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Abstract: Nowadays, in the world of science, an important goal is to create new nanostructures
that may act as potential drug carriers. Among different, real or hypothetical, polymeric networks,
rhombellanes are very promising and, therefore, attempts were made to deposit polyethylenimines
as possible nano-drug complexes on the cube rhombellane homeomorphs surface. For the search of
ligand–fullerene interactions, was used AutoDockVina software. As a reference structure, the fullerene
C60 was used. After the docking procedure, the ligands–fullerenes interactions were tested.
The important factor determining the mutual affinity of the tested ligands and nanocarriers is
the symmetry of the analyzed nanostructures. Here, this feature has the influence on the distribution
of such groups like donors and acceptors of hydrogen bonds on the surface of nanoparticles.
We calculated the best binding affinities of ligands, values of binding constants and differences
relative to C60 molecules. The best binding efficiency was found for linear ligands. It was also found
that the shorter the molecule, the better the binding performance, the more the particle grows and
the lower the yield. Small structures of ligands react easily with small structures of nanoparticles.
The highest positive percentage deviations were obtained for ligand–fullerene complexes showing
the highest binding energy values. Detailed analysis of structural properties after docking showed
that the values of affinity of the studied indolizine ligands to the rhombellanes surface are correlated
with the strength/length of hydrogen bonds formed between them.

Keywords: cube rhombellane homeomorph; PEI; polyethylenimines; nanostructure; molecular
docking; affinity

1. Introduction

The development of multifunctional nanoparticles has a huge impact on the future of personalized
medicine. Nanoparticles can be used for therapeutic purposes in anti-cancer therapy at the molecular
level, which has been difficult so far. In earlier work [1–3], an enzyme GOx (3QVR) that fulfills the role
of a biosensor, had been used for immobilization on the gel, while the polymer was polyethylenimine
(PEI). By assembling polymeric nano-gels (for example PEI) and antibodies on nano-molecules [1–3],
it was possible to recognize receptors of certain integrins on lung cancer tissues and to identify new
cancer vessels.

In the present article, polyethylenimines (PEI) were studied. Molecular docking analysis of fifteen
PEI derivatives acting as ligands on some cube rhombellane homeomorphs was carried out for the
first time. Fourteen types of cube rhombellanes and three groups of polyethylenimines (PEIs), namely,
branched (B-PEI), linear (L-PEI) and dendrimer (D-PEI) were used.

The choice of ligands and docked nanostructures was guided by our earlier studies [1–8].
PEIs (polyethylenimines) are polymeric molecules built of two aliphatic carbons and repeating

units of amine groups. There are L-, B-, and DPEI (Figure 1). Linear PEI (LPEI) are built of secondary
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and primary amino groups (Figure 1, left); branched PEI (B-PEI) are built of all types amino groups
such as primary, secondary and tertiary (Figure 1, middle), while dendrimers [9,10] are symmetric
around the core (Figure 1, right). PEI despite the fact that are cytotoxic [11], have many applications,
first of all, as transfection reagents [12].
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Figure 1. Examples of PEI molecules: linear L (left); branched B (middle) and dendrimer D
(right) [13–15].

Calculations at the B3LYP/6-31G (d, p) level of theory [16–19] confirmed the hypothesis that
rhombellanes are energetically feasible in the hope of a real synthesis [20–26].

Rhombellanes have certain specific traits which define these group of structures. At first, all strong
rings are squares/rhombs. The second vertex classes consist of only non-connected vertices. Omega
polynomial has a single term: 1Xˆ|E| and they contain one K2.3 complete bipartite subgraph or the
smallest rhombellane rbl.5. The end line graph of the parent graph has a Hamiltonian circuit.

To explore the internal molecular mobility that is important in the bioactivity study of these
compounds we used the Molecular mechanics (MMFF94) [27] method. In this way we study the
pharmaceutical important parameters of rhombellanes [27].

