
symmetryS S

Article

Evaluation of Rolling Bearing Performance
Degradation Using Wavelet Packet Energy Entropy
and RBF Neural Network

Jianmin Zhou *, Faling Wang , Chenchen Zhang, Long Zhang and Peng Li

School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
* Correspondence: 1981@ecjtu.edu.cn

Received: 26 June 2019; Accepted: 19 August 2019; Published: 20 August 2019
����������
�������

Abstract: Rolling bearings are the most important parts in rotating machinery, and one of the most
vulnerable parts to failure. The rolling bearing is a cyclic symmetrical structure that is stable under
normal operating conditions. However, when the rolling bearing fails, its symmetry is destroyed,
resulting in unstable performance and causing major accidents. If the performance of rolling bearings
can be monitored and evaluated in real time, maintenance strategies can be implemented promptly.
In this paper, by using wavelet packet energy entropy (WPEE), the early fault-free features of bearing
and the failure samples of similar bearings are decomposed firstly, and the energy value is extracted
as the original feature, simultaneously. Secondly, a radial basis function (RBF) neural network
model is established by using early fault-free features and similar bearing failure characteristics.
The bearing full-life data characteristics of the extracted features are added into the RBF model in an
iterative manner to obtain performance degradation Indicator. Boxplot was introduced as an adaptive
threshold method to determine the failure threshold. Finally, the results are verified by empirical
mode decomposition and Hilbert envelope demodulation. A bearing accelerated life experiment is
performed to validate the feasibility and validity of the proposed method. The experimental results
show that the method can diagnose early fault points in time and evaluate the degree of bearing
degradation, which is of great significance for industrial practical applications.

Keywords: rolling bearing; wavelet packet energy entropy; RBF neural network; Boxplot;
envelope demodulation

1. Introduction

Rolling bearing, as an important part of rotating machinery, plays a key role in the stable and safe
operation of mechanical equipment. Therefore, real-time monitoring and performance degradation
evaluation of rolling bearings are of great significance [1]. In general, damage to rolling bearings
requires a process covering shifts from normal to degraded to failure. If the bearing can be quantitatively
evaluated during the degradation process, major industrial losses caused by bearing failure can largely
be avoided with timely targeted planning for the maintenance of the equipment [2].

The evaluation basis of bearing faults includes vibration signals [3], temperature changes [4],
etc., while the most important part is the study of vibration signals. Bearing defects main sources
of bearing-induced vibration in the bearing components. Defect identification has great influence
on real-time monitoring systems [5]. Bearing defects can be classified as distributed and localized
defects. Distributed defects, such as misaligned races, surface roughness, and waviness, are caused
by the improper installation or manufacturing process [6]. It may lead to out-of-balance rotations of
the spindle, which contribute significantly to the vibration of the spindle in many cases. Localized
defects, such as cracks, pits, and spalls, are caused by fatigue damage on the rolling surfaces [7].
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In addition, the vibration of the bearing also has interferences such as natural frequency and resonance
phenomenon, which will be the content of bearing failure research.

In recent years, many researchers have carried out a lot of exploratory research on the feature
extraction and performance degradation evaluation of rolling bearings. Chen et al. used information
entropy theory to extract the performance degradation index (DI) sequence of bearing signals. Then
the least square support vector machine (LS-SVM) is used to perform regression prediction on the
extracted features, and accurate prediction results are obtained, which has strong practicability [8].
Soualhi et al. used empirical mode decomposition (EMD) to decompose the signal and extract the
spectral amplitude corresponding to the characteristic frequency of the rolling bearing fault to form
the eigenvector, and construct the rolling bearing fault DI through a support vector machine (SVM) [9].
Cheng et al. proposed the limited feature select sample (LFSS) algorithm for the feature selection
problem of performance degradation assessment. The root mean square value and the 3σ rule were
used to judge the initial point of fault to determine the feature selection sample [10]. Brkovic et al.
perform early fault detection on bearings in the energy system. The normalized vibration signal is
wavelet transformed, and the logarithmic energy entropy and standard deviation are extracted as
features. Finally, the secondary classifier is used for fault detection and diagnosis. This technical result
is applied in the actual production environment [11]. In addition, methods for processing bearing
vibration signals include time domain analysis [12], frequency domain analysis [13], and variational
mode decomposition [14]. The above methods have achieved good results in the evaluation of
bearing performance degradation, but there are still some problems. For example, information entropy
can reflect the nonlinearity of the signal, but cannot handle non-stationary information very well.
EMD decomposition signals are prone to modal aliasing. The LFSS algorithm selects the feature
samples to use 3σ and the samples need to follow the normal distribution. The traditional time
domain and frequency domain analysis considers the vibration signal as a stationary signal processing,
and has drawbacks such as insufficient representation of the bearing characteristics of the bearing and
insufficient evaluation capability. Although the variational mode decomposition (VMD) can solve the
EMD modal aliasing problem, it needs to use the optimization algorithm to select the preset scale and
the penalty factor, which increases the complexity and difficulty of the operation.

