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1. Introduction

Differential equations with boundary conditions, especially Sturm-Liouville with a spectrum
contained in the boundary condition, have various applications for mathematical physics, economics
and biophysics. For instance, the vibration of strings and mass transfer [1–4]. The method of finding
the eigenvalues and eigenfunctions of an eigenvalue problem was investigated by many authors.
Naimark [5] studied a general linear differential operator of nth order. He obtained an asymptotic
formula for the fundamental solutions, eigenvalues and eigenfunctions for the problem. Eventually,
Kerimov and Mamedov [6] investigated a second order differential operator. They obtained an accurate
asymptotic formulas for eigenvalues and eigenfunctions compared to Naimark’s work.

The method of obtaining a refinement fundamental solution of a linear differential operator was
studied in Reference [5] (Section 4.6). In this method, the author considered that the coefficients of the
differential operator and their derivatives up to order m are continuous. This method leads to a more
accurate asymptotic formulas for eigenvalues and eigenfunctions, indeed. For more detail about the
method we recommend the reader to see Reference [5] (Section 4.6).

More and more authors have been interested in investigating this kind of subject in recent
years. Fourth order linear differential equations have extensive applications in different fields of
engineering and science. For instance, several appropriate mathematical models have been suggested
in References [3,4] which assist in describing the oscillation behavior appearing in the actual suspension
bridges. Nowadays, investigating the eigenvalue problem is going in the direction of discontinuity of
the solutions or the coefficients of the differential operator with transmission conditions at the point of
discontinuities. Jwamer [7] studied the asymptotic behavior of the eigenvalues and eigenfunction for
a second order differential equation, where its cofficients are discontinuous. Recently, Bayramoglu,
Bayramov and Şen, in References [2,8–10] investigated second order and fourth order differential
operators with a spectral parameter contained in the boundary conditions and transmission conditions.
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Şen formulated a new method for determining linearly independent solutions, eigenvalues and
eigenfunctions for the eigenvalue problems.

Concerning Reference [2], we study a fourth order differential operator with the eigenparameter
contained in the boundary conditions and transmission conditions. In the present paper, we use the
refined method for obtaining the linearly independent solution of the problem. Moreover, an accurate
asymptotic formula was obtained for eigenvalues and eigenfunctions. First, we constitute the problem
as follows:

Consider a fourth order differential operator of the form:

L[y] = y(4)(x) + p(x)y
′
+ q(x)y(x) = λω(x)y(x) (1)

where, x lies in the interval I = [−1, 0) ∪ (0, 1]. We assume that all solutions of (1) are in L2(I) and
they are satisfying the following boundary conditions at the boundary points x = −1 and x = 1

L1[y] = α1y(−1)− α2y
′′′
(−1) = 0 (2)

L2[y] = β1y
′
(−1)− β2y

′′
(−1) = 0 (3)

L3[y] = λy(1)− y
′′′
(1) = 0 (4)

L4[y] = λy
′
(1)− y

′′
(1) = 0 (5)

At the discontinuity point x = 0, the solutions of Equation (1) satisfies the following transmission
conditions:

L5(y) = y(0+)− y(0−) = 0 (6)

L6(y) = y
′
(0+)− y

′
(0−) = 0 (7)

L7(y) = y
′′
(0+)− y

′′
(0−) + λδ1y

′
(0−) = 0 (8)

L8(y) = y
′′′
(0+)− y

′′′
(0−) + λδ2y(0−) = 0 (9)

where, the weight function ω(x) defined on the interval I as follows:

ω(x) =

{
ω4

1; x ∈ [−1, 0)

ω4
2; x ∈ (0, 1]

(10)

The functions p(x), q(x) are continuous on the interval I, p(x) ∈ C2[−1, 1] and they have finite
limits, p(0±) = limx→0± p(x), q(0±) = limx→0± q(x). λ is the spectral parameter, αi, βi and ωi are
real scalars (for i = 1, 2), with |ω1 + ω2| 6= 0 and

∫ 1
−1 p(x)dx 6= 0.

