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Abstract: In this work, we introduce a chaotic system with infinitely many equilibrium points laying
on two closed curves passing the same point. The proposed system belongs to a class of systems
with hidden attractors. The dynamical properties of the new system were investigated by means of
phase portraits, equilibrium points, Poincaré section, bifurcation diagram, Kaplan–Yorke dimension,
and Maximal Lyapunov exponents. The anti-synchronization of systems was obtained using the
active control. This study broadens the current knowledge of systems with infinite equilibria.
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1. Introduction

Chaotic systems have been widely studied and used in various practical fields by mathematicians,
physicists, scientists, and engineers in the past four decades; see [1–4] and the references therein.
Many chaotic systems with different shapes of attractors have been reported, such as chaotic systems
with butterfly attractors (see, e.g., [5]) and systems with multiscroll chaotic attractors (see, e.g., [6]).
Recent developments include some different types of chaotic systems with no equilibrium points
(see, e.g., [7]), with a single stable equilibrium (see, e.g., [8]), with a line of equilibrium points (see,
e.g., [9]), with a circular equilibrium (see, e.g., [10]), with circle and square equilibrium (see, e.g., [11]),
with rounded square loop equilibrium (see, e.g., [12]), and with different closed curve equilibrium
(see, e.g., [13]). Furthermore, it has also been applied in many different areas including information
processing (see, e.g., [14]) and chaotic masking communication (see, e.g., [15]).

According to a new classification of chaotic dynamics [16], there are two kinds of attractors:
self-excited attractors and hidden attractors. Recall that an attractor is referred to as being self-excited if
its basin of attraction intersects any arbitrarily small open neighborhood of an equilibrium, otherwise it
is called a hidden attractor. The basin of attraction for a hidden attractor is not connected with any
unstable fixed point. For example, hidden attractors are observed in the systems without fixed points,
with no unstable fixed points, or with one stable fixed point. A system with infinitely many equilibrium
points can be classified as one system with hidden attractors, for the reason that we do not know which
part of the equilibria may be used to localize the hidden attractors, which should be treated in detail
(see, e.g., [17]). Recent important investigations and developments in the study of chaotic dynamical
systems with practical problems and challenges have been asked to satisfy at least one of the following
criteria as Sprott mentioned in [18]: (S1) The system should credibly model some important unsolved problem
in nature and shed light on that problem; (S2) the system should exhibit some behavior previously unobserved;
(S3) the system should be simpler than all other known examples exhibiting the observed behavior. An important
ongoing research topic is dedicated to discovering and developing new and novel chaotic systems
with different shapes of closed curve equilibrium.
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The main goal of this work is to present a new system with infinitely many equilibrium points
arranged on two closed curves passing the same point, which extends the general knowledge about
such systems. Our new chaotic system (see Section 2 below for details) is meaningful for satisfying
two of the three conditions, (S1), (S2), and (S3), as well as there being a certain novelty value in
this work. In Section 2, some dynamical properties of the proposed system, which have been
studied using a bifurcation diagram, phase portrait, Poincaré section, maximal Lyapunov exponents,
and Kaplan–Yorke dimension, are presented. The ability of anti-synchronization of the new system is
also discussed in Section 3.

2. A New Family with Two Closed Curve Equilibrium

In this work, motivated by the known dynamic systems mentioned above, we study the following
general model given by

u̇ = w,

v̇ = −w f (u, v, w),

ẇ = g(u, v),

(1)

where u, v and w are three state variables, f (u, v, w) and g(u, v) are two nonlinear functions.
The equilibrium points in model (1) can be obtained by calculating

w = 0,

−w f (u, v, w) = 0,

g(u, v) = 0.

(2)

It is obtained that the equilibrium points locate on a curve described by g(u, v) = 0 in the plane
w = 0. In fact, by selecting appropriate functions f and g, some known systems, both chaotic and with
different closed curve equilibrium, can be constructed.

(Example A)

Take f (u, v, w) = αv + βv2 + uw and g(u, v) = u2 + v2 − 1, then model (1) will deduce the
following system

u̇ = w,

v̇ = −w(αv + βv2 + uw),

ẇ = u2 + v2 − 1,

(3)

which was introduced and studied by Gotthans, Sprott, and Petrzela [11] in 2016. The chaotic
systems (3) has circle equilibrium (see Figure 1).
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Figure 1. The circle-shape of equilibrium points of system (3) in the plane w = 0.
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(Example B)

Let f (u, v, w) = αv + βv2 + uw and g(u, v) = u2 − |uv|+ v2 − 1. Then, model (1) deduces the
following system:

u̇ = w,

v̇ = −w(αv + βv2 + uw),

ẇ = u2 − |uv|+ v2 − 1,

(4)

which was established by Wang, Pham, and Volos [19] in 2017. The chaotic system (4) has cloud-shaped
curve equilibrium, as shown in Figure 2.
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Figure 2. The cloud-shape of equilibrium points of system (4) in the plane w = 0.