In this paper, by combining the features of wavelet packet decomposition and information entropy,
wavelet packet energy entropy (WPEE) is proposed as the feature extraction method. This method
can not only highlight the good resolution of wavelet packet decomposition for non-stationary signal
feature analysis, but also process nonlinear signal with information entropy. Wan et al. used the wavelet
packet transform as the band decomposition method of the bearing vibration signal, and proposed
the Teager energy entropy ratio as the calculation index of the wavelet bun zone. WPT replaced
the traditional filter to more clearly divide the frequency band while suppressing noise interference.
The TEER is used as the calculation index of the wavelet sub-band, the impact characteristics and
periodic characteristics can be adaptively reflected [15]. Ma et al. combine wavelet packet transform
with information entropy, and propose a fault diagnosis method based on wavelet packet energy
entropy (WPEE) and fuzzy limit learning machine. The method uses the WPEE method to extract
sensitive and transient features in massive data, and improves the recognition accuracy and reliability
of subsequent classification models [16]. Li et al. proposed an improved WPEE and GA-SVM (Genetic
Algorithm optimization support vector machine) combination to overcome the difficulty in accurately
extracting feature vectors in bearing fault diagnosis. The improved WPEE method is applied to the
fault feature extraction of rolling bearings, and compared with the unmodified wavelet packet feature
extraction method. The results show that the improved WPEE processed signal can better characterize
the fault characteristics [17]. Research literature and experimental analysis shows that the combination
of wavelet packet transform and energy entropy can more fully reflect the detailed information of a
fault signal.
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Early fault diagnosis based on artificial intelligence (AI) as an effective solution for emerging
industrial applications and fault identification is receiving more and more attention from academic and
industrial circles [18]. The early fault diagnosis method based on AI, by machine learning technology,
which can effectively overcome the limitation that researchers require rich professional knowledge.
In early fault diagnosis schemes by AI-based, the most commonly used models are Support Vector
Data Description (SVDD) [19], Support Vector Machine (SVM) [20], Gauss Mixture Model (GMM) [21],
and Artificial Neural Network (ANN) [22].

