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Abstract: Non-standard Lagrangians play an important role in the systems of non-conservative
dynamics or nonlinear differential equations, quantum field theories, etc. This paper deals with
quasi-fractional dynamical systems from exponential non-standard Lagrangians and power-law
non-standard Lagrangians. Firstly, the definition, criterion, and corresponding new conserved
quantity of Mei symmetry in this system are presented and studied. Secondly, considering that a
small disturbance is applied on the system, the differential equations of the disturbed motion are
established, the definition of Mei symmetry and corresponding criterion are given, and the new
adiabatic invariants led by Mei symmetry are proposed and proved. Examples also show the validity
of the results.

Keywords: Mei symmetry; conserved quantity; adiabatic invariant; quasi-fractional dynamical
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1. Introduction

The study of symmetry and invariants for non-conservative or nonlinear dynamics is of great
significance. It is also a frontier research field of analytical mechanics. In a classical sense, the symmetries
we refer to mainly include Noether symmetries [1] and Lie symmetries [2,3]. Noether symmetry and
Lie symmetry are two different symmetries. After infinitesimal transformation, the former means the
invariant property of the Hamilton action functional, and the latter means the invariant property of
the differential equation. Unlike Noether symmetry or Lie symmetry, Mei proposed a new symmetry
called form invariance in 2000 [4]. Form invariance, also known as Mei symmetry, refers to an invariant
property, that is, the dynamical functions (such as Lagrangian, Hamiltonian, Birkhoffian, generalized
force, etc.) that appear in the dynamical equations of the mechanical system still satisfy the original
equations after the infinitesimal transformation. Under certain conditions, symmetry can lead to
invariants, which are also called conserved quantities. Noether symmetry, Lie symmetry, and Mei
symmetry of dynamical systems described by standard Lagrangian may lead to Noether conserved
quantities or Mei conserved quantities [5], etc. Conserved quantities can also be independent of
Lagrangian. For example, conserved quantities can be directly constructed from Lie symmetry neither
utilizing Lagrangian nor Hamiltonian, or can be formulated for systems of differential equations by
using symmetries and adjoint symmetries together regardless of the existence of a Lagrangian, see [5–8]
and references therein. So far, much progress has been made in the study of the symmetries and
corresponding invariants [9–22]. However, there are few reports on the symmetries and invariants of
dynamical systems based on non-standard Lagrangians.

The concept of non-standard Lagrangian was first mentioned in Arnold’s works in 1978 as
non-natural Lagrangian [23], but it was ignored due to the lack of Hamilton form corresponding to it.
Until 1984, when discussing the region adaptability of classical theories in Yang–Mills quantum field
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theory [24], it was found that non-standard Lagrangians were directly related to the color constraint
problem, which led to their renewed attention. The advantage of non-standard Lagrangians is that
it can better describe nonlinear problems and plays an important role in non-conservative systems,
dissipative systems, quantum field theory, etc. [25–34].

Fractional calculus can better describe natural phenomena and engineering problems [35–37].
Since Riewe [38,39] introduced fractional calculus into the modeling of non-conservative systems,
fractional Lagrangian mechanics, fractional Hamiltonian mechanics and fractional Birkhoffian
mechanics have been proposed and studied, and important progress has been made in fractional
dynamics modeling, analysis, and calculation, see for example [40–47] and references therein. In
2005, El-Nabulsi proposed the fractional action-like variational approach to study non-conservative
dynamical problem, in which the action is constructed by using the Riemann-Liouville definition of
fractional integral [48,49], and extended it to the case of non-standard Lagrangians [28,50]. Considering
the characteristic of fractional action-like variational approach, we call the non-conservative model
obtained in this way as quasi-fractional order dynamical system. Here, we propose and study Mei
symmetry and its invariants for the quasi-fractional order dynamical system with non-standard
Lagrangians. New conserved quantities and new adiabatic invariants are derived from Mei symmetry
of the quasi-fractional dynamical systems.

2. Mei Symmetry and Invariants of Quasi-Fractional Dynamical System Based on Exponential
Lagrangians

For the quasi-fractional dynamical system whose action functional depends on exponential
Lagrangian, the Euler–Lagrange equations that are derived in Appendix A can be expressed as

(t− τ)α−1 exp L
(
∂L
∂qs
−

d
dτ

∂L
∂

.
qs
−
∂L
∂

.
qs

dL
dτ

+
α− 1
t− τ

∂L
∂

.
qs

)
= 0, (s = 1, 2, · · · , n), (1)

where qs(s = 1, 2, · · · , n) are the generalized coordinates, L = L
(
τ, qs,

.
qs

)
is the standard Lagrangian,

0 < α ≤ 1, τ is the intrinsic time, t is the observer time, and τ is not equal to t.
Let us introduce the infinitesimal transformations as

τ∗ = τ+ ες0
(
τ, qk,

.
qk

)
, q∗s(τ

∗) = qs(τ) + εξs
(
τ, qk,

.
qk

)
, (s = 1, 2, · · · , n; k = 1, 2, · · · , n), (2)

where ε is a small parameter, ς0 and ξs are the infinitesimals. After the transformation of Equation (2),
exp L is transformed into the following form

exp L∗ = exp L
(
τ∗, q∗s,

dq∗s
dτ∗

)
= exp L

(
τ, qs,

.
qs

)
+ εX(1)(exp L) + O

(
ε2

)
, (3)

where X(1) is the first extension of the infinitesimal generator X, that is [4]

