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Abstract

:

In the Euclidean space En, hyperplanes, hyperspheres and hypercylinders are the only isoparametric hypersurfaces. These hypersurfaces are also the only ones with chord property, that is, the chord connecting two points on them meets the hypersurfaces at the same angle at the two points. In this paper, we investigate hypersurfaces in nonflat space forms with the so-called geodesic chord property and classify such hypersurfaces completely.
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1. Introduction


A circle in the plane E2 is characterized as a closed curve with the chord property that the chord connecting any two points on it meets the curve at the same angle at the two end points ([1], pp. 160–162).



For space curves, B.-Y. Chen et al. showed that a W-curve is characterized as a curve in the Euclidean space En with the property that the chord joining any two points on the curve meets the curve at the same angle at the two points, that is, as a curve in the Euclidean space En with the chord property ([2]).



For hypersurfaces in the Euclidean n-space En which satisfies the chord property, D.-S. Kim and Y. H. Kim established the following classification theorem ([3]). See also [4,5,6].



Proposition 1.

Let us consider a hypersurface M in the Euclidean space En. Then the following are equivalent:




	1. 

	
M satisfies the chord property.




	2. 

	
The Gauss map G of M satisfies G(x)=Ax+b for some n×n matrix A and a vector b∈En.




	3. 

	
M is an isoparametric hypersurface.




	4. 

	
M is contained in one of the following hypersurfaces: En−1, Sn−1(r), Sp−1(r)×En−p.











In this paper, we consider hypersurfaces in the n-dimensional space form M¯n(c) with nonzero constant sectional curvature c. The hypersurface M is said to satisfy geodesic chord property if the geodesic chord in the ambient space M¯n(c) joining any two points on M meets the hypersurface at the same angle at the two points. Note that a geodesic chord in the ambient space M¯n(c) is defined by a segment of a geodesic of M¯n(c) with two end points. When c>0, that is, the ambient space M¯n(c) is a hypersphere Sn in the Euclidean (n+1)-space En+1, we consider only two points which are not antipodal to each other.



First of all, in Section 2, we study spherical hypersurfaces in the n-dimensional unit sphere Sn which satisfy the geodesic chord property and then classify such hypersurfaces. Next, in Section 3, we study and classify completely the hypersurfaces in the n-dimensional hyperbolic space Hn with the geodesic chord property, which is imbedded in the Minkowski space E1n+1.



In the Euclidean space En+1, some characterizations of hyperspheres, ellipsoids, elliptic paraboloids and elliptic hyperboloids were given in [7,8,9,10], respectively. In the Minkowski space E1n+1, a few characterizations of hyperbolic spaces were also established in [11].



Throughout this article, we assume that all objects are smooth and connected unless otherwise mentioned.




2. Spherical Hypersurfaces


In this section, we consider a hypersurface M in the unit hypersphere Sn⊂En+1 centered at the origin.



For each point x∈M, we denote by G(x) the unit normal to TxM in the unit hypersphere Sn. Then G:M→Sn is called the Gauss map of M in the unit hypersphere Sn. For an orthonormal local frame field {e1(x),…,en−1(x)} on M, {e1(x),…,en−1(x),G(x),x} forms an orthonormal basis of TxEn+1. We denote by A(x) the (n+1)×(n−1) frame matrix [e1(x),…,en−1(x)] with column vectors e1(x),…,en−1(x).



For any two points x,y∈M⊂Sn with x+y≠0, we denote by θ∈(0,π) the angle between x and y in the ambient space En+1. Then the unit speed geodesic chord γ(t) with γ(0)=x and γ(θ)=y is given by γ(t)=costx+sintv, where we put


v=vx,y=−cotθx+cscθy.



(1)







The geodesic chord has initial velocity v=vx,y at x.



The projection Px(v) of v onto the tangent space TxM is given by


Px(v)=A(x)α,



(2)




where α is a vector in En−1. In order to determine α∈En−1, first note that v−Px(v) is perpendicular to TxM. Then, (2) shows that


A(x)t(v−A(x)α)=0,



(3)




where A(x)t denotes the transpose of A(x). Since A(x)tA(x) is the (n−1)×(n−1) identity matrix In−1, we get from (3)


α=A(x)tv.



(4)







Thus, the projection Px(v) of v into the tangent space TxM is given by


Px(v)=P(x)v,



(5)




where P(x) denotes the (n+1)×(n+1) matrix given by


P(x)=A(x)A(x)t.



(6)







Now, for later use we prove a lemma as follows.



Lemma 1.

For a spherical hypersurface M, the following are equivalent:




	1. 

	
M satisfies the geodesic chord property.




	2. 

	
For points x,y∈M, we have


|A(x)ty|=|A(y)tx|.



(7)








	3. 