As an artificial intelligence model, ANN is widely used in pattern recognition, prediction and
estimation, automatic control, industrial modeling and other fields [23]. Durodola proposed an artificial
neural network approach that included the effects of mean stress in the frequency domain method
to predict fatigue damage. The results show that the method can predict fatigue damage including
the influence of average stress. Compared with other methods, neural network method has higher
resolution [24]. Al-Abdullah used artificial neural network method to establish a suitable force and
temperature model based on real experimental measurement data of cancellous artificial tissue bone
milling. The calculation results are in good agreement with the experimental results. The model can be
used to optimize the real-time bone milling control [25]. It can be seen that neural network is powerful
and has obvious advantages. In the evaluation of bearing performance degradation, the neural network
mainly uses the strong nonlinearity of ANN to establish the relationship between the characteristics
and the bearing state, and then evaluates the degradation state of the bearing. Hong et al. used
self-organizing map neural network (SOM) to evaluate the health status of rolling bearings, by training
SOM with data in the non-fault state, and obtain health monitoring values from the data under test [26].
Chen et al. carried on the principal component analysis to generate features as an input into the SOM
neural network, and then carried on the fault diagnosis and the performance degradation appraisal to
the bearing [27]. Liu et al. used the firefly optimization algorithm to obtain the optimal initial weight
and threshold of BP neural network, and used the optimized BP neural network to evaluate the degree
of bearing performance degradation [28]. However, the back propagation (BP) neural network has
problems such as local minimization and different network structure selection. The SOM algorithm
converges slowly and the network size is difficult to determine. RBF neural network is widely used
in industrial and intelligent diagnostic system fields because of its strong generalization ability, fast
convergence speed, good global convergence, and simple structure. Arnaiz used neural networks
as an analytical tool for predicting tool deflection errors. Two types of neural networks, multilayer
perceptron (MLP) and RBF, were tested. The results indicate that RBF has a good advantage in the
training and tuning time of the model [29]. Mahmoud et al. combined the RBF neural network with
the fuzzy logic system for the fault detection of photovoltaic systems and achieved good results [30].
Zhao et al. used RBF neural network in bearing fault diagnosis. The S-transform and Singular Value
Decomposition (SVD) theory were used to process the vibration signal. Zhao et al. then trained an RBF
neural network for pattern recognition and fault diagnosis [31]. The existing article used the RBF neural
network for qualitative identification of failure modes and did not involve quantitative assessment of
the degree of failure or degree of performance degradation. Therefore, the RBF neural network is used
in our analysis of the rolling bearing fatigue test to quantitatively analyze the degradation state of
bearing performance.

To this end, this paper proposes a combination of WPEE and RBF neural network performance
degradation assessment method. In light of the advantages of WPEE in dealing with vibration signals,
an RBF neural network is applied to quantitatively evaluate the performance degradation. In this
paper, the feature of rolling bearing data is extracted by WPEE. The model of the RBF neural network,
by using early faultless samples and similar bearing failure samples, is established, and the bearing life
test data is input into the model through iterative methods to obtain the performance degradation
evaluation curve, which is established as the threshold curve. The box plot is calculated based on the
actual existing data. The curve can be adjusted adaptively, and the early fault point of the bearing
is determined according to the intersection of the threshold curve and the performance degradation
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evaluation curve. In the experimental part, the discrete seeded fault bearing test data was used first
to verify the ability to distinguish the bearing faults of different sizes, and then the feasibility of the
method was tested with the whole life test data of bearings that were obtained from healthy operation
to failure. Three RBF neural network models with different radial basis functions were selected for
the performance degradation evaluation curve, and the optimal Gaussian basis function was selected
as the radial basis function to act as a comparison. The performance degradation assessment curve
is made by using the commonly used monitoring indicators, which is compared with the proposed
method, to highlight the superiority of the proposed method. Finally, the envelope demodulation is
used to verify the accuracy of the experimental results, and the rolling bearing accelerated fatigue life
test is conducted to verify the feasibility of the method.

2. Backgrounds

2.1. Wavelet Packet Energy Entropy

2.1.1. Wavelet Packet Decomposition Layers and Selection of Wavelet Basis

Wavelet packet transform is a technique of time-frequency analysis that automatically selects the
frequency band range and completes the band matching [32]. As a mathematical tool for processing
non-stationary signals, wavelet packet transform is widely used in signal processing.

Wavelet function definition: Let ψ(t) be a square integrable function if its Fourier transform
ψ(ω) satisfies:

Cψ =

∫
R

∣∣∣ψ(ω)∣∣∣
|ω|

dω < ∞ (1)

where ψ(t) is called a basic wavelet.
Wavelet analysis is a time-frequency localization analysis method that can change the time window

and frequency window. The signal is decomposed into components located in different frequency
bands and time periods, which not only can decompose the low frequency part of the signal, but also
effectively decompose the high frequency of the signal. By decomposing and reconstructing the signal
in different scales, wavelet analysis can obtain detailed information about the distribution of the
original signal in different frequency bands. The tree structure diagram of the 3-layer wavelet packet
decomposition is shown in Figure 1. The wavelet packet decomposition coefficient reconstruction can
extract 8 sub-bands of the wavelet packet energy from the low frequency to the high frequency.