In Section 2, we recall some definitions and theorems that are useful in the next section. Also, we
formulate the problem and investigate its properties in operator theory views. The most important
result is the estimation of the eigenvalues and eigenfunctions (see Theorem 4). According to
Theorem 3, the eigenvalue problem (1)–(9) possesses infinitely many positive and negative eigenvalues.
From Theorem 4, we obtain that the zeros of Equations (21) and (22) are the eigenvalues of the problem.
We assume that the solutions of (1) satisfy the initial conditions (15)–(19). The purpose of these
conditions is to conduct a more accurate system of solution of Equation (1), such that it satisfies
the boundary and transmission conditions. In Section 3, we determine the refinement asymptotic
formulas for the linearly independent solutions (resp. their derivatives) of Equation (1). Every
solution satisfies the initial conditions (15)–(19), respectively. Also, we estimate an upper bound for the
fundamental solutions. In Section 4, we establish the accurate asymptotic formulas for the eigenvalues
and eigenfunctions of the problem (1)–(9). Finally, we show that the problem in Reference [2] is
a special case of the problem that is presented in this paper.
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2. Preliminaries and Constructions

In this section, we begin with the following definitions and theorems, which are necessary in
the next section. The definitions and notations in this paper can be found in Reference [1]. Also, we
construct the initial conditions for which the linearly independent solution of the problem will satisfy:

Definition 1 ([2]). Suppose that f , g ∈ L2(I), then the inner product of f , g on L2(I) defined as follows:

〈 f , g〉1 =
∫ 0

−1
f1 ḡ1dx +

∫ 1

0
f̄2g2dx (11)

where, f1 = f (x)|[−1,0), f2 = f (x)|(0,1] and f̄2 is the complex conjugate of f2. It is provided that (L2(I), 〈·〉)1

form a Hilbert space.

Definition 2 ([2]). Let K = L2(I)⊕C⊕C⊕Cδ1 ⊕Cδ2 . Then define [.] on K as follows:

[F, G] = 〈 f , g〉1 + 〈h1, k1〉+ 〈h2, k2〉+ 〈h3, k3〉+ 〈h4, k4〉 (12)

where, F = ( f , h1, h2, h3, h4) and G = (g, k1, k2, k3, k4) are in K. Then K, under the inner product [.] form
a direct sum of modified Krein spaces.

Note that Krein space is a linear space H with an inner product [., .] defined on H such that there
exists a decomposition H = H+ ⊕ H−, where (H±,±[., .]) are Hilbert spaces and [H+, H−] = 0 [1].
The elements of a Krein space H are classified in terms of the inner product [., .] as follows: an element
x in H is called positive (negative), if [x, x] > 0 ([x, x] < 0). A linear manifold or a subspace K ⊆ H is
called positive (negative), if all its non-zero elements are positive (negative). If f ∈ H, then there exists
f± ∈ H±, such that f = f+ + f−. Also, a projection P± can be defined on H as follows: P± f = f±.
Then the inner product (., .) defined in terms of [., .] with the operator J = P+ − P− by:

( f , g) = [J f , g]

The operator J is said to be a fundamental symmetry of the Krein space H. The reader can see
References [1,11] for more detail about Krein spaces. Now, we turn to finding a formula for estimating
the eigenvalues of the problem (1)–(5). This method is mentioned in Reference [2]: Suppose that
J0 : L2(I)→ L2(I) is introduced by (J0 f )(x) = f (x). Then consider a fundamental symmetry operator
J on the Krein space K

J =


J0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 sgnδ1 0
0 0 0 0 sgnδ2


where, sgnx refers to the signum function of a real number x and it is defined as follows

sgnx =


1 : x > 0

0 : x = 0

−1 : x < 0

(13)

It is obvious that 〈., .〉 = [J., .] form a positive definite inner product on K. This implies that K is
a Hilbert space with the inner product 〈., .〉 = [J., .] defined by K0 := (K, 〈., .〉). Let A be a linear
operator defined with respect to the conditions of our problem (1)–(9):
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D(A) := {( f , h1, h2, h3, h4) ∈ K| f (i) ∈ ACloc((0, 1)), i = 1, 3, L f ∈ L2(I), Lk = 0,

k = 1, 4, h1 = f (1), h2 = f
′
(1), h3 = −δ1 f

′
(0), h4 = −δ2 f (0)}

Then for any F = ( f , f (1), f
′
(1),−δ1 f

′
(0),−δ2 f (0)) ∈ D(A), we have

AF = (L f ,− f
′′′
(1),− f

′′
(1), f

′′
(0+)− f

′′
(0−), f

′′′
(0+)− f

′′′
(0−)),

An interesting application of this process is to rewriting the problem (1)–(9) in the form of
operators as follows:

AF = λF

Consider X as a normed linear space. A subset G of X is said to be dense in X, if every element
x of G is the limit point for a sequence in X. In the following theorem, we investigate the density of
the domain of the operator A, which constructed in term of the problem (1)–(9) in K0. Consequently,
we show that the operator A is self-adjoint in K0.