	
For points x,y∈M, we have


G(x),y=ϵx,G(y),



(8)




where G(x) denotes the Gauss map of M and ϵ=±1.











Proof. 

For two points x,y∈M⊂Sn with x+y≠0, we denote by θ the angle between x and y as above. If we let ϕ denote the angle between the geodesic chord γ from x to y and the tangent plane TxM at the point x, then together with (1), (5) and (6) show that


cosϕ=|P(x)v|=cscθ|P(x)y|,



(9)




where the second equality follows from A(x)tx=0, because x is orthogonal to the tangent plane TxM. Using A(x)tA(x)=In−1, we see that


|P(x)y|=|A(x)ty|.



(10)







Hence we have


cosϕ=cscθ|A(x)ty|.



(11)







Similarly, by interchanging x and y in the above discussions the angle ψ between the geodesic chord from y to x and the tangent plane TyM at the point y is given by


cosψ=|P(y)vy,x|=cscθ|A(y)tx|,



(12)




where we use


vy,x=−ycotθ+xcscθ.



(13)







Together with (10)–(12) imply that (1) and (2) in Lemma 1 are equivalent to each other for x,y∈M with x+y≠0. By continuity, (8) holds for all x,y∈M.



If we consider the following expression of y


y=∑i=1n−1yiei(x)+ynG(x)+yn+1x,



(14)




then we have


yi=y,ei(x),i=1,2,…,n−1



(15)




and


yn=y,G(x),yn+1=y,x.



(16)







Hence we get from (14)–(16)


|A(x)ty|2=∑i=1n−1yi2=|y|2−y,G(x)2−y,x2,



(17)




where the first equality follows from A(x)ty=(y1,…,yn−1)t.



By interchanging x and y, we obtain from (17)


|A(y)tx|2=|x|2−x,G(y)2−x,y2.



(18)







Combining (17) and (18) shows that (2) and (3) are equivalent to each other. This completes the proof of Lemma 1.  ☐





Remark 1.

Without using (7), we may prove the equivalence of (1) and (3) in Lemma 1. Since (7) holds for spherical submanifolds with geodesic chord property, it is useful in the study of such spherical submanifolds.





We now suppose that a hypersurface M in the unit hypersphere Sn⊂En+1 satisfies the geodesic chord property. We may assume, without loss of generality, that M lies fully in the Euclidean space En+1, which means that M is not contained in any hyperplane of En+1. Otherwise, it is an open part of a small sphere Sn−1(r)⊂Sn for some r∈(0,1]. Hence, on M there exist points y0,y1,…,yn+1 such that the set {Aj|Aj=yj−y0,j=1,2,…,n+1} spans the Euclidean space En+1.



It follows from (3) of Lemma 1 that we have


G(x),y0=ϵG(y0),x



(19)




and


G(x),yj=ϵG(yj),x,j=1,2,…,n+1,



(20)




where ϵ=±1. Hence we obtain from (19) and (20)


G(x),Aj=Bj,x,j=1,2,…,n+1,



(21)




where we put for j=1,2,…,n+1


Aj=yj−y0,Bj=ϵG(yj)−ϵG(y0).



(22)







We denote by A the (n+1)×(n+1) matrix defined by


At=[B1,B2,…,Bn+1][A1,A2,…,An+1]−1,



(23)




where [A1,A2,…,An+1] is the (n+1)×(n+1) matrix consisting of columns A1,A2,…,An+1, etc. Then we have from (21)


G(x)=Ax.



(24)







Therefore, we get the following lemma.



Lemma 2.

Suppose that a hypersurface M in the unit hypersphere Sn⊂En+1 satisfies the geodesic chord property. If the hypersurface M lies fully in En+1, then for an (n+1)×(n+1) matrix A, the Gauss map G(x) satisfies G(x)=Ax.





Remark 2.

If the hypersurface M does not lie fully in En+1, that is, M is contained in a hyperplane, then it is an open part of a small sphere Sn−1(r)⊂Sn for some r∈(0,1]. In fact, for some unit vector a∈En+1 we have


M⊂{x∈Sn|x,a=cosθ},



(25)




where cosθ=1−r2. Then, we get


G(x)=−cotθx+cscθa.



(26)







Thus, M satisfies G(x)=Ax+b for A=−cotθI and b=cscθa.





Finally, we need the following proposition, which was proved in [12].



Proposition 2.

A hypersurface M in the unit hypersphere Sn⊂En+1 satisfies for an (n+1)×(n+1) matrix A and a vector b∈En+1


G(x)=Ax+b



(27)




if and only if it is an open part of either a sphere Sn−1(r) or a product Sp(r1)×Sn−p−1(r2) of spheres with r12+r22=1.





It follows from Proposition 2 that the hypersurface M is an open part of either a sphere Sn−1(r) or a product Sp(r1)×Sn−p−1(r2) of spheres with r12+r22=1.