Rhombellans (Figure 2) seem to be structures suitable for medical chemistry, with a new class of
structures which could be an used in personalized medicine as new carrier nanostructures.

Because rhombellane homeomorphs may be bound to a protein, an attempt was made to deposit
PEI derivatives on rhombellanes, as possible nano-drug complexes. Detailed analysis of structural
properties after docking showed many interesting features. Behavior of polyethylenimine (linear LPEI,
branched BPEI and/or dendrimers DPEI) with respect to rhombellane homeomorphs, in terms of their
(interacting) topology, geometry and energy, was studied. After the docking procedure, the best values
of ligand–rhombellane affinity were found, which is an important result for homeomorphs.

The article is a collection of new data in the new field of rhombellanes (Figure 2).
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2. Methods

Docking Procedure

The ligand molecule was obtained from others study [1–8,13–15,28–31] Rhombellane homeomorphs,
were received from Topo Cluj Group [32], the C60 structure was downloaded from Brookhaven Protein
Database PDB [33], while C60 functionalized derivatives were obtained from PubChem database [34].

During the docking stage, there were structures of ligand and nano-systems containing only
polar hydrogen atoms. In the case of all nanoparticles, the grid box dimensions were established
equal to 26 × 26 × 26 Å, boxing coordinates amount to (0,0,0). All initial procedures related with
preparation of ligand and nano-systems during the docking procedure were realized with the use of
the AutoDock Tools package [35]. Using the AutoDockVina software in the docking procedure, after
assigning hydrogen bonds, the molecules were loaded and stored as pdb-files [36]. The investigated
ligands were loaded and their torsions along the rotatable bonds were assigned and next saved as
“ligand.pdbqt”. The grid menu after loading “pdbqt” was toggled [37]. For the search of ligand–rbl
fullerene interactions, the map files were selected directly with setting up the grid points separately for
each structure. The Lamarckian genetic algorithm completed the docking parameter files [38]. As a
reference structure, the fullerene C60 was used, the most referred to structure in nanoscience.

All calculations during the docking stage were realized with the exhaustiveness parameter equal
to 20, since such a value ensures an appropriate reproducibility of the results and a reasonable time of
calculation. The structural analysis of considered systems and visualization of obtained complexes
were realized with use of the VMD package [39]. The value of binding constant was calculated based
on the formula:

Kmax = exp( −∆Gmax
RT )

where ∆G max represent maximal value of binding affinity obtained during docking stage, R represent
value of gas constant and T temperature.

3. Results and Discussion

The results are presented in the following tables and figures. Rhombellane structures are given by
their atom number.

In relation to the ligands of the D and L groups, the largest affinity values of the ligand–fullerenes
were found for all ligands from B group (Figure 3, Table 1), for which the affinity values range from
−2 to −7 kcal/mol. With the B_1320_PEI_C60N31 ligand the values are the lowest, thus showing
the best affinity for all proposed fullerenes, with affinity values from −4 to −7 kcal/mol. All values
of the interactions were compared with the values for C60 fullerene, which was, as always, used as
the reference structure in nanostructures family. Therefore, in all cases of ligands from the B group,
there are affinities with better and worse values of energy compared with affinity ligand–fulleren C60

(Figure 3, Table 1).

Table 1. The best binding affinity of ligands, BPEI, with the active site of Rbl-nano-structures (first
column) during nine conformations.

Gibbs Free Energy (kcal/mol)

NANO-
STRUCTURES

B10230_PEI_
C22N12

B10230_PEI_
C44N23

B10230_PEI_
C20N11

B10230_PEI_
C40N21

B10230_PEI_
C60N31

144_ex_ex −2.4 −2.9 −2.4 −2.8 −4.4
144_in_ex −2.3 x −2.2 −2.7 −4.3
156_ex_ex −2.4 −2.8 −2.5 −2.6 −4.5
156_in_ex −2.6 −2.9 −2.6 −2.9 −4.8

308a4 −3.9 −4.8 −3.9 −4.6 −6.4
308b4 −4.1 −5.0 −4.2 −4.6 −6.9
360a −4.0 −4.5 −3.9 −4.5 −6.5
360b −3.9 −4.5 −3.7 −4.2 −6.1
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Table 1. Cont.