Choosing an appropriate wavelet basis function can more accurately highlight the characteristics
of the signal, which has a decisive effect on the evaluation results of the model. In this paper, the wavelet
basis function Daubechies 5 is selected, and its time domain waveform is similar to the rolling bearing
vibration signal waveform, which can accurately reflect the prominent points of the fault signal.
The increase of the number of decomposition layers can more accurately depict the vibration signal.
Therefore 3-layer wavelet packet decomposition method is selected in this paper.
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Figure 1. Tree structure of wavelet packet transform.

2.1.2. Wavelet Packet Energy Entropy Feature Extraction

The basic idea of the WPEE is to decompose the vibration signal through the wavelet packet, obtain
the decomposition coefficient, reconstruct the coefficient, and calculate the energy of the reconstruction
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coefficient feature, then to find the ratio of the energy of each node to the total energy. Finally,
the information entropy of the feature energy ratio is obtained. This process gives an evaluation
measure of the complexity of the vibration signal.

The information entropy calculation formula is as shown in Equation (2):

Si = −gi log2 gi (2)

where Si is the energy entropy of the ith wavelet packet node and gi is the energy ratio of the ith wavelet
packet node.

2.2. RBF Neural Network Model

The RBF neural network is a single hidden layer structure and is one of the most important neural
network models [33]. RBF neural network is a kind of forward neural network with good performance.
It has the advantages of a simple network structure, fast convergence speed, excellent approximation
performance, and no local minimum problem. The functions of the hidden layer nodes are generally
non-linear. In general, the number of hidden layer neurons is sufficient, and the RBF neural network
can approximate any single-valued continuous function with arbitrary precision.

The basic idea of RBF neural network is to use radial basis function as node activation function of
hidden layer and map input vector to hidden space, so that the low-dimensional linear non-separable
data of input layer can be mapped to the high-dimensional data of output layer, and the data can
be linearly separable in high-dimensional space [34]. The topology of the RBF network is shown in
Figure 2.
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The Gauss function is usually selected as the radial basis function, as shown in Equation (3):

h j(x) = exp((−
1

r j2
)‖x− c j‖

2) (3)

For the convenience of comparison, Reflected Sigmoidal function and Inverse Multiquadrics
function are also selected as radial basis functions, and their formulas as shown in Equations (4)
and (5), respectively.

h j(x) =
1

1 + exp((− 1
r j

2 )‖x− c j‖
2)

(4)

h j(x) =
1

(‖x− c j‖
2 + r j2)

1/2
(5)

where h j(x) is the output of the jth RBF node; c j and r j are the center value and width of the jth RBF
node, respectively.
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The output layer of the RBF neural network is a linear output, as shown in Equation (6):

yk =
m∑

j=1

wkjh j(x)+bk (6)

where yk(x) is the kth output of the network for the input vector x;m is the number of hidden nodes;
wkj is the connection weight of the kth output node and the jth hidden node, and bk is the off set,
j = 1, 2, · · ·m.

The training data of the extracted WPEE is adopted to train the RBF neural network model.
The classification results are two different types, so the number of hidden nodes is set as 2 and the
overlap coefficient of hidden nodes is set as 1.0. The target tag was set, with the fault-free sample
as 0 and the failure sample of similar bearing as 1. The classification center was saved through
Gaussian kernel function classification. The bearing life test data is taken as the test sample, and the
characteristics are extracted and input into the model. The model calculates the Euclidean distance
from the sample to the classification center, input to Formula (6), the output vector is calculated.