Conversely, if M is a small sphere Sn−1(r)⊂Sn for some r∈(0,1], then together with (26), Lemma 1 shows that M satisfies the geodesic chord property. If M is the product Sp(r1)×Sn−p−1(r2)⊂Ep+1×En−p with r12+r22=1, then at x=(x1,x2)∈Ep+1×En−p we have


G(x1,x2)=1r12+r22(r2r1x1,−r1r2x2).



(28)







Hence, it follows from Lemma 1 that M satisfies the geodesic chord property.



Summarizing the above discussions, we get the classification theorem as follows.



Theorem 1.

For a hypersurface M in the unit hypersphere Sn⊂En+1, the following are equivalent:




	1. 

	
M satisfies the geodesic chord property.




	2. 

	
The Gauss map G satisfies |G(x),y|=|G(y),x| for arbitrary x,y∈M.




	3. 

	
The Gauss map G satisfies G(x)=Ax+b for an (n+1)×(n+1) matrix A and a vector b∈En+1.




	4. 

	
M is an open portion of either a sphere Sn−1(r) or a product Sp(r1)×Sn−p−1(r2) of spheres with r12+r22=1.












3. Hypersurfaces in the Hyperbolic Space


In this section, we consider a hypersurface M in the hyperbolic space Hn which lies in the (n+1)-dimensional Minkowski space E1n+1.



First of all, let us recall some preliminaries. We consider the (n+1)-dimensional Minkowski space E1n+1 with metric ds2=dx12+⋯+dxn2−dxn+12, where x=(x1,⋯,xn+1). In other words, for x,y∈E1n+1 we use the Lorentzian scalar product x,y1=x1y1+⋯+xnyn−xn+1yn+1. Let us denote by Hn(r)⊂E1n+1 the spacelike hyperquadric defined by x,x1=−r2 with xn+1>0. Then Hn(r) is a Riemannian space form with constant sectional curvature K=−1r2. When r=1, Hn(1) is called the standard imbedding of the hyperbolic space Hn of curvature K=−1, or simply the hyperbolic space (cf. [13,14]).



We introduce a notation for the Lorentzian scalar product. For a vector v=(v1,…,vn+1)∈E1n+1, we put v¯=(v1,…,vn,−vn+1). Then for any v,w∈E1n+1, we have v,w1=v,w¯, where ·,· denotes the Euclidean scalar product. For an (n+1)×k matrix A=[A1,…,Ak] with column vectors A1,…,Ak, we let A¯=[A¯1,…,A¯k]. Then we have (Av)¯=A¯v for any k-dimensional vector v.



For a point x∈M, we denote by G(x) the unit normal to TxM in the hyperbolic space Hn. Then G is called the Gauss map of M in the hyperbolic space Hn. For an orthonormal local frame field {e1(x),…,en−1(x)} on M, {e1(x),…,en−1(x),G(x),x} forms an orthonormal basis of TxE1n+1 with respect to the Lorentzian scalar product. We denote by A(x) the (n+1)×(n−1) frame matrix [e1(x),…,en−1(x)] with column vectors e1(x),…,en−1(x). Then, we have for the frame matrix A(x)


A(x)tA¯(x)=In−1



(29)




and


A(x)x¯=A¯(x)x=0.



(30)







For any two points x,y∈M⊂Hn, we have x,y1=x,y¯<−1. Hence x,y1=−coshθ for some positive θ, which is called the hyperbolic angle between x and y ([14], p. 144). Then the unit speed geodesic chord γ(t) with γ(0)=x and γ(θ)=y is given by γ(t)=coshtx+sinhtv, where


v=vx,y=−cothθx+cschθy.



(31)




Note that the geodesic chord γ(t) has initial velocity v=vx,y at x. The angle between v and the tangent space TxM⊂TxHn is defined by the angle between v and the projection Px(v) of v into TxM. Hence, if we let ϕ denote the angle between the geodesic chord γ from x to y and the tangent plane TxM at the point x, then we have


cosϕ=|Px(v)|=Px(v),Px(v)1.



(32)







By a similar argument to that in Section 2, using (29)–(32) we may prove the following two lemmas. We omit the proofs.



Lemma 3.

For a hypersurface M in the hyperbolic space Hn, the following are equivalent:




	1. 

	
M satisfies the geodesic chord property.




	2. 

	
For any two points x,y∈M, the frame matrix A of M satisfies


A(x)ty¯,A(x)ty¯=A(y)tx¯,A(y)tx¯,



(33)




where ·,· is the Euclidean inner product.




	3. 

	
For any two points x,y∈M, the Gauss map G(x) of M satisfies


G(x),y1=ϵx,G(y)1,



(34)




where ϵ=±1.











Lemma 4.