Gibbs Free Energy (kcal/mol)

NANO-
STRUCTURES

B10230_PEI_
C22N12

B10230_PEI_
C44N23

B10230_PEI_
C20N11

B10230_PEI_
C40N21

B10230_PEI_
C60N31

372AB −4.3 −4.8 −4.0 −4.4 −6.2
396 −3.9 −4.7 −3.9 −4.2 −5.8
420 −4.2 −4.7 −3.7 −4.1 −5.4
444 −3.7 −4.3 −3.6 −4.0 −5.6
456 −3.9 −4.5 −3.5 −4.0 −5.3

ADA_132 −5.0 −4.4 −4.4 −4.2 x
C60 −3.8 −4 −3.8 −3.8 −4.8
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D-, and L-PEI; in scale to O kcal/mol.

When comparing the values of affinity of D ligand–fulleren and L ligand–fulleren complexes, it is
clear that these complexes show the lowest values with all study fullerenes, compared with fulleren
C60 (Figure 3, Tables 2 and 3).

Table 2. The best binding affinity of ligands, BPEI, with the active site of Rbl-nano-structures (first
column) during nine conformations.

Docked Energy (kcal/mol)

NANO-STRUCTURES D2_PEI_C10N6 D3_PEI_C26N14 D4_PEI_C58N30

144_ex_ex −2.4 −2.6 −2.6
144_in_e −2.4 −2.8 −2.6

156_ex_ex −3.1 −3.3 −3
156_in_ex −3.1 −3.4 −3.1

308a4 −3.1 −3.6 −0.6
308b4 −3.3 −3.7 −2
360a −3.1 −3.6 −2.9
360b −2.9 −3.3 2.5

372AB −3.2 −3.7 −1.1
396 −2.8 −3.6 4.9
420 −2.9 −3.5 5
444 −2.8 −3.3 10.4
456 −2.9 −3.3 8.2

ADA_132 −3.4 −2.7 −1.9
C60 −2.1 −2.3 2.4
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Table 3. The best binding energy of ligands, BPEI, with the active site of Rbl-nano-structures (first
column) during nine conformations. In letters ABCD, etc., have been marked further nanostructures
A-L_PEI_C06N4; B-L_PEI_C08N5; C-L_PEI_C10N6; D-L_PEI_C26N14; E-PEI_C14N8_01_0Linear;
F-PEI_C14N8_07_B22; G-PEI_C18N10_01_0Linear.

Gibbs Free Energy (kcal/mol)

NANO-STRUCTURES A B C D E F G

144_ex_ex −2.3 −2.5 −2.8 −2.8 −2.8 −2.3 −2.9
144_in_ex −2.2 −2.5 −2.8 −2.7 −2.8 −2.4 −2.9
156_ex_ex −2.8 −3.2 −3.4 −2.6 −3.6 −2.9 −3.7
156_in_ex −2.9 −3.3 −3.5 −2.9 −3.7 −3.2 −3.6

308a4 −3.1 −3.1 −3.4 −4.6 −3.4 −3.1 −3.8
308b4 −3.2 −3.5 −3.4 −4.6 −3.7 −3.4 −4.1
360a −2.6 −3.1 −3.2 −4.5 −3.6 −3.2 −3.5
360b −2.8 −3.2 −3.4 −4.2 −3.5 −3.2 −3.5

372AB −2.7 −3.2 −3.3 −4.4 −3.5 −3.2 −3.8
396 −2.7 −3.2 −3.4 −4.2 −3.4 −3.1 −3.6
420 −2.6 −3.1 −3.4 −4.1 −3.5 −2.9 −3.5
444 −2.8 −3.3 −3.4 −4.0 −3.6 −3.1 −3.4
456 −2.8 −3.3 −3.5 −4 −3.6 −3 −3.6