X = ς0
∂
∂τ

+ ξs
∂
∂qs

, X(1) = ς0
∂
∂τ

+ ξs
∂
∂qs

+
( .
ξs −

.
qs

.
ς0

) ∂
∂

.
qs

. (4)

If L is replaced with L∗, Equation (1) still holds, namely

(t− τ)α−1 exp L∗
(
∂L∗

∂qs
−

d
dτ
∂L∗

∂
.
qs
−
∂L∗

∂
.
qs

dL∗

dτ
+
α− 1
t− τ

∂L∗

∂
.
qs

)
= 0, (s = 1, 2, · · · , n), (5)

then this invariance is called Mei symmetry of quasi-fractional dynamical system (1). Substituting the
formula (3) into Equation (5), and considering Equation (1), we have
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(t− τ)α−1 exp L
(
∂X(1)(L)
∂qs

−
d

dτ
∂X(1)(L)
∂

.
qs
−
∂X(1)(L)
∂

.
qs

dL
dτ

−
∂L
∂

.
qs

dX(1)(L)
dτ + α−1

t−τ
∂X(1)(L)
∂

.
qs

)
= 0, (s = 1, 2, · · · , n).

(6)

Equation (6) is the criterion for Mei symmetry of system (1).

Theorem 1. For the quasi-fractional dynamical system (1), if there is a gauge function G = G
(
τ, qk,

.
qk

)
such

that the structural equation(1− α
t− τ

ς0 +
.
ς0

)
X(1)(exp L)(t− τ)α−1 + X(1)

[
X(1)(exp L)

]
(t− τ)α−1 +

.
G = 0 (7)

holds, the Mei symmetry directly leads to the new conserved quantity

I0 = (t− τ)α−1X(1)(exp L)ς0 + (t− τ)α−1 ∂X(1)(exp L)

∂
.
qs

(
ξs −

.
qsς0

)
+ G = const. (8)

Proof.

dI0
dτ = 1−α

t−τ (t− τ)
α−1X(1)(exp L)ς0 + (t− τ)α−1 dX(1)(exp L)

dτ ς0 + (t− τ)α−1X(1)(exp L)
.
ς0

+ 1−α
t−τ (t− τ)

α−1 ∂X(1)(exp L)
∂

.
qs

(
ξs −

.
qsς0

)
+ (t− τ)α−1 d

dτ
∂X(1)(exp L)

∂
.
qs

(
ξs −

.
qsς0

)
+(t− τ)α−1 ∂X(1)(exp L)

∂
.
qs

( .
ξs −

.
qs

.
ς0 −

..
qsς0

)
− (t− τ)α−1X(1)(exp L)

(
1−α
t−τ ς0 +

.
ς0

)
−(t− τ)α−1X(1)

[
X(1)(exp L)

]
=

[
−
∂X(1)(L)
∂qs

+
∂X(1)(L)
∂

.
qs

dL
dτ +

∂L
∂

.
qs

dX(1)(L)
dτ + d

dτ
∂X(1)(L)
∂

.
qs

+ 1−α
t−τ

∂X(1)(L)
∂

.
qs

]
×

×

(
ξs −

.
qsς0

)
(t− τ)α−1 exp L +

(
1−α
t−τ ς0 +

.
ς0

)
X(1)(exp L)(t− τ)α−1

+X(1)
[
X(1)(exp L)

]
(t− τ)α−1 +

(
−
∂L
∂qs

+ d
dτ

∂L
∂

.
qs
+ ∂L

∂
.
qs

dL
dτ +

1−α
t−τ

∂L
∂

.
qs

)
×

×

(
ξs −

.
qsς0

)
(t− τ)α−1X(1)(exp L) +

.
G.

(9)

Substituting Equations (1) and (6) into the formula (9), and using Equation (7), we obtain

dI0

dτ
=

{(1− α
t− τ

ς0 +
.
ς0

)
X(1)(exp L) + X(1)

[
X(1)(exp L)

]}
(t− τ)α−1 +

.
G = 0. (10)

Thus, we get the desired result. �

The new conserved quantity (8) is called Mei conserved quantity. Since the system is not disturbed,
it is an exact invariant. However, in nature and engineering, it is often affected by disturbing forces.
If the system is affected by small disturbance υQs, its Mei symmetry and the corresponding conserved
quantity (8) will change correspondingly. The infinitesimals of transformations (2) without disturbance
is denoted as ς0

0, ξ0
s , while the infinitesimals are changed into ς0, ξs when disturbed, and we have

ς0 = ς0
0 + υς1

0 + υ2ς2
0 + · · · , ξs = ξ0

s + υξ1
s + υ2ξ2

s + · · · , (s = 1, 2, · · · , n). (11)

Meanwhile, we let G0 represent the gauge function without disturbance, and G represent the gauge
function of the disturbed system, which is the small perturbation on the basis of G0, i.e.,

G = G0 + υG1 + υ2G2 + · · · . (12)
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If a small disturbance υQs is applied, Equation (1) is changed to

(t− τ)α−1 exp L
(
∂L
∂qs
−

d
dτ

∂L
∂

.
qs
−
∂L
∂

.
qs

dL
dτ

+
α− 1
t− τ

∂L
∂

.
qs

)
= υQs. (13)

Accordingly, Equation (6) is changed to

(t− τ)α−1 exp L
[
∂X(1)(L)
∂qs

−
d

dτ
∂X(1)(L)
∂

.
qs
−
∂X(1)(L)
∂

.
qs

dL
dτ

−
∂L
∂

.
qs

dX(1)(L)
dτ + α−1

t−τ
∂X(1)(L)
∂

.
qs

]
= υX(1)(Qs), (s = 1, 2, · · · , n).