Suppose that a hypersurface M in the hyperbolic space Hn⊂E1n+1 satisfies the geodesic chord property. If the hypersurface M is full in E1n+1, then for an (n+1)×(n+1) matrix A, the Gauss map G(x) satisfies G(x)=Ax.





If a hypersurface M⊂Hn is not full in E1n+1, then M is contained in a hyperplane P={x∈E1n+1|x,a=c} for some nonzero a∈E1n+1 and some constant c.



We divide by three cases according to the causal character of the nonzero vector a∈E1n+1.



Case 1.

Suppose that a,a<0. Then, up to congruences of Hn we may assume that a=(0,…,0,1). Hence we have for some θ


M⊂{x∈Hn|xn+1=coshθ}.



(35)









Thus, M is an open part of the hypersphere Sn−1(sinhθ) in the Euclidean space En⊂E1n+1. In this case, we have


G(x)=−cothθx+cschθa.



(36)







This shows that M satisfies G(x)=Ax+b for A=−cothθI and b=cschθa.



Case 2.

Suppose that a,a>0. Then, up to congruences of Hn we may assume that a=(1,0,…,0). Hence we have for some θ


M⊂{x∈Hn|x1=sinhθ}.



(37)









Thus, M is an open part of the hyperbolic space Hn−1(coshθ) in the Minkowski space E1n⊂E1n+1. In this case, we have


G(x)=tanhθx+sechθa,



(38)




which shows that M satisfies G(x)=Ax+b for A=tanhθI and b=sechθa.



Case 3.

Suppose that a,a=0. Then, up to congruences of Hn we may assume that a=(0,…,0,1,1) and c=−1. Hence we have


M⊂N={x∈Hn|xn+1=xn+1}.



(39)









Note that N={(x,f(x),f(x)+1)|x∈En−1}⊂Hn, where f(x)=12|x|2 for x=(x1,…,xn−1)∈En−1. In this case, we have


G(x)=x−a,



(40)




which shows that M satisfies G(x)=Ax+b for A=I and b=−a.



Finally, we use the following proposition ([12]).



Proposition 3.

A hypersurface M in Hn⊂E1n+1 satisfies G(x)=Ax+b if and only if M is isoparametric, or equivalently M is an open piece of one of the following hypersurfaces:




	1. 

	
Sn−1(sinhθ)⊂Hn,




	2. 

	
Hn−1(coshθ)⊂Hn,




	3. 

	
Sp(sinhθ)×Hn−p−1(coshθ)⊂Hn,




	4. 

	
N={(x,f(x),f(x)+1)|f(x)=12|x|2,x∈En−1}⊂Hn.











Summarizing the above discussions, we prove the following classification theorem.



Theorem 2.

A hypersurface M in Hn⊂E1n+1 satisfies the geodesic chord property if and only if it is an open piece of one of the hypersurfaces in Proposition 3.





Proof. 

Together with Lemma 3, it follows from (36), (38) and (39) that the hypersurfaces Sn−1(sinhθ), Hn−1(coshθ) and N satisfies the geodesic chord property, respectively. Hence, it remains to show that Sp(sinhθ)×Hn−p−1(coshθ)⊂Hn satisfies the geodesic chord property.



Suppose that M=Sp(sinhθ)×Hn−p−1(coshθ). Then, for a point x=(x1,x2)∈Sp(sinhθ)×Hn−p−1(coshθ) we have


G(x)=(cothθx1,tanhθx2).



(41)







Thus, Lemma 3 shows that M satisfies the geodesic chord property. This completes the proof. ☐





From the proof of Theorem 2, we also obtain



Theorem 3.

For a hypersurface M in the hyperbolic space Hn⊂E1n+1, the following are equivalent:




	1. 

	
M satisfies the geodesic chord property.




	2. 

	
The Gauss map G satisfies |G(x),y1|=|G(y),x1| for any x,y∈M.




	3. 

	
The Gauss map G satisfies G(x)=Ax+b for an (n+1)×(n+1) matrix A and a vector b∈E1n+1.




	4. 

	
M is an isoparametric hypersurface of Hn.




	5. 

	
M is an open part of one of the following hypersurfaces: Sn−1(r), Hn−1(r), Sp(r1)×Hn−p−1(r2), N, where r22−r12=1 and N={(x,12|x|2,12|x|2+1)|x∈En−1}.












4. Conclusions


In this paper, we have classified hypersurfaces in the nonflat space forms satisfying the so-called geodesic chord property. As a result, we have shown that such a spherical hypersurface is an open portion of either a sphere or a product of two spheres, which are isoparametric spherical ones with (at most) two principal curvatures. For hypersurfaces in the hyperbolic space, we have proven that the geodesic chord property is another characterization of isoparametric ones. We hope the results will help studying hypersurfaces in the nonflat space forms.
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