Theorem 1. The set D(A), the domain of the operator A, is a dense set in the Hilbert space K0.

Proof. Suppose that φ(x) is a function defined by:

φ(x) =

{
φ1(x) : x ∈ [−1, 0)

φ2(x) : x ∈ (0, 1]
(14)

where, φ1(x) ∈ C∞(−1, 0) and φ2(x) ∈ C∞(0, 1). We denote W as the set of all functions of the form
φ(x). It is easy to see that, W is dense in K0, (see Reference [12] (Lemma 2.1)). Hence D(A) is dense
set in K0.

Theorem 2. The operator A is self-adjoint in K0.

Proof. The proof is a direct consequence of [12] (Theorem 2.2).

This leads us to deal with the problem in the direction of operator theory. We can compare the
properties of this operator at a higher level in the Krein or Hilbert spaces. The most important result of
this construction is the eigenvalues and eigenfunctions of the problem, (1)–(9) are the eigen values
and eigenvectors of the operator A. The following theorem guarantees that the set of eigenvalues and
eigenfunctions of the problem (1)–(9) is not empty:

Theorem 3. The operator A has infinity many positive (negative) eigenvalues. Moreover, every eigenvalue has
a corresponding eigenfunction.

Proof. It is obvious by Reference [11] (Proposition 1.8).

Lemma 1. Suppose that p(x), q(x) are continuous functions on the interval [−1, 1], ω(x) is a weight function
defined as in (10) and Ci(λ), (for i = 1, 4) are entire on C. Then for any arbitrary complex number λ and a ∈ I
the differential equation

y(4)(x) + p(x)y
′
+ q(x)y(x) = λω(x)y(x)

has a unique solution, for which satisfy the initial conditions

y(a) = C1(λ), y
′
(a) = C2(λ), y

′′
(a) = C3(λ), y

′′′
(a) = C4(λ)
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Proof. Since the functions p(x) and q(x) are continuous on the interval [−1, 1], then by using
the Existence and Uniqueness Theorem in the theory of differential equations. The proof is
hold directly.

If a = −1, then by Lemma 1 there exists a solution u11(x, λ) of the differential Equation (1) on the
interval [−1, 0), such that it satisfies the initial conditions,

u11(−1) = α2, u
′
11(−1) = 0, u

′′
11(−1) = 0 u

′′′
11(−1) = −α1 (15)

According to this solution, we choose another solution u12(x, λ) of the differential Equation (1)
on the interval (0, 1], such that at a = 0 satisfy the initial conditions,

u12(0) = u11(0), u
′
12(0) = u

′
11(0), u

′′
12(0) = u

′′
11(0)− λδ1u

′
11(0)

and u
′′′
12(0) = u

′′′
11(0)− λδ2u11(0) (16)

By the same way, use Lemma 1, we can define two solutions u21(x, λ) and u22(x, λ) on the
intervals [−1, 0) and (0, 1], respectively. These solutions satisfy the following initial conditions:

u21(−1) = 0, u
′
21(−1) = β2, u

′′
21(−1) = −β1 u

′′′
21(−1) = 0

u22(0) = u21(0), u
′
22(0) = u

′
21(0), u

′′
22(0) = u

′′
21(0)− λδ1u

′
21(0)

and u
′′′
22(0) = u

′′′
21(0)− λδ2u21(0)

(17)

Dually, for the Equations (15) and (16), we can choose v11(x, λ) and v12(x, λ) as two solutions of
Equation (1), such that they are satisfying the following initial conditions on the intervals [−1, 0) and
(0, 1], respectively:

v12(1) = −1, v
′
12(1) = 0, v

′′
12(1) = 0 v

′′′
12(1) = λ

v11(0) = v12(0), v
′
11(0) = v

′
12(0), v

′′
11(0) = v

′′
12(0) + λδ1v

′
12(0)

and v
′′′
11(0) = v

′′′
12(0) + λδ2v12(0)

(18)