(14)

Substituting the formulae (11) into Equation (14), we get

(t− τ)α−1υm exp L
[
∂X(1)

m (L)
∂qs

−
d

dτ
∂X(1)

m (L)
∂

.
qs
−
∂X(1)

m (L)
∂

.
qs

dL
dτ

−
∂L
∂

.
qs

dX(1)
m (L)
dτ + α−1

t−τ
∂X(1)

m (L)
∂

.
qs

]
= υm+1X(1)

m (Qs), (s = 1, 2, · · · , n).
(15)

where

X(1) = υmX(1)
m , X(1)

m = ςm
0
∂
∂τ

+ ξm
s
∂
∂qs

+
( .
ξ

m
s −

.
qs

.
ς

m
0

)
∂

∂
.
qs

. (16)

As a result, we have

Theorem 2. If the quasi-fractional dynamical system (1) is disturbed by a small disturbance υQs, and there is a
gauge function G = G

(
τ, qk,

.
qk

)
such that the structural equation

(
1−α
t−τ ς

m
0 +

.
ς

m
0

)
X(1)

m (exp L)(t− τ)α−1 + X(1)
m

[
X(1)

m (exp L)
]
(t− τ)α−1 +

.
G

m

−

[
X(1)

m−1(Qs) + QsX
(1)
m−1(L)

](
ξm−1

s −
.
qsς

m−1
0

)
= 0, (s = 1, 2, · · · , n; m = 0, 1, 2, · · ·),

(17)

holds, where G =
z∑

m=0
υmGm and ς−1

0 = ξ−1
s = 0, the Mei symmetry directly leads to the new adiabatic invariant

Iz =
z∑

m=0

υm

(t− τ)α−1X(1)
m (exp L)ςm

0 + (t− τ)α−1 ∂X(1)
m (exp L)

∂
.
qs

(
ξm

s −
.
qsς

m
0

)
+ Gm

. (18)
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Proof. By using Equations (13), (15), and (17), we have

dIz
dτ =

z∑
m=0

υm
{

1−α
t−τ (t− τ)

α−1X(1)
m (exp L)ςm

0 + (t− τ)α−1 dX(1)
m (exp L)

dτ ςm
0

+(t− τ)α−1X(1)
m (exp L)

.
ς

m
0 + 1−α

t−τ (t− τ)
α−1 ∂X(1)

m (exp L)
∂

.
qs

(
ξm

s −
.
qsς

m
0

)
+(t− τ)α−1 d

dτ
∂X(1)

m (exp L)
∂

.
qs

(
ξm

s −
.
qsς

m
0

)
+ (t− τ)α−1 ∂X(1)

m (exp L)
∂

.
qs

( .
ξ

m
s −

.
qs

.
ς

m
0 −

..
qsς

m
0

)
+

.
G

m
}

=
z∑

m=0
υm

{[
−
∂X(1)

m (L)
∂qs

+
∂X(1)

m (L)
∂

.
qs

dL
dτ +

∂L
∂

.
qs

dX(1)
m (L)
dτ + d

dτ
∂X(1)

m (L)
∂

.
qs

+ 1−α
t−τ

∂X(1)
m (L)
∂

.
qs

]
×

×

(
ξm

s −
.
qsς

m
0

)
(t− τ)α−1 exp L +

(
1−α
t−τ ς

m
0 +

.
ς

m
0

)
X(1)

m (exp L)(t− τ)α−1

+X(1)
m

[
X(1)

m (exp L)
]
(t− τ)α−1

−

(
∂L
∂qs
−

d
dτ

∂L
∂

.
qs
−

∂L
∂

.
qs

dL
dτ −

1−α
t−τ

∂L
∂

.
qs

)
×

×

(
ξm

s −
.
qsς

m
0

)
(t− τ)α−1X(1)

m (L) exp L +
.

G
m}

=
z∑

m=0
υm

{
−υX(1)

m (Qs)
(
ξm

s −
.
qsς

m
0

)
+ X(1)

m−1(Qs)
(
ξm−1

s −
.
qsς

m−1
0

)
+QsX

(1)
m−1(L)

(
ξm−1

s −
.
qsς

m−1
0

)
− υQsX

(1)
m (L)

(
ξm

s −
.
qsς

m
0

)}
= −υz+1

[
X(1)

z (Qs) + QsX
(1)
z (L)

](
ξz

s −
.
qsς

z
0

)
.

(19)

According to the definition of adiabatic invariant [51], Iz is an adiabatic invariant of order z.
This completes the proof. �

Example 1. Considering the nonlinear dynamical system, its action functional based on exponential Lagrangian is

S =
1

Γ(α)

∫ t2

t1

exp
[
L
(
τ, qs,

.
qs

)]
(t− τ)α−1dτ, (20)

where L = τq
.
q.