2.3. Adaptive Threshold Setting

A box-plot consists of five statistics in the data: upper limit (Maximum value in non-abnormal
range), upper quartile, median, lower quartile and lower bound (Minimum value in non-abnormal
range). It is a method for describing data, which can be used to identify data outliers, compare the
shapes of several batches of data, and so on. As shown in Figure 3. Hua et al. use box plots to identify
abnormal conditions in the ethylene production process [35]. Liu et al. used box plots to denoise
the original signal of the bearing [36]. This paper uses it as an adaptive threshold to determine the
data outliers. The abnormality data in the bearing life is identified by the data of the performance
degradation index, and the fault diagnosis is performed.
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The basic principle of box plot analysis is to arrange the data from small to large and calculate the
quartile of the data. Calculate the anomaly of the data by quartiles:

K ≤ L1 − 1.5(L3 − L1) (7)

K ≥ L3 + 1.5(L3 − L1) (8)

where K is an outlier, that is, the data is in an abnormal state; L1 is the upper quartile; L3 is the
lower quartile.

The drawing of the box plot is based on the actual data to calculate the quartiles. Box plots are
somewhat different from the classic way of identifying outliers. Classical methods such as the 3σ
rule or the Z-score method based on normal distribution presuppose that the assumed data obeys the
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normal distribution, but the actual data often does not strictly obey the normal distribution, so the
validity of the abnormal data is limited. The drawing of the box plot depends on the actual data. It is
not necessary to assume that the data is subject to a specific distribution form, and there is no restriction
on the data, so that the original shape of the data shape can be expressed visually and intuitively. Up to
a quarter of the data can be moved away from normal data without affecting the quartile to a large
extent, so outliers do not affect the drawing criteria of the box plot, the effect of identifying outliers is
more objective. In summary, the box plot has certain advantages in judging data outliers. Therefore,
this paper selects the box plot as the abnormal data identification method, and selects the maximum
value of the box plot as the adaptive alarm threshold for performance degradation assessment.

The box-plot diagram is introduced as a method for setting the adaptive alarm threshold for
performance degradation evaluation of rolling bearings. If there are consecutive multiple evaluation
index values exceeding the abnormality of the box plot defined by the evaluation index value, it indicates
that the performance degradation state of the bearing has undergone a large change. At the same time,
an adaptive alarm line that changes with time can be obtained according to the constant change of the
DI value.

3. Establishment of Performance Degradation Assessment Model

The main steps of the rolling bearing performance degradation assessment model are as follows:

Step 1: Perform wavelet packet decomposition on the rolling bearing vibration signal X(t), and obtain
all sub-band decomposition coefficients, a total of 8;

Step 2: Reconstruct the wavelet packet decomposition coefficients:

a j,k(i) =
∑

n
a j−1,k(n)pi−2n +

∑
n

b j+1,k(n)qi−2n (9)

where k = 0, 1, 2, · · · , 8; a0,k = x(i),i = 0, 1, 2, · · · , N; 1; N is the number of sampling points of
the vibration signal; x(i) is the discrete time domain signal; j is the number of decomposition
layers; p(n) and q(n) is the impulse response of the conjugate image filter P and Q; a j,k(i) and
b j,k(i) are the low frequency and high frequency decomposition coefficients, respectively.

Step 3: The energy value of the last wavelet packet reconstruction coefficient a3,k(i) was obtained.
Calculate the total energy of wavelet decomposition. Finally, the energy ratios of each wavelet
packet node are obtained:

gi = ei

/ 8∑
i=1

ei (10)

where ei is the energy of the ith wavelet packet node.

Thus, the wavelet packet energy ratio of the original signal is obtained, which is expressed as
G = [g1, g2, · · · , g8]. Finally, the energy entropy of the wavelet packet node is calculated by Equation (2):

Step 4: Extracting the WPEE as the input eigenvector, and the RBF neural network model is established
by using the early faultless samples and the failed samples of similar bearings. The model
classifies all samples by using Euclidean distance, and obtains the cluster centers of the faultless
samples and the failed samples, respectively.

Step 5: Keep the model unchanged, and input the WPEE feature of the full-life bearing test data into
the trained model through iterative method to obtain the model output value. According
to the theory of the model, the output value of the model is the performance degradation
evaluation index.