Finally, we have to find two more solutions, to compute the formula for the eigenvalues and
eigenfunctions of the problem (1)–(9). Again by using Lemma 1, Equation (1) possess two solutions
v21(x, λ) and v22(x, λ) on the intervals [−1, 0) and (0, 1], respectively. Such that they are satisfying
the conditions: 

v22(1) = 0, v
′
22(1) = −1, v

′′
22(1) = λ v

′′′
22(1) = 0

v21(0) = v22(0), v
′
21(0) = v

′
22(0), v

′′
21(0) = v

′′
22(0) + λδ1v

′
22(0)

and v
′′′
21(0) = v

′′′
22(0) + λδ2v22(0)

(19)

From Theorem 3, we conclude that problem (1)–(9) has infinitely many positive and negative
eigenvalues. Now, we turn to the questions “What are the asymptotic behavior of the eigenvalues?
How can we determine them?” Consider a general differential operator of the form:

L[y] = y(n)(x) + pn−2(x)y(n−1)(x) + · · ·+ y = λω(x)y(x)

The Existence Theorem [13] conducts that the above differential equation has a fundumental
system of n linearly independent solutions y1, y2, . . . , yn on the interval [a, b] ⊆ R . If this differential
equation is constrained with the boundary conditions Li[y]a,b = αi, for i = 1, . . . , n, then the eigenvalues
of the eigenvalue problem are zeros of the equation:



Symmetry 2019, 11, 1060 6 of 13

∣∣∣∣∣∣∣∣∣∣
L1[y1] L1[y2] . . . L1[yn]

L2[y1] L2[y2] . . . L2[yn]
...

...
...

...
Ln[y1] Ln[y2] . . . Ln[yn]

∣∣∣∣∣∣∣∣∣∣
= 0 (20)

Substituting the boundary conditions (2)–(5) in the Equation (20), we obtain the following Wronskians

W1(λ) =

∣∣∣∣∣∣∣∣∣
u11(x, λ) u21(x, λ) v11(x, λ) v21(x, λ)

u
′
11(x, λ) u

′
21(x, λ) v

′
11(x, λ) v

′
21(x, λ)

u
′′
11(x, λ) u

′′
21(x, λ) v

′′
11(x, λ) v

′′
21(x, λ)

u
′′′
11(x, λ) u

′′′
21(x, λ) v

′′′
11(x, λ) v

′′′
21(x, λ)

∣∣∣∣∣∣∣∣∣ (21)

and

W2(λ) =

∣∣∣∣∣∣∣∣∣
u12(x, λ) u22(x, λ) v12(x, λ) v22(x, λ)

u
′
12(x, λ) u

′
22(x, λ) v

′
12(x, λ) v

′
22(x, λ)

u
′′
12(x, λ) u

′′
22(x, λ) v

′′
12(x, λ) v

′′
22(x, λ)

u
′′′
12(x, λ) u

′′′
22(x, λ) v

′′′
12(x, λ) v

′′′
22(x, λ)

∣∣∣∣∣∣∣∣∣ (22)

After a simple calculation, we conclude that the Wronskians are equivalent. Means that
W1(λ) = W2(λ), for any values of the spectral parameter λ ∈ C. Hence, from (20)–(22), we have
the following interesting result for deriving a formula to estimate the eigenvalues of the problem in
the interval I:

Theorem 4. Consider the problem (1)–(9), then the eigenvalues are the zeros of the Wronskian W1(λ) = W2(λ).

Proof. It is similar to the proof of [2] (Theorem 3.2).

3. Asymptotic Behavior of The fundamental Solutions

In this section, we establish the refinement asymptotic formulas for the linearly independent
solutions (resp. their derivatives) of Equation (1), such that each solution satisfy the initial
conditions (15)–(19), respectively. Also, we estimate an upper bound for the solution.

Lemma 2. If λ = s4, s = σ + iτ and k = 0, 1, 2, 3. Then the fundamental solutions (15)–(17) satisfy the
following asymptotic formulas:

dk

dxk u11(x, λ) =
dk

dxk

(
α2

2
+

ω2
1α2

8s2

∫ x

−1
p(t)dt

)
cos (sω1(x + 1))

+
dk

dxk

(
α2

2
−

ω2
1α2

8s2

∫ x

−1
p(t)dt

)
cosh (sω1(x + 1))

+O
(
|s|k−3e|sω1|(x+1)

)
(23)

dk

dxk u12(x, λ) =
dk

dxk

(
(sω2)

2δ1u
′
11(0)

2
+

ω4
2δ1u

′
11(0)

8

∫ x

0
p(t)dt

)
cos (sω2x)

+
sω2δ1u11(0)