Equation (1) gives

(t− τ)α−1 exp
(
τq

.
q
)[
τq

(
α− 1
t− τ

− q
.
q− τ

.
q2
− τq

..
q
)
− q

]
= 0. (21)

By calculation, we have

X(1)
0 (L) = q

.
qς0

0 + τ
.
qξ0 + τq

( .
ξ

0
−

.
q

.
ς

0
0

)
, (22)

X(1)
0 (exp L) = exp

(
τq

.
q
)[

q
.
qς0

0 + τ
.
qξ0 + τq

( .
ξ

0
−

.
q

.
ς

0
0

)]
. (23)

If we take
ς0

0 = τ, ξ0 =
1
q

, (24)

then we have
X(1)

0 (L) = 0, X(1)
0 (exp L) = 0. (25)

According to the criterion (6), the infinitesimals (24) correspond to Mei symmetry. Substituting (24)
into Equation (7), we get

G0 = τ exp
(
τq

.
q
)
(t− τ)α−1. (26)

From Theorem 1, we have
I0 = τ exp

(
τq

.
q
)
(t− τ)α−1 = const. (27)
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Let the small disturbance be
υQ = υq

.
q exp

(
q2/2

)
. (28)

The differential equation of the disturbed motion is

(t− τ)α−1 exp
(
τq

.
q
)[
τq

(
α− 1
t− τ

− q
.
q− τ

.
q2
− τq

..
q
)
− q

]
= υq

.
q exp

(
q2/2

)
. (29)

Take
ς1

0 = τ, ξ1 =
1
q

, (30)

then we have
X(1)

1 (L) = 0, X(1)
1 (exp L) = 0, X(1)

0 (Q) = X(1)
1 (Q) = 0. (31)

According to the criterion (15), the infinitesimals (30) correspond to Mei symmetry. Substituting (30)
into Equation (17), we have

G1 = τ exp
(
τq

.
q
)
(t− τ)α−1 + υ

∫
exp

(
q2/2

)
dq. (32)

By Theorem 2, we obtain

I1 = τ exp
(
τq

.
q
)
(t− τ)α−1 + υ

[
τ exp

(
τq

.
q
)
(t− τ)α−1 + υ

∫
exp

(
q2/2

)
dq

]
. (33)

The formula (33) is an adiabatic invariant led by Mei symmetry.

3. Mei Symmetry and Invariants of Quasi-Fractional Dynamical System Based on Power-Law
Lagrangians

For the quasi-fractional dynamical system whose action functional depends on power-law
Lagrangian, the Euler–Lagrange equations that are derived in Appendix B can be expressed as

(1 + γ)(t− τ)α−1Lγ
(
∂L
∂qs
−

d
dτ

∂L
∂

.
qs
−
γ

L
∂L
∂

.
qs

dL
dτ

+
α− 1
t− τ

∂L
∂

.
qs

)
= 0, (s = 1, 2, · · · , n), (34)

where γ is not equal to −1.
After the transformation of (2), L1+γ is transformed into the following form

L∗1+γ = L1+γ
(
τ∗, q∗s,

dq∗s
dτ∗

)
= L1+γ

(
τ, qs,

.
qs

)
+ εX(1)

(
L1+γ

)
+ O

(
ε2

)
. (35)

If L is replaced with L∗, Equation (34) still holds, namely

(1 + γ)(t− τ)α−1L∗γ
(
∂L∗

∂qs
−

d
dτ
∂L∗

∂
.
qs
−
γ

L∗
∂L∗

∂
.
qs

dL∗

dτ
+
α− 1
t− τ

∂L∗

∂
.
qs

)
= 0, (s = 1, 2, · · · , n). (36)

then this invariance is called Mei symmetry of quasi-fractional dynamical system (34). Substituting the
formula (35) into Equation (36), and considering Equation (34), we have

(1 + γ)(t− τ)α−1Lγ
[
∂X(1)(L)
∂qs

−
d

dτ
∂X(1)(L)
∂

.
qs
−
γ
L

dL
dτ

∂X(1)(L)
∂

.
qs
−
γ
L
∂L
∂

.
qs

dX(1)(L)
dτ

+
γ
L2

∂L
∂

.
qs

dL
dτX(1)(L) + α−1

t−τ
∂X(1)(L)
∂

.
qs

]
= 0, (s = 1, 2, · · · , n).

(37)

Equation (37) is the criterion for Mei symmetry of system (34). Hence, we have
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Theorem 3. For the quasi-fractional dynamical system (34), if there is a gauge function G = G
(
τ, qk,

.
qk

)
such

that the structural equation(1− α
t− τ

ς0 +
.
ς0

)
X(1)

(
L1+γ

)
+ X(1)

{
X(1)

(
L1+γ

)}
+ (t− τ)1−α .

G = 0 (38)

holds, the Mei symmetry directly leads to the new conserved quantity

I0 = (t− τ)α−1X(1)
(
L1+γ

)
ς0 + (t− τ)α−1

∂X(1)
(
L1+γ

)
∂

.
qs

(
ξs −

.
qsς0

)
+ G = const. (39)

Proof.

dI0
dt = 1−α

t−τ (t− τ)
α−1X(1)

(
L1+γ

)
ς0 + (t− τ)α−1 dX(1)(L1+γ)

dτ ς0 + (t− τ)α−1X(1)
(
L1+γ

) .
ς0

+ 1−α
t−τ (t− τ)

α−1 ∂X(1)(L1+γ)
∂

.
qs

(
ξs −

.
qsς0

)
+ (t− τ)α−1 d

dτ
∂X(1)(L1+γ)

∂
.
qs

(
ξs −

.
qsς0

)
+(t− τ)α−1 ∂X(1)(L1+γ)