Step 6: Calculate adaptive threshold curves, identify early failure points, and perform
quantitative assessments.
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The RBF neural network performance degradation assessment model is shown in Figure 4.
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4. Experiment and Result Analysis

4.1. Bearing Discrete Data Verification

The QPZZ-II fault simulation test bench is adopted to conduct the experiment. It is mainly
composed of variable speed drive motor, main shaft, biasing turntable, governor, gear box and bearings.
The spindle is driven by the drive motor through the belt, the drive power is 0.55 KW, and the bearing
is mounted on the right side of the spindle. Figure 5 shows the test bench and the acquisition device.
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Faults with a width of 0.05 mm, 1.0 mm and 1.5 mm were processed on the outer rings of the
three bearings by using electric sparks to simulate varying degrees of damage. Among them, three
kinds of damage of different degrees are degree one, degree two and degree three.

The specific parameters of the test bench experiment are shown in Table 1.
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Table 1. Test bench parameters.

Type Parameter

data acquisition card NI-USB4431
sensor DH107 piezoelectric sensor

motor speed 1218 rpm
load 80 kg

sample frequency 12,000 Hz
sample length 1024

bearing designation N205EM
bearing bore diameter 25 mm
bearing outer diameter 52 mm

number of rolls 9

The time domain signal and spectrum of the samples under normal samples and different fault
sizes of the rolling bearing are shown in Figure 6. As can be seen in the figure, the time domain and
frequency spectrum under the normal signal and the degree one fault signal are different, but it is not
obvious and can be ignored. Similarly, the spectral difference between the degree two and degree
three fault spectra is small. Therefore, the size of the fault increases, the extent of the fault cannot be
distinguished by the time domain signal and the spectrogram.
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Establish a model of discrete data. 40 sets of normal samples and three levels of fault samples were
selected as training samples. The number of test samples collected in the experiment is 10 groups in
each state. The WPEE features of the normal sample and the three outer ring fault samples are extracted.

It can be seen in Figure 7 that the RBF evaluation value increases in a trapezoidal shape and the
model test results are effective. Normal samples, degree one, degree two and degree three of sample
can be significantly distinguished, and the evaluation values of normal samples and fault samples at
all levels are well classified.

Discrete data is calculated using the root mean square value. The results obtained are shown in
Figure 8.
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It can be seen from Figure 8 that the RMS value of the sample is poorly differentiated in different
states. And with the increase of the fault size, the RMS value has no obvious distinguishing effect.
Especially in the faulty data, the result of the RMS value keeps fluctuating back and forth in a certain
interval, and the discrimination effect is poor. Therefore, it has been successfully verified that the
combination of WPEE and RBF neural network has a good effect on the degradation state of rolling
bearing performance degradation.
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4.2. Bearing Full Life Data Experimental Verification

4.2.1. Test Bench Introduction

The experimental data which was collected by using the bearing fatigue life test bench is obtained
from the Intelligent Maintenance System Center of the University of Cincinnati, USA [37]. The test
bench is shown in Figure 9:
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The test bench spindle is equipped with four double row roller Rexnord ZA-2115 bearings.
The radial load of the bearing is approximately 2721.6 kg. The rotational speed is 2000 RPM. The data
is collected interval 10 min with the NI DAQ-6062E data acquisition card. The sampling frequency
is 20 kHz. Each data set consists of individual files that are vibration signal snapshots recorded of
1-s and each file consists of 20,480 points. Two acceleration sensors PCB353B33 were mounted on the
cover of the bearing in the horizontal and vertical positions respectively. The oil circulation system is
used to adjust the flow rate and temperature parameters of the lubricating oil. The magnetic plug is
mounted inside the conduit of the feedback oil. Three sets of data were obtained in the experiment.
In this paper, a total of 984 samples of the second set of data were used for performance degradation
evaluation. Since there is no bearing failure data in the real-time monitoring, the failure data of similar
bearing is used as the training sample. The failure of the third set of bearings and the failure of the
second set of bearings are both outer ring failures. Therefore, the last 10 samples of the third set of
failed bearings are selected as training samples. Since the vibration signals of the last two samples of
the bearing were abnormal, the total number of samples was 982. By calculation, the outer ring fault
characteristic frequency of the bearing is 236 Hz.