2
dk

dxk sin (sω2x)−
(sω2)

2δ1u
′
11(0)

2
dk

dxk cosh (sω2x)

− dk

dxk

(
(sω2)δ2u11(0)

2
−

ω4
2δ1u

′
11(0)

8

∫ x

0
p(t)dt

)
sinh (sω2x)

+O
(
|s|ke|sω2|(x+1)

)
(24)
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dk

dxk u21(x, λ) =
β2

2(sω1)2
dk

dxk cos (sω1(x + 1))

+
dk

dxk

(
β2

2sω1
+

ω1β2

8s3

∫ x

−1
p(t)dt

)
sin (sω1(x + 1))

+
β1

2(sω1)2
dk

dxk sinh (sω1(x + 1))

− dk

dxk

(
β2

2(sω1)
+

ω1β2

8s3

∫ x

−1
p(t)dt

)
cosh (sω1(x + 1))

+O
(
|s|k−4e|sω1|(x+1)

)
(25)

dk

dxk u22(x, λ) =
(sω2)

2δ1u
′
21(0)

2
dk

dxk cos (sω2x) +
sω2δ1u

′
21(0)

2
dk

dxk sin (sω2x)

−
(sω2)

2δ1u
′
21(0)

2
dk

dxk cosh (sω2x)

− dk

dxk

(
(sω2)δ2u21(0)

2
−

ω4
2δ1u

′
21(0)

8

∫ x

0
p(t)dt

)
sinh (sω2x)

+O
(
|s|k−1e|sω2|(x+1)

)
(26)

Proof. Consider the Differential Equation (1), then we can rewrite is as follows:

y(4)(x)− s4ω(x)y(x) = m(x) (27)

where, m(x) = −p(x)y
′
(x)− q(x)y(x), then Equation (27) has a unique linearly independent solution

u11(x, λ) on [−1, 0), which satisfy the initial condition (15) by Lemma 1. It is easy to show that,
esω1x, e−sω1x, eisω1x and e−isω1x are the linearly independent solutions of the equation:

y(4)(x)− s4ω4
1y(x) = 0

By using the method Variation of parameters, we can see the solution u11(x, λ) has the form:

u11(x, λ) =
α2

2
cos (sω1(x + 1)) +

α1

(2sω1)3 sin (sω1(x + 1))

+

(
α2

4
− α1

(2sω1)3

)
e(sω1(x+1)) +

(
α2

4
+

α1

(2sω1)3

)
e(−sω1(x+1))

− ω1

4s3

∫ x

−1

[
−2 sin (sω1(x− t)) + e(sω1(x−t)) − e(−sω1(x−t))

]
p(t)u

′
11(t)dt

− ω1

4s3

∫ x

−1

[
−2 sin (sω1(x− t)) + e(sω1(x−t)) − e(−sω1(x−t))

]
q(t)u11(t)dt (28)

Now, we have to calculate the first integral part of Equation (28), this requires u
′
11(x, λ),

by differentiating Equation (28), we obtain
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u
′
11(x, λ) = −(sω1)

α2

2
sin (sω1(x + 1)) + (sω1)

α1

(2sω1)3 cos (sω1(x + 1))

+(sω1)

(
α2

4
− α1

(2sω1)3

)
e(sω1(x+1)) − (sω1)

(
α2

4
+

α1

(2sω1)3

)
×e(−sω1(x+1))

−
ω2

1
4s2

∫ x

−1

[
−2 cos (sω1(x− t)) + e(sω1(x−t)) + e(−sω1(x−t))

]
p(t)u

′
11(t)dt

−
ω2

1
4s2

∫ x

−1

[
−2 cos (sω1(x− t)) + e(sω1(x−t)) + e(−sω1(x−t))

]
q(t)u11(t)dt (29)

If we set F
′
11(x, s) = (sω1)

−1e|sω1|(x+1)u
′
11(x, s), M

′
= maxx∈[−1,0) |F

′
11(x, s)|, F11(x, s) =

e|sω1|(x+1)u11(x, s) and M = maxx∈[−1,0) |F11(x, s)|, then after a simple calculation we obtain:

|F′11(x, s)| ≤ |α2|
4

+
ω1

4s2 M
′
∫ x

−1
|p(t)|dt +

ω1

4s3 M
∫ x

−1
|q(t)|dt

Since the functions p(x) and q(x) are real valued continuous functions on the interval I, then their
integrals are bounded on [−1, 0). So, for a sufficiently large |λ|, we have F