∂
.
qs

( .
ξs −

.
qs

.
ς0 −

..
qsς0

)
+

.
G

=
[
−
∂X(1)(L)
∂qs

+ d
dτ

∂X(1)(L)
∂

.
qs

+
γ
L

dL
dτ

∂X(1)(L)
∂

.
qs

+
γ
L
∂L
∂

.
qs

dX(1)(L)
dτ −

γ
L2

∂L
∂

.
qs

dL
dτX(1)(L)

+ 1−α
t−τ

∂X(1)(L)
∂

.
qs

]
(1 + γ)(t− τ)α−1Lγ

(
ξs −

.
qsς0

)
+

(
1−α
t−τ ς0 +

.
ς0

)
X(1)

(
L1+γ

)
(t− τ)α−1

+
(
−
∂L
∂qs

+ d
dτ

∂L
∂

.
qs
+

γ
L
∂L
∂

.
qs

dL
dτ +

1−α
t−τ

∂L
∂

.
qs

)
(1 + γ)(t− τ)α−1X(1)(Lγ)

(
ξs −

.
qsς0

)
+X(1)(L)X(1)(L)(1 + γ)γ(t− τ)α−1Lγ−1 + X(1)

[
X(1)(L)

]
(1 + γ)(t− τ)α−1Lγ +

.
G.

(40)

Substituting Equations (34) and (37) into the formula (40), and using Equation (38), we obtain

dI0

dt
=

(1− α
t− τ

ς0 +
.
ς0

)
X(1)

(
L1+γ

)
(t− τ)α−1 + X(1)

[
X(1)

(
L1+γ

)]
(t− τ)α−1 +

.
G = 0. (41)

Thus, we get the desired result. �

Mei conserved quantity (39) is an exact invariant for the quasi-fractional dynamical systems (34).
If a small disturbance υQs is applied, Equation (34) is changed to

(1 + γ)(t− τ)α−1Lγ
(
∂L
∂qs
−

d
dτ

∂L
∂

.
qs
−
γ

L
∂L
∂

.
qs

dL
dτ

+
α− 1
t− τ

∂L
∂

.
qs

)
= υQs, (s = 1, 2, · · · , n). (42)

Accordingly, Equation (37) is changed to

(1 + γ)(t− τ)α−1Lγ
[
∂X(1)(L)
∂qs

−
d

dτ
∂X(1)(L)
∂

.
qs
−
γ
L

dL
dτ

∂X(1)(L)
∂

.
qs
−
γ
L
∂L
∂

.
qs

dX(1)(L)
dτ

+
γ
L2

∂L
∂

.
qs

dL
dτX(1)(L) + α−1

t−τ
∂X(1)(L)
∂

.
qs

]
= υX(1)(Qs), (s = 1, 2, · · · , n).

(43)

Substituting the formulae (11) into Equation (43), we get

(1 + γ)(t− τ)α−1υmLγ
[
∂X(1)

m (L)
∂qs

−
d

dτ
∂X(1)

m (L)
∂

.
qs
−
γ
L

dL
dτ

∂X(1)
m (L)
∂

.
qs
−
γ
L
∂L
∂

.
qs

dX(1)
m (L)
dτ

+
γ
L2

∂L
∂

.
qs

dL
dτX(1)

m (L) + α−1
t−τ

∂X(1)
m (L)
∂

.
qs

]
= υm+1X(1)

m (Qs), (s = 1, 2, · · · , n).
(44)

Therefore, we have
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Theorem 4. If the quasi-fractional dynamical system (34) is disturbed by small disturbance υQs, and there is a
gauge function G = G

(
τ, qk,

.
qk

)
such that the structural equation

(
1−α
t−τ ς

m
0 +

.
ς

m
0

)
X(1)

m

(
L1+γ

)
(t− τ)α−1 + X(1)

m

[
X(1)

m

(
L1+γ

)]
(t− τ)α−1

−X(1)
m−1(Qs)

(
ξm−1

s −
.
qsς

m−1
0

)
−
γ
L QsX

(1)
m−1(L)

(
ξm−1

s −
.
qsς

m−1
0

)
+

.
G

m
= 0, (s = 1, 2, · · · , n; m = 0, 1, 2, · · ·),

(45)

holds, where G =
z∑

m=0
υmGm and ς−1

0 = ξ−1
s = 0, the Mei symmetry directly leads to the new adiabatic invariant

Iz =
z∑

m=0

υm
[
(t− τ)α−1X(1)

m

(
L1+γ

)
ςm

0 + (t− τ)α−1 ∂

∂
.
qs

X(1)
m

(
L1+γ

)(
ξm

s −
.
qsς

m
0

)
+ Gm

]
. (46)

Proof. By using Equations (42), (44), and (45), we have

dIz
dτ =

z∑
m=0

υm
{

1−α
t−τ (t− τ)