ADA_132 −3.3 −3.5 −3.5 −4.2 −3.4 −3.4 −3.3
C60 −1.6 −1.8 −2 −2.6 −2.2 −2 −2.1

For the other proposed ligands of type D, L and PEI_C14N8_01_Linear; PEI_C14N8_07_B22;
PEI_C18N10_01_0, their affinities ranged from −2 to −4 kcal/mol (Tables 2 and 3). However, the ligand
D4_PEI_C58N30 shows not only affinity in this range, i.e., (−2 to −4 kcal/mol), but also low affinities
for fullerenes with high values of around 0 kcal/mol, and it does not even have the possibility of
interacting with fullerenes as their affinity values are positive (Figure 3, Tables 2 and 3)

The diagram (Figure 4) shows two populations of affinity values of ligand B–fullerenes. The first
with values ranging from −2 to −3 kcal/mol and in the case of second population from −3.3 to
−5 kcal/mol for B1320_PEI_C20N11; B10230_PEI_C22N12; B1320_PEI_C40N21; B10230_PEI_C44N23.
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Figure 4. Example of diagram showing two populations of affinity values of ligand B–fullerenes.

Similarly, two populations are visible in the case of B1320_PEI_C60N31 with markedly reduced
affinity values relative to the values of the affinity represented by the first four ligands of the B group,
described above (Tables 3 and 4). The first population has interaction values ranging from −4 kcal/mol
to −5 kcal/mol, the second shows much higher affinity values from −5 to −7 kcal/mol (Tables 3 and 4).
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Table 4. The best binding affinity of ligands, BPEI, –columns A. Columns B represent k max values of binding constant estimated with use of binding free energy
obtained for the best complex of ligand with nanostructure, while columns C represent k max differences relative C60 molecule, defining the difference in quality of
ligand binding with considered nanostructure in comparison to reference system.

NANO-
STRUCTURES

B10230_PEI C22N12 B10230_PEI C44N23 B10230_PEI C20N11 B10230_PEI C40N21 B10230_PEI C60N31

A B C A B C A B C A B C A B C

144_ex_ex −2.4 57.4 −90.6 −2.9 133.6 −84.4 −2.4 57.4 −90.6 −2.8 112.8 −26.3 −4.4 1679.7 −8.3
144_in_ex −2.3 48.5 −92.0 1.0 −99.9 −2.2 41.0 −93.3 −2.7 95.3 −28.9 −4.3 1418.9 −10.4
156_ex_ex −2.4 57.4 −90.6 −2.8 112.8 −86.8 −2.5 68.0 −88.9 −2.6 80.5 −31.6 −4.5 1988.6 −6.3
156_in_ex −2.6 80.5 −86.8 −2.9 133.6 −84.4 −2.6 80.5 −86.8 −2.9 133.6 −23.7 −4.8 3299.5 0.0

308a4 −4.0 855.1 40.2 −4.6 2354.2 175.3 −3.9 722.3 18.4 −4.6 2354.2 21.1 −6.4 49,120.4 33.3
308b4 −4.1 1012.4 65.9 −5.0 4624.3 440.8 −4.2 1198.5 96.4 −4.6 2354.2 21.1 −6.9 114,226.6 43.8
360a −4.0 855.1 40.2 −4.5 1988.6 132.5 −3.9 722.3 18.4 −4.5 1988.6 18.4 −6.5 58,151.8 35.4
360b −3.9 722.3 18.4 −4.5 1988.6 132.5 −3.7 515.4 −15.5 −4.2 1198.5 10.5 −6.1 29,604.6 27.1