4.2.2. RBF Neural Network Model Evaluation Results

The first 100 sample of early fault-free data and the last 10 samples of failure data in the life-time
data are selected as samples, and the features are extracted by WPEE, and a 110 × 8 input matrix is
constructed, input the RBF model, and the model is trained to obtain the cluster center. After obtaining
the performance degradation evaluation model, the 982 sets of full-life data are taken as samples,
and the features are extracted. A test sample matrix of 982 × 8 is constructed and input into the
model through iterative method to obtain the DI value in the bearing life cycle. After smoothing it,
the performance degradation state is obtained as shown in Figure 10. In the following result analysis,
the red curve is the threshold curve drawn by the boxplot, and the black curve is the performance
degradation evaluation curve.
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Figure 10. Performance degradation evaluation results of RBF neural network based on Gaussian function.

In Figure 10, it can be seen that early failure occurred at the 533th bearing and the DI value
increased significantly. The bearing was in the early failure stage before the 699th sample, after which
the bearing repeated wear and failure deepened. After the 964th sample, the rolling bearing had
completely failed.

The Reflected Sigmoidal function and Inverse Multiquadrics function are respectively used as
radial basis functions, and the output bearing performance degradation evaluation results are shown
in Figure 11.
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Figure 11. Performance degradation evaluation results of RBF neural networks with two different basis
functions: (a) Reflected Sigmoidal Function; (b) Inverse Multiquadrics Function.

By comparing three RBF neural network models with different radial basis functions, it can be
seen that the tendency of the RBF neural network models based on three radial basis functions on the
evaluation of bearing performance degradation is the same. However, the Gaussian function as the
basis function has better early fault detection ability than the other two functions. The early fault point
detected by the neural network model of the other two basic functions is the 534th sample, which is
10 min later than the fault point detected by the neural network model based on Gaussian function.
The radial basis function selected in this paper is Gaussian basis function.

In practical applications, time-domain statistical parameters such as root mean square (RMS)
value and square root amplitude, and non-dimensional time domain statistical parameters such as
peak index, pulse index, margin index and kurtosis index are adopted to monitor the running state
of the device. Among them, the most commonly used detection indicators are the root mean square
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value and the kurtosis index [38]. The RMS value generally increases with the increase of the fault
degree, which is a kind of stability index; the kurtosis index is generally sensitive to early faults and is
a sensitive index. The RMS value change over the life cycle is shown in Figure 12.
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Figure 12. RMS value over the life cycle.

It can be seen in Figure 12 that the earliest fault point that can be detected by the RMS value is the
535th time, which lags behind the evaluation results based on the WPEE and the RBF neural network
by two moments (that is, lags by 20 min). The RMS value can only be judged when the bearing fault
has sharply deepened. In the sharp deterioration phase (701 to 964 moments), the root mean square
value also appears to increase and decrease repeatedly. This shows that the bearing fault at this stage
does have repeated deepening and smoothing, and the severity of the change in the RMS value is far
less strong than the evaluation method proposed in this paper.

The change of the kurtosis index in the whole life cycle is shown in Figure 13.
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It can be seen in Figure 13 that the earliest fault point that can be detected by the kurtosis index is
the 648th time, but it lags 115 times (that is, 1150 min later) compared to the performance degradation
evaluation method based on WPEE and an RBF neural network.

In addition, Hu et al. analyzed the data of the same life cycle test with the proposed anomaly
diagnosis method, and the earliest fault point obtained was the 541st moment, which was 80 min later
than the method proposed in this paper [39]. Zhu et al. used the fruit fly algorithm to optimize the



Symmetry 2019, 11, 1064 14 of 17

parameters of SVDD and established the FOA-SVDD model. They used the same set of data from
the University of Cincinnati, and the final failure point was in the 603th sample, 700 min later than
the method proposed in this paper [40]. Wang et al. combined the hierarchical Dirichlet process
and the continuous hidden Markov model to achieve degradation identification and performance
degradation assessment during mechanical equipment operation. The early failure point identified
by this method is in the 576th sample, which is also 430 min later than the method proposed in this
paper [41]. Compared with other AI intelligent diagnosis models, the RBF neural network converges
quickly and the evaluation results are more accurate.