α−1X(1)
m

(
L1+γ

)
ςm

0 + (t− τ)α−1 dX(1)
m (L1+γ)

dτ ςm
0

+(t− τ)α−1X(1)
m

(
L1+γ

) .
ς

m
0 + 1−α

t−τ (t− τ)
α−1 ∂X(1)

m (L1+γ)
∂

.
qs

(
ξm

s −
.
qsς

m
0

)
+(t− τ)α−1 d

dτ
∂X(1)

m (L1+γ)
∂

.
qs

(
ξm

s −
.
qsς

m
0

)
+ (t− τ)α−1 ∂X(1)

m (L1+γ)
∂

.
qs

( .
ξ

m
s −

.
qs

.
ς

m
0 −

..
qsς

m
0

)
+

.
G

m
}

=
z∑

m=0
υm

{[
−
∂X(1)

m (L)
∂qs

+ d
dτ

∂X(1)
m (L)
∂

.
qs

+
γ
L

dL
dτ

∂X(1)
m (L)
∂

.
qs

+
γ
L
∂L
∂

.
qs

dX(1)
m (L)
dτ

−
γ
L2

∂L
∂

.
qs

dL
dτX(1)

m (L) + 1−α
t−τ

∂X(1)
m (L)
∂

.
qs

]
(1 + γ)(t− τ)α−1Lγ

(
ξm

s −
.
qsς

m
0

)
+

(
−
∂L
∂qs

+ d
dτ

∂L
∂

.
qs
+

γ
L
∂L
∂

.
qs

dL
dτ +

1−α
t−τ

∂L
∂

.
qs

)
(1 + γ)(t− τ)α−1X(1)

m (Lγ)
(
ξm

s −
.
qsς

m
0

)
+

(
1−α
t−τ ς

m
0 +

.
ς

m
0

)
X(1)

m

(
L1+γ

)
(t− τ)α−1 + X(1)

m (L)X(1)
m (L)(1 + γ)γ(t− τ)α−1Lγ−1

+X(1)
m

[
X(1)

m (L)
]
(1 + γ)(t− τ)α−1Lγ +

.
G

m}
=

z∑
m=0

υm
{
−υX(1)

m (Qs)
(
ξm

s −
.
qsς

m
0

)
− υ

γ
L QsX

(1)
m (L)

(
ξm

s −
.
qsς

m
0

)
+X(1)

m−1(Qs)
(
ξm−1

s −
.
qsς

m−1
0

)
+

γ
L QsX

(1)
m−1(L)

(
ξm−1

s −
.
qsς

m−1
0

)}
= −υz+1

[
X(1)

z (Qs) +
γ
L QsX

(1)
z (L)

](
ξz

s −
.
qsς

z
0

)
.

(47)

According to the definition of adiabatic invariant [51], Iz is an adiabatic invariant of order z. So that
ends the proof. �

Example 2. Considering the nonconservative dynamical system, its action functional based on power-law
Lagrangian is [50]

A =
1

Γ(α)

∫ t2

t1

[
L1+γ

(
τ, qs,

.
qs

)]
(t− τ)α−1dτ, (48)

where L =
.
q− q(τ− t), γ = 1.

Equation (34) gives

2(t− τ)α−1
[
−

..
q +

α− 1
t− τ

.
q +

(
(τ− t)2 + α

)
q
]
= 0. (49)

By calculation, we have

X(1)
0 (L) = −qς0

0 − (τ− t)ξ0
0 +

.
ξ

0
0 −

.
q

.
ς

0
0, (50)
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X(1)
0

(
L2

)
= 2L

[
−qς0

0 − (τ− t)ξ0
0 +

.
ξ

0
0 −

.
q

.
ς

0
0

]
. (51)

Let
ς0

0 = 0, ξ0
0 = exp

[
(t + τ)2/2

]
, (52)

then
X(1)

0 (L) = 0, X(1)
0

(
L2

)
= 0. (53)

According to the criterion (37), the infinitesimals (52) correspond to Mei symmetry. Substituting (52)
into Equation (38), we get

G0 = 2
[ .
q− q(τ− t)

]
(t− τ)α−1 exp

[
(τ− t)2/2

]
. (54)

From Theorem 3, we have

I0 = 2
[ .
q− q(τ− t)

]
(t− τ)α−1 exp

[
(τ− t)2/2

]
= const. (55)

Let the small disturbance be

υQ = υ sin τ exp
[
−(τ− t)2/2

]
. (56)

The differential equation of the disturbed motion is

2(t− τ)α−1
[
−

..
q +

α− 1
t− τ

.
q +

(
(τ− t)2 + α

)
q
]
= υ sin τ exp

[
−(τ− t)2/2

]
. (57)

Take
ς1

0 = 0, ξ1
0 = exp

[
(t + τ)2/2

]
, (58)

then it is easy to verify

X(1)
1 (L) = 0, X(1)

1

(
L2

)
= 0, X(1)

0 (Q) = X(1)
1 (Q) = 0. (59)

According to the criterion (44), the infinitesimals (58) correspond to Mei symmetry. Substituting (58)
into Equation (45), we have

G1 = 2
[ .
q− q(τ− t)

]
(t− τ)α−1 exp

[
(τ− t)2/2

]
− υ cos τ. (60)

By Theorem 4, we obtain

I1 = 2
[ .
q− q(τ− t)

]
(t− τ)α−1 exp

[
(τ− t)2/2

]
+υ

{
2
[ .
q− q(τ− t)

]
(t− τ)α−1 exp

[
(τ− t)2/2

]
− υ cos τ

}
.

(61)

Formula (61) is an adiabatic invariant led by Mei symmetry.