′
11(x, s) = O(1). Thus,

u
′
11(x, s) = O

(
|s|e|sω1|(x+1)

)
and u11(x, s) = O

(
e|sω1|(x+1)

)
. Substituting these into Equation (29) and

we get

u
′
11(x, λ) = −(sω1)

α2

2
sin (sω1(x + 1)) + (sω1)

α2

4
e(sω1(x+1)) − (sω1)

α2

4
e(−sω1(x+1))

+O
(
|s|−2e|sω1|(x+1)

)
(30)

Putting Equation (30) into the first integral part of (28) and using the asymptotics of u
′
11(x, s), u11(x, s)

and differentiating k times with respect to x, then (23) is estimated. By using the same technique we
obtain all the solutions (24)–(26).

Lemma 3. If λ = s4, s = σ + iτ and k = 0, 1, 2, 3. Then the fundamental solutions (18)–(19) are satisfying
the following asymptotic formulas:

dk

dxk v12(x, λ) =
−1
2

cos (sω1(x− 1))−
(

s
2ω3

2
+

1
8ω2s

∫ 1

x
p(t)dt

)
sin (sω2(x− 1))

+
s

2ω3
2

sinh (sω2(x− 1))−
(

1
2
− 1

8ω2s

∫ 1

x
p(t)dt

)
× cosh (sω2(x− 1)) + O

(
|s|k−2e|sω2|(1−x)

)
(31)

dk

dxk v11(x, λ) = − dk

dxk

(
s2δ1v12(0)

2ω2
1

−
δ1v

′
12(0)
8

∫ 0

x
p(t)dt

)
cos (sω1x)

− sδ2v12(0)
2ω3

1

dk

dxk sin (sω1x) +
sδ2v12(0)

2ω3
1

dk

dxk sinh (sω1x)

+
dk

dxk

(
s2δ2v

′
12(0)

2ω2
1

−
δ1v

′
12(0)
8

∫ 0

x
p(t)dt

)
cosh (sω1x)

+O
(
|s|k+1e|sω1|(1−x)

)
(32)
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dk

dxk v22(x, λ) =
dk

dxk

(
−s2

2ω2
2
− 1

2ω2

∫ 1

x
p(t)dt

)
cos (sω2(x− 1))

+
dk

dxk

(
s2

2ω2
2
− 1

2ω2

∫ 1

x
p(t)dt

)
cosh (sω2(x− 1))

+O
(
|s|k+1e|sω2|(1−x)

)
(33)

dk

dxk v21(x, λ) = − dk

dxk

(
s2δ1v

′
22(0)

2ω2
1

+
δ1v

′
22(0)
2

∫ 0

x
p(t)dt

)
cos (sω1x)

− sδ2v22(0)
2ω3

1

dk

dxk sin (sω1x) +
sδ2v22(0)

2ω3
1

dk

dxk sinh (sω1x)

+
dk

dxk

(
s2δ2v

′
22(0)

2ω2
2

− s2δ1v
′
22(0)

8

∫ 0

x
p(t)dt

)
cosh (sω1x)

+O
(
|s|k+2e|sω1|(1−x)

)
(34)

Proof. It is similar to Lemma 2.

Now, we are concerning to estimate upper bounds for the fundamental solutions of the
problem (1)–(9), under some consideration. First of all, from Equation (28), we have

u11(x, λ) =
α2

2
[cos (sw1 (x + 1)) + cosh (sw1 (x + 1)) ]

+
α1

2(sw1)
3 [sin (sw1 (x + 1)) +sinh (sw1 (x + 1)) ]

+
w1

2s3

∫ x

−1
[sin (sw1 (x− t)) − sinh (sw1 (x− t)) ] p (t) u

′
11 (t) dt

+
w1

2s3

∫ x

−1
[sin (sw1 (x− t)) − sinh (sw1 (x− t)) ] q (t) u11 (t) dt (35)

Let s = σ + iτ, M = maxx∈[−1,0) e|w1(x+1)|, Q(t) = maxt∈[−1,0){|p(t)|
|u′11(t)|
|u11(t)|

, |q(t)|},∫ x
−1 |Q (t)| dt < ∞ and |τ| ≤ |σ|, without loss of generality. Then the following relations |sinz | ≤

e|Im z|, |sinhz | ≤ e|Re z|, |cosz | ≤ e|Im z| and |coshz | ≤ e|Re z|, imply the following inequalities:
|sinsw1 (x + 1) | ≤ M|τ| ≤ M|σ|, |sinhsw1 (x + 1) | ≤ M|σ|, |cossw1 (x + 1) | ≤ M|τ| ≤ M|σ| and
|coshsw1 (x + 1) | ≤ M|σ|. Hence, we obtain an upper bound for the solution (23):

|u11| ≤ M|σ|C1eC2

where, C2 = |w1|
|s|3
∫ x
−1 |Q (t)| dt and C1 =

(
α2 +

α1
|sw1|3

)
. In the same way as above, we can estimate

upper bounds for each of the Equations (24)–(34).