From the above analysis, the performance degradation evaluation results of the WPEE and
RBF neural network model proposed in this paper can judge the early failure point earlier, and the
performance degradation evaluation curve is consistent with the failure degradation trend of the
rolling bearing.

5. Envelope Spectrum Analysis

Empirical Mode Decomposition (EMD) is a time frequency method that can adaptively decompose
signals according to their own signal characteristics [42]. It has been widely used in various disciplines
and engineering fields. The Hilbert transform is capable of demodulating a fault-related signal from
high frequencies [43]. The envelope spectrum analysis combined with EMD and Hilbert transform can
effectively diagnose the characteristic frequency of faults.

In this paper, the results of the evaluation are verified by envelope spectrum analysis. Firstly,
the IMF component of the intrinsic mode function of the data is extracted by the EMD algorithm,
and the IMF component with the correlation of the original signal greater than 0.5 is selected by the
correlation coefficient criterion [44]. The IMF component selected in this paper is greater than 0.5,
which is IMF1. The Hilbert transform is performed on the component, and then the transformed signal
is Fourier transformed to obtain an envelope spectrum [45].

The results of the proposed method are demodulated by envelope spectrum analysis, and the
results are shown in Figure 13. Among them, Figure 14a shows the analysis result of the 533th sample,
and Figure 14b shows the analysis result of the 532th sample. It can be seen that there is an obvious
spectrum peak at the frequency with 230 Hz in Figure 14a, which is close to the BPFO with 236.4 Hz.
Also, an obvious harmonic frequency characteristic exists. Moreover, the envelope spectrum of 532th
sample depicted in Figure 14b shows no obvious spectrum peak at the frequency close to the BPFO
(the samples before the 532th sample show the same results). The fundamental reason for the difference
between the failure characteristic frequency and the theoretical characteristic frequency is the existence
of skidding effect [46]. Therefore, the RBF neural network model concludes that the initial failure
results are consistent with the verification results.
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Figure 14. Envelope demodulation diagrams of early fault and faultless samples: (a) The 533 sample
envelope demodulation diagram; (b) The 532 sample envelope demodulation diagram.
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6. Conclusions

In this paper, a method for evaluating the degradation of rolling bearing performance based on
WPEE and RBF neural network is proposed.

— The WPEE is used to deal with the non-stationary and nonlinear characteristics of the
vibration signal.

— The RBF neural network has the advantages of fast convergence speed, good approximation
performance, and simple structure, which improves the accuracy and real-time performance of
bearing performance degradation evaluation.

— The effects of three different radial basis functions on performance degradation evaluation
results are compared, and the superiority of the RBF neural network based on the Gaussian
basis function is highlighted.

— The box plot is used in the performance degradation assessment curve, and it is used as the
alarm threshold method for bearing early fault determination. The box plot uses a quartile of
certain robustness to calculate the actual appearance of the data. The results are objective and
reliable, and can overcome the shortcomings of the previous failure thresholds that need to
meet certain conditions.

In the experimental verification section, the feasibility of the model is verified by using different
fault discrete data and full-life experimental data of rolling bearings. The results show that the method
based on WPEE and the RBF neural network can distinguish between different degrees of bearing
faults. Compared with the commonly used monitoring indicators, this method can find the early failure
points of the bearing in a more quickly and timely way, and also provides a theoretical basis for the
maintenance of the equipment. At the same time, it can effectively detect the performance degradation
state of the bearing and reflect the degree of degradation of the rolling bearing’s operations.
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Nomenclature

ψ A basic wavelet
Si Energy entropy of i-th wavelet packet
gi Energy radio of the i-th wavelet packet node
h j Output of the j-th RBF node
c j Center value
r j Width of the j-th RBF node
yk The k-th output of the network
m Number of hidden nodes
wkj Connection weight of the k-th output node and the j-th hidden node
bk The offset
K Outlier
L1 Upper quartile
L3 Lower quartile
p(n) Impulse response of the conjugate image filter
q(n) Impulse response of the conjugate image filter
a j,k Low frequency decomposition coefficients
b j,k High frequency decomposition coefficients
ei Energy of the i-th wavelet packet node
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