372AB −4.3 1418.9 132.5 −4.8 3299.5 285.8 −4.0 855.1 40.2 −4.4 1679.7 15.8 −6.2 35,047.8 14.6
396 −3.9 722.3 18.4 −4.7 2787.1 225.9 −3.9 722.3 18.4 −4.2 1198.5 10.5 −5.8 17,842.5 29.2
420 −4.2 1198.5 96.4 −4.7 2787.1 225.9 −3.7 515.4 −15.5 −4.1 1012.4 7.9 −5.4 9083.5 20.8
444 −3.7 515.4 −15.5 −4.3 1418.9 65.9 −3.6 435.3 −28.6 −4.0 855.1 2.6 −5.6 12,730.8 12.5
456 −3.9 722.3 18.4 −4.5 1988.6 132.5 −3.5 367.7 −39.7 −4.0 855.1 5.3 −5.3 7672.8 16.7

ADA_132 −5.0 4624.3 657.9 −4.4 1679.7 96.4 −4.4 1679.7 175.3 −4.2 1198.5 5.3 1.0 −6.3
C60 −3.8 610.2 0.0 −4.0 855.1 0.0 −3.8 610.2 0.0 −3.8 610.2 7.9 −4.8 3299.5 −100.0
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Two populations are also visible for other ligands from the D and L groups forming interactions
with tested fullerenes. Quantitatively, the largest number of ligand–fullerene interactions is expressed
by affinity values in the range of −3 to −4 kcal/mol, and this is a representative population. The second
population is expressed by a small representation of the number of affinities with values ranging from
−2 to −3 kcal/mol.

The existence of these two populations is closely related to the interaction with two fullerene
groups. Small structures of ligands easily react with small structures of nanoparticles and vice versa.

Unfortunately, the energy parameter itself is insufficient. By using energy per quantity of carbon
atoms (kcal/mol) parameter it is clearly visible that the elongation of carbon chain does not affect the
binding efficiency, but only increases affinity (Figure 5).
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The best binding efficiency is shown by linear ligands L, with highest values of this parameter,
compared with values of ligands from B and D groups (Figure 5). The shorter the molecule, the better
the binding performance, the more the particle grows and the lower the yield. For linear LPEI structures,
as the carbon chain length increases, the binding efficiency decreases and the saturation around the
length of the chain with twenty carbon atoms is clearly visible (Figure 6).

Similar observations have been made for group B ligands. Twofold chain elongation results in
a two-fold decrease in binding efficiency (Figure 5, Table 1). In the case of dendrimeric structures,
as the complexity of the system increases, the value of binding efficiency decreases (Figure 5, Table 2).
Among the fullerenes tested, the best effects were found for fullerenes ADA and 308a4/b4. Small
ligands easily form complexes primarily with fullerene ADA, long-chain ligands interact with the
308a4/b4 nanostructure (Figure 5). Thus, for small ligands, the best binding efficiency is with small
fullerenes, while large fullerenes require large ligands.
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Figure 6. The affinity values per quantity of carbon atoms in function of quantity of carbon atoms for
ligands PEI.

The best binding affinity of ligands BPEI (Table 4) DPEI (Table 5) and LPEI (Tables 6 and 7), k max
values of binding constant estimated with use of binding free energy obtained for the best complex
of ligand with nanostructure and k max differences relative C60 molecule, defining the difference in
the quality of ligand binding with considered nanostructure in comparison to reference system, were
estimated for the tested Rbl-structures in relation to the affinity value obtained for the fullerene C60.
The highest positive percentage deviations from the affinity of ligands to fullerene C60 were obtained
for those Rbl-structures showing the highest binding values (Tables 4–7, in boldface). Two last columns
show the equilibrium K value of the bonds.

Table 5. The best binding affinity of ligands, BPEI, –columns A. Columns B represent k max values of
binding constant estimated with use of binding free energy obtained for the best complex of ligand
with nanostructure, while columns C represent k max differences relative C60 molecule, defining the
difference in quality of ligand binding with considered nanostructure in comparison to reference system.