(Example C)

Very recently, Zhu and Du [13] discovered and studied a new family of systems with different
equilibrium (as shown in Figure 3) described by

u̇ = w,

v̇ = −w(αv + βv2 + uw),

ẇ = |u|k + |v|k − 1,

(5)

where k ∈N. In fact, the chaotic system (5) can be obtained by putting f (u, v, w) = αv + βv2 + uw and
g(u, v) = |u|k + |v|k − 1 into model (1). In [13], Zhu and Du analyzed the dynamical properties of their
proposed systems using the methods of equilibrium points, eigenvalues, phase portraits, maximal
Lyapunov exponents, and Kaplan–Yorke dimension; see [13] for more details.
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Figure 3. Different shapes of equilibrium points of system (5), k = 1, 2, 3, 4, 5, from the interior to the
outside, respectively, in the plane w = 0.
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The results established in [11,13,19] are very important for indicating the existence of chaotic
systems with different shapes of equilibrium points (see Table 1). Note that the first two equations of
the systems proposed in [13,19] are the same as in [11]. The difference is the third equation. When we
choose a different third equation, we can get different systems to display new features, such as different
shapes of equilibrium point and other dynamic properties.

Table 1. Chaotic systems with infinitely many equilibrium points.

System Equilibrium Closed Curve Equilibrium Paper

Gotthans, Sprott, and Petrzela u2 + v2 − 1 = 0 Circle [11]
Zhu and Du |u|k + |v|k − 1 = 0 Circle, Square, etc [13]
Wang, Pham, and Volos u2 − |uv|+ v2 − 1 = 0 Cloud-shaped [19]
New system (see below) u2 − |u|+ |v|+ v2 = 0 Eye-shaped This work

To the best of our knowledge, there is no paper devoted to the study of chaotic dynamical systems
with eye-shaped curve equilibrium. Therefore, this study is an important ongoing research topic.
In this paper, motivated and inspired by this, two functions, f (u, v, w) and g(u, v), are chosen in the
following forms

f (u, v, w) = αv + βv2 + uw,

g(u, v) = u2 − |u|+ |v|+ v2,
(6)

where α and β are two positive parameters. Substituting (6) into system (1), our new system is
described as

u̇ = w,

v̇ = −w(αv + βv2 + uw),

ẇ = u2 − |u|+ |v|+ v2.

(7)

It is verified that system (7) has infinitely many equilibrium points (u∗, v∗). These equilibrium
points are located on the curve in the coordinate plane described by

(u∗)2 − |u∗|+ |v∗|+ (v∗)2 = 0. (8)

It means that the new system (7) has eye-shaped curve equilibrium as shown in Figure 4. Note that
the eye-shaped curve is different from some other shapes reported, such as line, square, circle,
or cloud-shaped [11,19], and is symmetric about the u-axis, v-axis, and origin. Furthermore, system (7)
has hidden attractors [17]. Above all, investigating system (7) will strengthen our understanding of
hidden attractors.
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Figure 4. The eye-shape of equilibrium points of system (7) in the plane w = 0.
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For α = 5, β = 30, and initial conditions (0.06, 0.01, 0.01), the new system (7) has chaotic
attractors (see Figures 5 and 6). For the simulation, we used the Wolf et al. method to calculate
the Lyapunov exponents [20], the time of computation was 1000, and we obtained the Lyapunov
exponents (0.0424, 0,−0.2484). The method of Wolf et al. is rooted conceptually in a previously
developed technique that could only be applied to analytically defined model systems to monitor
the long-term growth rate of small volume elements in an attractor. In addition, the corresponding
Kaplan–Yorke dimension of system (7) is 2.1707. Poincaré return maps are often used to transform
complicated behavior of a dynamic system in phase space to discrete maps in a lower dimensional
space to reveal the complicated behaviors. Poincaré return maps corresponding with phase portraits
in Figure 6 are presented in Figure 7; there are some dense points in the Poincaré section, and it can be
determined that the motion is a chaotic state. These results reveal that the system is chaotic.
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Figure 5. 3D view of the chaotic attractor and eye-shape of equilibrium points located in the plane
w = 0 of system (7) for α = 5, β = 30.
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Figure 6. The projection of the trajectory of system (7) in (a) u-v plane, (b) u-w plane, (c) v-w plane for
α = 5, β = 30.
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Figure 7. The Poincaré section of system (7) for (a) z = 0.2, (b) y = 0.2, (c) x = −0.2 for α = 5, β = 30.
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Gradually changing the value of the parameter β or α, the bifurcation plot of the system can be
discovered in Figure 8. Figures 9 and 10 reveal the diagram of Maximal Lyapunov Exponents and the
diagram of Kaplan–Yorke dimension of system (7) for α = 5, β ∈ [28, 48], respectively.

(a) (b)

Figure 8. Bifurcation plot of system (7) for (a) α = 5, β ∈ [28, 48] and (b) β = 30, α ∈ [3, 5.5].
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Figure 9. Maximal Lyapunov Exponents spectrum of system (7) for α = 5, β ∈ [28, 48].
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Figure 10. Kaplan–Yorke dimension of system (7) for α = 5, β ∈ [28, 48].

