B,



(74)




where ξ is defined in Equation (36) with k,c defined in Equation (72), A2 is an arbitrary constant and A,B are defined in Equation (47). Similarly, we can utilize Equations (14), (50) and (73) to construct the traveling wave solutions of Equation (2), but they are omitted here.



Result 4:


a0=0,a1=±k−1α2a,b1=b1,k=k,c=6γβ2+2,μ=4a2αb12+k2A122k2A2,



(75)




where b1,k,a≠0,β,γ,A1,A2 are arbitrary constants, α is defined in Equation (47). From Equations (14), (50) and (75), we obtain the traveling wave solutions of Equation (2), as follows:


v43(x,t)=±k−1α4a2αb12+k2A12ξk2A2+A124a2αb12+k2A12ξ2k2A2+2A1ξ+2A2+ab14a2αb12+k2A12ξ24k2A2+A1ξ+A2−β2α,u43(x,t)=αv43(x,t)+βv43(x,t)+γ,w43(x,t)=Av43(x,t)+B,



(76)




where ξ is defined in Equation (36) with k,c defined in Equation (75) and A,B are defined in Equation (47).



Next, we show the three-dimensional plots of some selected exact solutions of Equation (2). The three exact solutions selected to provide graphical representation are v31(x,t) in Equation (58), v12(x,t) in Equation (61), and v33(x,t) in Equation (74). They will be drawn on −10≤x,t≤10 with the varied fractional orders η,ρ among 1, 0.9, and 0.8. The graphical results of the selected solutions are described below.



The following fixed values k=1,a=1,β=−3,γ=−3,μ=1,λ=−1,A1=3,A2=2 and the variation of η,ρ∈{1,0.9,0.8} are used to plot associated graphs of v31(x,t) in Equation (58). In Figure 4a, the solution v31(x,t) with η=ρ=1 was plotted to describe the kink-type solitary wave solution. The graphs of the solution v31(x,t) with η=ρ=0.9 and η=0.9,ρ=0.8 are presented in Figure 4b,c, respectively. The graph of |v31(x,t)| with η=0.9,ρ=0.8 is shown in Figure 4d.



In Figure 5a, the graphical representation of the periodic wave solutions obtained using the solution v12(x,t) in Equation (61), the parameter values k=1,a=1,β=−4,γ=−1,λ=1, A1=1,A2=1, and the fractional orders η=ρ=1. Using the above parameter values, Figure 5b,c describe the singular multiple-soliton solutions for v12(x,t) with η=0.9,ρ=0.9, and η=0.9,ρ=0.8, respectively. The graph of |v12(x,t)| with η=0.9,ρ=0.8 is portrayed in Figure 5d.



For the fixed values k=5,a=5,β=1,γ=−4,A1=1,A2=1, the graphs of the exact solutions v33(x,t) in Equation (74) of Equation (2) corresponding to the variation of η,ρ are investigated. The solution v33(x,t) with η=ρ=1, describing the solitary wave solution of singular kink type, is depicted in Figure 6a. The solutions v33(x,t) with η=ρ=0.9 and η=0.9,ρ=0.8, describing the 1-soliton solitary wave solution, are presented in Figure 6b,c, respectively. The graph of |v33(x,t)| with η=0.9,ρ=0.8 is plotted in Figure 6d.



Our results of the space-time-fractional generalized Hirota-Satsuma coupled KdV system in Equation (2) obtained using the (G′/G,1/G)-expansion method are the generalization of the exact solutions reported in [54]. There are two reasons for this: (1) The equation, which was solved in [54], is the fractional generalized Hirota-Satsuma coupled KdV system, with only the time-conformable fractional derivative; and (2) the method, which was used to solve the equation in [54], is the (G′/G)-expansion method which is the particular case of the (G′/G,1/G)-expansion method [51] by setting the parameter μ in Equation (7) and the coefficient bj in Equation (16) to be zero. Particularly comparing our solutions with the ones in [54], the common solutions obtained using both methods consist of the hyperbolic, trigonometric, and rational function solutions. However, the number of our exact solutions is more than the number of solutions obtained in [54].





5. Conclusions


In this article, the two-variable (G′/G,1/G)-expansion method has been used to obtain some novel exact solutions of the time-fractional (2+1)-dimensional extended quantum Zakharov-Kuznetsov equation and the space-time-fractional generalized Hirota-Satsuma coupled KdV system, as given in Equations (1) and (2), respectively. The method employed provided a variety of solutions for both problems, including the hyperbolic, trigonometric, and rational function solutions. Some of the solutions of (1) have been characterized in distinct physical structures, such as a bell-shaped solitary wave solution, a periodic traveling wave solution, and a singular soliton solution. The kink-type solitary wave solution and the singular multiple-soliton solution were found from the exact solutions of (2), which are depicted in Section 4.2. All solutions obtained in our work have been checked with the Maple package program by substituting them back into the original equations. To the best of our knowledge, these new solutions have not been constructed in previous literature—hence, they may be of vital importance for explaining some relevant physical phenomena of the mentioned equations. In summary, the (G′/G,1/G)-expansion method equipped with the fractional complex transform is very powerful, reliable, and efficient in its application for obtaining exact traveling solutions for a wide class of NLFEEs.
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Figure 1. Associated plots of u(x,y,t) in Equation (25) of Equation (1) on −10≤x,t≤10 using the (G′/G,1/G)-expansion method. 






Figure 1. Associated plots of u(x,y,t) in Equation (25) of Equation (1) on −10≤x,t≤10 using the (G′/G,1/G)-expansion method.



[image: Symmetry 11 00952 g001]







[image: Symmetry 11 00952 g002 550]





Figure 2. Associated plots of u(x,y,t) in Equation (28) of Equation (1) on −10≤x,t≤10 using the (G′/G,1/G)-expansion method. 
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Figure 3. Associated plots of u(x,y,t) in Equation (35) of Equation (1) on −10≤x,t≤10 using the (G′/G,1/G)-expansion method. 
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Figure 4. Associated plots of v31(x,t) in Equation (58) of Equation (2) on −10≤x,t≤10 using the (G′/G,1/G)-expansion method. 
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Figure 5. Associated plots of v12(x,t) in Equation (61) of Equation (2) on −10≤x,t≤10 using the (G′/G,1/G)-expansion method. 
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Figure 6. Associated plots of v33(x,t) in Equation (74) of Equation (2) on −10≤x,t≤10 using the (G′/G,1/G)-expansion method. 
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