NANO-
STRUCTURES

D2_PEI_C10_N6 D3_PEI_C26_N14 D4_PEI_C58_N30

A B C A B C A B C

144_ex_ex −2.4 57.44118 65.9216 −2.6 80.50545 65.9216 −2.6 80.50545 462,332.8
144_in_ex −2.4 57.44118 65.9216 −2.8 112.8307 132.5439 −2.6 80.50545 462,332.8
156_ex_ex −3.1 187.2105 440.7664 −3.3 262.3808 440.7664 −3 158.1354 908,248.5
156_in_ex −3.1 187.2105 440.7664 −3.4 310.6226 540.1927 −3.1 187.2105 1,075,259

308a4 −3.1 187.2105 440.7664 −3.6 435.3464 797.2483 −0.6 2.752998 15,713.54
308b4 −3.3 262.3808 657.8996 −3.7 515.39 962.2179 −2 29.24283 167,874.3
360a −3.1 187.2105 440.7664 −3.7 515.39 962.2179 −2.9 133.5759 767,175.8
360b −2.9 133.5759 285.8405 −3.3 262.3808 440.7664 2.5 0.014705 −15.5307

372AB −3.2 221.6313 540.1927 −3.7 515.39 962.2179 −1.1 6.401927 36,673.42
396 −2.8 112.8307 225.9168 −3.6 435.3464 797.2483 4.6 0.000425 −97.5601
420 −2.9 133.5759 285.8405 −3.5 367.7342 657.8996 5 0.000216 −98.7578
444 −2.8 112.8307 225.9168 −3.3 262.3808 440.7664 10.4 2.38E−08 −99.9999
456 −2.9 133.5759 285.8405 −3.3 262.3808 440.7664 8.2 9.76E−07 −99.9944

ADA_132 −3.4 310.6226 797.2483 −2.7 95.30732 96.42822 −1.9 24.70122 141,786.7
C60_2 −2.1 34.61947 0 −2.3 48.52017 0 2.4 0.017409 0
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Table 6. The best binding affinity of ligands, BPEI, –columns A. Columns B represent k max values of
binding constant estimated with use of binding free energy obtained for the best complex of ligand
with nanostructure, while columns C represent k max differences relative C60 molecule, defining the
difference in quality of ligand binding with considered nanostructure in comparison to reference system.

NANO-
STRUCTURES

L_PEI_C06N4 L_PEI_C08N5 L_PEI_C10N6 L_PEI_C26N14

A B C A B C A B C A B C

144_ex_ex −2.3 48.5 225.9 −2.5 68.0 225.9 −2.8 112.8 285. −2.8 112.8 40.2
144_in_ex −2.2 41.0 175.3 −2.5 68.0 225.9 −2.8 112.8 285.8 −2.7 95.3 18.4
156_ex_ex −2.8 112.8 657.9 −3.2 221.6 962.2 −3.4 310.6 962.2 −2.6 80.5 0.0
156_in_ex −2.9 133.6 797.2 −3.3 262.4 1157.5 −3.5 367.7 1157.5 −2.9 133.6 65.9

308a4 −3.0 158.1 962.2 −3.3 262.4 1157.5 −3.4 310.6 962.2 −4.6 2354.2 2824.3
308b4 −3.2 221.6 1388.7 −3.5 367.7 1662.4 −3.4 310.6 962.2 −4.6 2354.2 2824.3
360a −2.7 95.3 540.2 −3.1 187.2 797.2 −3.2 221.6 657.9 −4.5 1988.6 2370.1
360b −2.8 112.8 657.9 −3.2 221.6 962.2 −3.4 310.6 962.2 −4.2 1198.5 1388.7

372AB −2.7 95.3 540.2 −3.2 221.6 962.2 −3.4 310.6 962.2 −4.4 1679.7 1986.5
396 −2.7 95.3 540.2 −3.2 221.6 962.2 −3.4 310.6 962.2 −4.2 1198.5 1388.7
420 −2.7 95.3 540.2 −3.1 187.2 797.2 −3.6 435.3 1388.7 −4.1 1012.4 1157.5
444 −2.8 112.8 657.9 −3.3 262.4 1157.5 −3.4 310.6 962.2 −4.0 855.1 962.2
456 −2.8 112.8 657.9 −3.3 262.4 1157.5 −3.5 367.7 1157.5 −4.0 855.1 962.2