The new system with eye-shaped equilibrium has periodic behavior in the range 36 ≤ β ≤ 48.
For instance, the system can display period-1 behavior for α = 5, β = 45, period-2 behavior for
α = 5, β = 38, and period-4 behavior for α = 5, β = 36 (see Figure 11a–c, respectively).
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Figure 11. Periodic behavior of system (7) in the u-w plane: (a) period-1 (β = 45), (b) period-2 (β = 38),
(c) period-4 (β = 36).

3. Anti-Synchronization of New Systems

Synchronization of chaos is a phenomenon that may occur when two, or more, dissipative chaotic
systems are coupled. Since the pioneering work of Pecora and Carroll related to synchronization
in chaotic systems [21], some methods of chaotic synchronization have been presented related to
complete, generalized, lag, and imperfect phase synchronization [22]. Many papers on applications
of chaos synchronization for cryptographic [23], kinetics [24], physiology [25], neural networks [26],
and economics [27] have appeared.

In the following, we consider the anti-synchronization of the systems with eye-shaped equilibrium
related to the driver-response system. The driver system with eye-shaped closed curve equilibrium is
as follows:

u̇ = w,

v̇ = −w(αv + βv2 + uw),

ẇ = u2 − |u|+ |v|+ v2,

where u, v, and w are are three state variables, and the value of α = 5, β = 30.
The response system is described as

u̇1 = w1 + h1,

v̇1 = −w1(αv1 + βv2
1 + u1w1) + h2,

ẇ1 = u2
1 − |u1|+ |v1|+ v2

1 + h3,

(9)

where the control is h = [h1, h2, h3]
T .

In order to reveal the difference between the driver system (7) and the response system (9),
the state errors can be defined as

e1 = u + u1,

e2 = v + v1,

e3 = w + w1,

(10)

and we obtain

ė1 = u̇ + u̇1,

ė2 = v̇ + v̇1,

ė3 = ẇ + ẇ1.

(11)
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Combining (7), (9), (10), and (11), we get the state errors system

ė1 = e3 + h1,

ė2 = −w(αv + βv2 + uw)− w1(αv1 + βv2
1 + u1w1) + h2,

ė3 = u2 − |u|+ |v|+ v2 + u2
1 − |u1|+ |v1|+ v2

1 + h3.

(12)

We choose the control proposed by

h1 = −e3 − k1e1,

h2 = w(αv + βv2 + uw) + w1(αv1 + βv2
1 + u1w1)− k2e2,

h3 = −u2 + |u| − |v| − v2 − u2
1 + |u1| − |v1| − v2

1 − k3e3,

(13)

where ki > 0 (i = 1, 2, 3) are the positive gain constants used to control the rate of anti-synchronization.
By substituting (12) into (11), we get the state errors system

ė1 = −k1e1,

ė2 = −k2e2,

ė3 = −k3e3.

(14)

Obviously, the eigenvalues (−k1,−k2,−k3) of the Jacobian matrix of the state errors system are
negative. Then, the complete anti-synchronization between the driver system (7) and the response
system (9) is proved.

In numerical simulation, we assume the initial values of the driver system (7) and the response
system (9) to be

u(0) = 0.06,

v(0) = 0.01,

w(0) = 0.01,

u1(0) = −0.20,

v1(0) = −0.09,

w1(0) = 0.07.

(15)

Then, the initial values of the state errors system (12) are

e1(0) = 0.40,

e2(0) = −0.08,

e3(0) = 0.08.

(16)

The positive gain constants here are selected as k1 = k2 = k3 = 3. It is obvious in Figure 12 that
there exists anti-synchronization of the respective states of the new systems with two closed curve
equilibrium (7) and (9). The time history of the synchronization errors e1, e2, e3 is shown in Figure 13
which plots the anti-synchronization of the driver-response system.



Symmetry 2019, 11, 951 9 of 10

0 10 20 30 40 50
t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

u,
 u

1

(a)

0 10 20 30 40 50
t

-4

-2

0

2

4

v,
 v

1

(b)

0 10 20 30 40 50
t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

w
, w

1

(c)

Figure 12. Anti-synchronization of the driver-response system: (a) u, u1, (b) v, v1, (c) w, w1, the driver
system (dashed lines), the response system (solid lines).
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Figure 13. Time history of the anti-synchronization of the state errors system: (a) e1 − t, (b) e2 − t,
(c) e3 − t.

4. Conclusions

In this work, we propose and study the following new system:

u̇ = w,

v̇ = −w(αv + βv2 + uw),

ẇ = u2 − |u|+ |v|+ v2,

with eyed-shaped equilibrium points which are located on two closed curves passing the same point.
In Section 2, some dynamical properties of the proposed system are presented, which were investigated
using bifurcation diagram, phase portrait, maximal Lyapunov exponents, and Kaplan-Yorke dimension.
Furthermore, the anti-synchronization of systems is obtained by using active control in Section 3.
This study will broaden the current knowledge of chaotic systems with infinitely many equilibria.
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