4. Accurate Asymptotic Behavior of the Egenvalues and Eigenfunctions

In this section, we estimate the accurate asymptotic formulas for the eigenvalues and
eigenfunctions of the problem (1)–(9). According to Theorem 3, the eigenvalue problem (1)–(9)
possesses infinitely many positive and negative eigenvalues. From Theorem 4, we conducted that the
zeros of W1(λ) are the eigenvalues of the problem. First of all, we have to approximate an expression
for W1(λ):
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Theorem 5. If λ = s4, s = σ + iτ, then W1(λ) (Consequently W2(λ)), for a sufficiently large |λ|, has the
following expression formula:

W1(λ) =

(
s12δ1δ2α2β2

2(ω1 + ω2)4

)(
sinh(s(ω1 + ω2)) sin(s(ω1 + ω2)) +

(ω1 + ω2)
∫ 1
−1 p(x)dx

2s2

+
(ω1 + ω2)

∫ 1
−1 p(x)dx

2s2 cosh(s(ω1 + ω2)) cos(s(ω1 + ω2))

)
× [cosh(sω2) + cos(sω2)]

2 + O
(
|s|9e4|s(ω1+ω2)|

)
(36)

Proof. Since the functions u11(x, λ) and u21(x, λ) satisfy the initial conditions (15)–(17) and
differentiating (32)–(34), then substituting the results in the characteristic equation W1(λ), we obtain

W1(λ) =

∣∣∣∣∣∣∣∣∣
α2 0 v11(−1, λ) v21(−1, λ)

0 β2 v
′
11(−1, λ) v

′
21(−1, λ)

0 −β1 v
′′
11(−1, λ) v

′′
21(−1, λ)

−α1 0 v
′′′
11(−1, λ) v

′′′
21(−1, λ)

∣∣∣∣∣∣∣∣∣
= α2β2

∣∣∣∣∣v
′′
11(−1, λ) v

′′
21(−1, λ)

v
′′′
11(−1, λ) v

′′′
21(−1, λ)

∣∣∣∣∣+ O
(
|s|9e4|s(ω1+ω2)|

)
(37)

By calculating v(k)i1 (−1, λ), for i = 1, 2, k = 2, 3 and substituting them into Equation (37), then we
obtain (36). By similar argument, we can obtain same formula for the characteristic equation W2(λ).

Note that, if λ is a negative real number, say λ = −r2, then we can easily show that W1(−r2)→ ∞
for a sufficiently large value of r. This fact, provided that the real eigenvalues of the problem (1)–(9)
are bounded below, so we can say that the eigenvalues are of the form of an increasing sequence,
λ0 ≤ λ1 ≤ . . . . In the next theorem we establish the asymptotic formula for the eigenvalues:

Theorem 6. Let {λn}∞
0 = s4

n, be the sequence of eigenvalues of the problem (1)–(9). Then λn has the following
two asymptotic formulas:

4
√

λn,1 =
1√
2
± π(4n + 3)

4(ω1 + ω2)
−

8(ω1 + ω2)
2
∫ 1
−1 p(x)dx

(π(4n + 3))2 + O
(

1
n3

)
(38)

4
√

λn.2 = − 1√
2
± π(4n + 3)

4(ω1 + ω2)
−

8(ω1 + ω2)
2
∫ 1
−1 p(x)dx

(π(4n + 3))2 + O
(

1
n3

)
(39)

Proof. Since the eigenvalues of the problem is the zeros of the characteristic equation W1(λ) by
Theorem 4. Then from Equation (36) we have,

sinh(s(ω1 + ω2)) sin(s(ω1 + ω2)) +
(ω1 + ω2)

∫ 1
−1 p(x)dx

2s2 cosh(s(ω1 + ω2))

× cos(s(ω1 + ω2)) = −
(ω1 + ω2)

∫ 1
−1 p(x)dx

2s2 + O
(
|s|9e4|s(ω1+ω2)|

)
(40)

Let f (s) and g(s) be the left and right side of Equation (40). It is easy to show that | f (s)| ≤ |g(s)|. Then
by Rouch’s theorem f (s) and f (s) + g(s) have the same number of zeros. The zeros of the function are
near to (4n+3)

4(ω1+ω2)
π, for a sufficiently large integer n, see Figure 1. Hence we obtain (38) and (39).
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Figure 1. Zeros of the function f (s).