4. Conclusions

Symmetry is closely related to invariants, and it is of great significance to find the invariants of
complex system dynamics. First, even if the equations of motion are difficult to solve, the existence
of some conserved quantity makes it possible to understand the local physical state or dynamical
behavior of the system. Secondly, we can reduce the differential equations of motion by using conserved
quantities. Thirdly, we can study the motion stability of complex dynamical systems by using conserved
quantities. Based on the quasi-fractional dynamical model proposed by El-Nabulsi according to the
Riemann–Liouville definition of fractional integral, we studied Mei symmetry and its corresponding
invariants of quasi-fractional dynamics system whose action functional is composed of non-standard
Lagrangians. The main results of this paper are its four theorems. In this paper, we provided a method
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to study nonlinear or non-conservative dynamics and obtained new conserved quantities and new
adiabatic invariants, and the results are expected to be generalized or applied to the dynamics of
constrained systems, such as those of nonholonomic systems.
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and 11,272,227).
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Appendix A. Derivation of the Euler–Lagrange Equations for Quasi-Fractional Dynamical System
with Exponential Lagrangians

Consider a nonlinear dynamical system whose configuration is determined by n generalized
coordinates qs(s = 1, 2, · · · , n), its action functional based on exponential Lagrangian is

S =
1

Γ(α)

∫ t2

t1

exp
[
L
(
τ, qs,

.
qs

)]
(t− τ)α−1dτ. (A1)

where L = L
(
τ, qs,

.
qs

)
is the standard Lagrangian, 0 < α ≤ 1, τ is the intrinsic time, t is the observer

time, and τ is not equal to t.
The isochronous variational principle

δS = 0, (A2)

which satisfies the following commutation relation

dδqs = δdqs, (s = 1, 2, · · · , n), (A3)

and given boundary condition

δqs
∣∣∣
t=t1

= δqs
∣∣∣
t=t2

= 0, (s = 1, 2, · · · , n) (A4)

can be called the Hamilton principle of the quasi-fractional dynamical system with exponential
Lagrangians.

Expanding the Hamilton principle (A2), we have

0 = δS = 1
Γ(α)

∫ t2

t1
δ
[
exp L(t− τ)α−1

]
dτ

= 1
Γ(α)

∫ t2

t1
(t− τ)α−1 exp L

(
∂L
∂qs
δqs +

∂L
∂

.
qs
δ

.
qs

)
dτ

(A5)

Due to ∫ t2

t1
(t− τ)α−1 exp L ∂L

∂
.
qs
δ

.
qsdτ =

[
(t− τ)α−1 exp L ∂L

∂
.
qs
δqs

]∣∣∣∣∣t2

t1

−

∫ t2

t1
(t− τ)α−1 exp L

(
−
α−1
t−τ

∂L
∂

.
qs
+ dL

dτ
∂L
∂

.
qs
+ d

dτ
∂L
∂

.
qs

)
δqsdτ

= −
∫ t2

t1
(t− τ)α−1 exp L

(
−
α−1
t−τ

∂L
∂

.
qs
+ dL

dτ
∂L
∂

.
qs
+ d

dτ
∂L
∂

.
qs

)
δqsdτ.

(A6)

Substituting the formula (A6) into Equation (A5), we have

1
Γ(α)

∫ t2

t1

(t− τ)α−1 exp L
(
∂L
∂qs
−

d
dτ

∂L
∂

.
qs
−
∂L
∂

.
qs

dL
dτ

+
α− 1
t− τ

∂L
∂

.
qs

)
δqsdτ = 0. (A7)
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Because of the arbitrariness of the interval [t1, t2] and the independence of δqs (s = 1, 2, · · · , n), using the
fundamental lemma [23] of the calculus of variations, we get

(t− τ)α−1 exp L
(
∂L
∂qs
−

d
dτ

∂L
∂

.
qs
−
∂L
∂

.
qs

dL
dτ

+
α− 1
t− τ

∂L
∂

.
qs

)
= 0, (s = 1, 2, · · · , n). (A8)

Equation (A8) can be called the Euler–Lagrange equations for quasi-fractional dynamical system with
exponential Lagrangians.

Appendix B. Derivation of the Euler–Lagrange Equations for Quasi-Fractional Dynamical System
with Power-Law Lagrangians

Consider a nonlinear dynamical system whose configuration is determined by n generalized
coordinates qs(s = 1, 2, · · · , n), its action functional based on power-law Lagrangian is

A =
1

Γ(α)

∫ t2

t1

[
L1+γ

(
τ, qs,

.
qs

)]
(t− τ)α−1dτ (A9)

where L = L
(
τ, qs,

.
qs

)
is the standard Lagrangian, γ is not equal to −1, 0 < α ≤ 1, τ is the intrinsic time,

t is the observer time, and τ is not equal to t.
The isochronous variational principle

δA = 0, (A10)

which satisfies the following commutation relation

dδqs = δdqs, (s = 1, 2, · · · , n), (A11)

and given boundary condition

δqs
∣∣∣
t=t1

= δqs
∣∣∣
t=t2

= 0, (s = 1, 2, · · · , n) (A12)

can be called the Hamilton principle of the quasi-fractional dynamical system with power-law
Lagrangians.