According to the asymptotic expressions of the fundamental system of solutions, eigenvalues
and characteristic equation W(λ). We evaluate asymptotic formulas for the eigenfunctions. Hence,
the characteristic equation W(λ) is significant for estimating eigenvalues and eigenfunctions of the
problem (1)–(9) (see [14] (Theorem 4.1)).

Theorem 7. Asymptotic formulas for the eigenfunctions of the eigenvalue problem (1)–(9) corresponding to the
eigenvalues λn,1, λn,2 has the following forms:

φn,1(x, λn,1) = sinh
(
(4n + 3)π

4
x
)

sin
(
(4n + 3)π

4
x
)
+ O

(
1
n

)
(41)

φn,2(x, λn,2) =
4

(4n + 3)π
cosh

(
(4n + 3)π

4
x
)

cos
(
(4n + 3)π

4
x
)
+ O

(
1
n

)
(42)

Proof. From Equations (23), (25), (31) and (34) we can estimate uk
11(x, λn,1), uk

21(x, λn,1), vk
11(x, λn,1)

and vk
21(x, λn,1), then substituting these into the characteristic equation W(λ). Hence, by a simple

calculation, (41) and (42) can be obtained.

Note that, from (41) and (42), we can verify that the formulas (38) and (39) are simple. In general,
the eigenvalues of the problem (1)–(9) are simple (see [9] (Theorem 4.2).

Example 1. If p(x) = 0 and ω(x) = 1, then Equation (1) reduced to

L[y] = y(4)(x) + q(x)y(x) = λy(x) (43)

with the conditions (2)–(9). In Reference [2], Şen investigated (43). He obtained asymptotic formulas for the
fundamental solutions and eigenvalues for the problem. In this paper, we obtain an accurate asymptotic formulas
for the eigenvalues for this problem. Substituting p(x) = 0 and ω(x) = 1 into (38) and (39), then we have the
following asymptotic formulas for the eigenvalues:

4
√

λn,1 =
π(2n + 1)

2
+ O

(
1
n3

)
(44)

4
√

λn,2 =
π(2n− 1)

2
+ O

(
1
n3

)
(45)

Moreover, we show that the following formulas form asymptotic formulas for the eigenfunctions for Şen’s
problem [2]:
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φn,1(x, λn,1) = sinh
(
(2n + 1)π

2
x
)

sin
(
(2n + 1)π

2
x
)
+ O

(
1
n

)
(46)

φn,2(x, λn,2) =
2

(2n− 1)π
cosh

(
(2n− 1)π

2
x
)

cos
(
(2n− 1)π

4
x
)
+ O

(
1
n

)
(47)

Example 2. We can note that in Equation (1), the weight functions ω1(x) and ω2(x) are constant functions
on the intervals [−1, 0) and (0, 1] respectively. In this example, we consider a special non constant real
valued function:

ω(x) =

{
4
√

1− x; x ∈ [−1, 0)
4
√

x− 1; x ∈ (0, 1]
(48)

Since ω1(x) and ω2(x) and their derivatives are bounded on the intervals [−1, 0) and (0, 1], then from
Equations (37) and (40), we obtain the following approximate expression for the eigenvalues of the problem:

4
√

λn,1 =
1√
2
± π(4n + 3)

4( 4
√

1− x + 4
√

x− 1)
−

8( 4
√

1− x + 4
√

x− 1)2
∫ 1
−1 p(x)dx

(π(4n + 3))2 + O
(

1
n3

)
(49)

4
√

λn.2 = − 1√
2
± π(4n + 3)

4( 4
√

1− x + 4
√

x− 1)
−

8( 4
√

1− x + 4
√

x− 1)2
∫ 1
−1 p(x)dx

(π(4n + 3))2 + O
(

1
n3

)
(50)

It is easy to show that Equations (41) and (42) are the eigenfunction for this particular case.
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