Expanding the Hamilton principle (A10), we have

0 = δA = 1
Γ(α)

∫ t2

t1
δ
[
L1+γ(t− τ)α−1

]
dτ

= 1
Γ(α)

∫ t2

t1
(1 + γ)(t− τ)α−1Lγ

(
∂L
∂qs
δqs +

∂L
∂

.
qs
δ

.
qs

)
dτ

(A13)

Due to ∫ t2

t1
(t− τ)α−1Lγ ∂L

∂
.
qs
δ

.
qsdτ =

[
(t− τ)α−1Lγ ∂L

∂
.
qs
δqs

]∣∣∣∣∣t2

t1

−

∫ t2

t1
(t− τ)α−1Lγ

(
−
α−1
t−τ

∂L
∂

.
qs
+

γ
L

dL
dτ

∂L
∂

.
qs
+ d

dτ
∂L
∂

.
qs

)
δqsdτ

= −
∫ t2

t1
(t− τ)α−1Lγ

(
−
α−1
t−τ

∂L
∂

.
qs
+

γ
L

dL
dτ

∂L
∂

.
qs
+ d

dτ
∂L
∂

.
qs

)
δqsdτ.

(A14)

Substituting the formula (A14) into Equation (A13), we have

1
Γ(α)

∫ t2

t1

(1 + γ)(t− τ)α−1Lγ
(
∂L
∂qs
−

d
dτ

∂L
∂

.
qs
−
γ

L
dL
dτ

∂L
∂

.
qs

+
α− 1
t− τ

∂L
∂

.
qs

)
δqsdτ = 0. (A15)
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Because of the arbitrariness of the interval [t1, t2] and the independence of δqs (s = 1, 2, · · · , n), using the
fundamental lemma [23] of the calculus of variations, we get

(1 + γ)(t− τ)α−1Lγ
(
∂L
∂qs
−

d
dτ

∂L
∂

.
qs
−
γ

L
∂L
∂

.
qs

dL
dτ

+
α− 1
t− τ

∂L
∂

.
qs

)
= 0, (s = 1, 2, · · · , n). (A16)

Equation (A16) can be called the Euler–Lagrange equations for quasi-fractional dynamical system with
power-law Lagrangians. Equation (A16) is consistent with the results given in [50].
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42. Atanacković, T.M.; Konjik, S.; Pilipović, S.; Simić, S. Variational problems with fractional derivatives:

Invariance conditions and Noether’s theorem. Nonlinear Anal. Theory 2009, 71, 1504–1517. [CrossRef]
43. Malinowska, A.B.; Torres, D.F.M. Introduction to the Fractional Calculus of Variations; Imperial College Press:

London, UK, 2012.
44. Li, M. Three classes of fractional oscillators. Symmetry 2018, 10, 40. [CrossRef]
45. Zhai, X.H.; Zhang, Y. Noether symmetries and conserved quantities for fractional Birkhoffian systems with

time delay. Commun. Nonlinear Sci. Numer. Simulat. 2016, 36, 81–97. [CrossRef]
46. Yan, B.; Zhang, Y. Noethe’s theorem for fractional Birkhoffian systems of variable order. Acta Mech. 2016,

227, 2439–2449. [CrossRef]
47. Meng, W.; Zeng, B.; Li, S.L. A novel fractional-order grey prediction model and its modeling error analysis.

Information 2019, 10, 167. [CrossRef]
48. El-Nabulsi, R.A. A fractional approach to nonconservative Lagrangian dynamical systems. Fizika A 2005, 14,

289–298.
49. El-Nabulsi, R.A.; Torres, D.F.M. Fractional action-like variational problems. J. Math. Phys. 2008, 49, 053521.

[CrossRef]

http://dx.doi.org/10.1016/j.cnsns.2019.04.005
http://dx.doi.org/10.1007/BF01028515
http://dx.doi.org/10.1088/1751-8113/41/5/055205
http://dx.doi.org/10.1007/s12346-012-0074-0
http://dx.doi.org/10.1007/s12346-014-0110-3
http://dx.doi.org/10.1007/s40314-013-0053-3
http://dx.doi.org/10.1007/s11071-016-2611-x
http://dx.doi.org/10.1088/1674-1056/26/8/084501
http://dx.doi.org/10.1007/s00707-017-1967-4
http://dx.doi.org/10.1109/TNN.2011.2109395
http://dx.doi.org/10.1109/TNNLS.2011.2178561
http://dx.doi.org/10.1103/PhysRevE.53.1890
http://dx.doi.org/10.1103/PhysRevE.55.3581
http://dx.doi.org/10.1016/S0022-247X(02)00180-4
http://dx.doi.org/10.1016/j.cnsns.2009.05.023
http://dx.doi.org/10.1016/j.na.2008.12.043
http://dx.doi.org/10.3390/sym10020040
http://dx.doi.org/10.1016/j.cnsns.2015.11.020
http://dx.doi.org/10.1007/s00707-016-1622-5
http://dx.doi.org/10.3390/info10050167
http://dx.doi.org/10.1063/1.2929662


Symmetry 2019, 11, 1061 14 of 14

50. El-Nabulsi, R.A. Non-standard fractional Lagrangians. Nonlinear Dyn. 2013, 74, 381–394. [CrossRef]
51. Zhao, Y.Y.; Mei, F.X. Symmetries and Invariants of Mechanical Systems; Science Press: Beijing, China, 1999.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11071-013-0977-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mei Symmetry and Invariants of Quasi-Fractional Dynamical System Based on Exponential Lagrangians 
	Mei Symmetry and Invariants of Quasi-Fractional Dynamical System Based on Power-Law Lagrangians 
	Conclusions 
	Derivation of the Euler–Lagrange Equations for Quasi-Fractional Dynamical System with Exponential Lagrangians 
	Derivation of the Euler–Lagrange Equations for Quasi-Fractional Dynamical System with Power-Law Lagrangians 
	References