ADA_132 −3.3 262.4 1662.4 −3.5 367.7 1662.4 −3.5 367.7 1157.5 −4.2 1198.5 1388.7
C60 −1.6 14.9 0.0 −1.8 20.9 0.0 −2.0 29.2 0.0 −2.6 80.5 0.0

Table 7. The best binding affinity of ligands, BPEI, –columns A. Columns B represent k max values of
binding constant estimated with use of binding free energy obtained for the best complex of ligand
with nanostructure, while columns C represent k max differences relative C60 molecule, defining the
difference in quality of ligand binding with considered nanostructure in comparison to reference system.

NANO-
STRUCTURES

PEI_C14N8_01_0Linear PEI_C14N8_07_B22 PEI_C18N10_01_0Linear

A B C A B C A B C

144_ex_ex −2.8 112.8307 40.15285 −2.3 48.52017 175.2998 −2.9 133.5759 37.5
144_in_ex −2.8 112.8307 65.9216 −2.4 57.44118 225.9168 −2.9 133.5759 37.5
156_ex_ex −3.6 435.3464 225.9168 −2.9 133.5759 657.8996 −3.7 515.39 62.5
156_in_ex −3.7 515.39 657.8996 −3.2 221.6313 1157.519 −3.7 515.39 75

308a4 −3.2 221.6313 440.7664 −3.1 187.2105 1388.729 −3.7 515.39 87.5
308b4 −3.7 515.39 540.1927 −3.4 310.6226 2824.283 −4.1 1012.371 93.75
360a −3.6 435.3464 440.7664 −3.2 221.6313 962.2179 −3.5 367.7342 62.5
360b −3.5 367.7342 356.7818 −3.2 221.6313 797.2483 −3.5 367.7342 68.75

372AB −3.5 367.7342 657.8996 −3.2 221.6313 1662.449 −3.8 610.1504 68.75
396 −3.4 310.6226 440.7664 −3.1 187.2105 1157.519 −3.6 435.3464 68.75
420 −3.5 367.7342 440.7664 −3 158.1354 962.2179 −3.5 367.7342 68.75
444 −3.6 435.3464 356.7818 −3.1 187.2105 797.2483 −3.4 310.6226 75
456 −3.6 435.3464 440.7664 −3 158.1354 1157.519 −3.6 435.3464 68.75

ADA_132 −3.4 310.6226 797.2483 −3.4 310.6226 440.7664 −3.3 262.3808 100
C60 −2.2 40.98466 0 −2 29.24283 0 −2.1 34.61947 0

The higher the K value, the more the reaction proceeds towards the formation of the complex.
Detailed analysis of structural properties after docking showed that the affinities of the ligands to

the rhombellanes surface are correlated with the quality of hydrogen bonds formed between them.
The distance between acceptor and hydrogen atoms is the criterion for classification of the strength
of hydrogen bonds: weak interactions are characterized by distances <3 Å, strong interactions by a
distance <1.6 Å and medium strength by values in the range from 1.6 Å to 2.0 Å.

Ligand B1320_PEI_C20N11 and nanostructure ADA_132 form two hydrogen bonds with medium
strength between amino groups of ligand and oxygen atoms of fullerenes with binding lengths 2.79Å
and 2.95Å (Figure 7). Also, in the case of ligand B1320_PEI_C60N31–fullerene 308b4 four medium
hydrogen bonds were created with bond lengths 2.69 Å, 2.87 Å and 2.93 Å (Figure 7).
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After the docking of ligands from D group, different interactions could be found, namely in the
case of fullerene ADA_132 and ligands D2_PEI_C10N6 there is only one week hydrogen bond, while
for fullerene 308b4 with D3_PEI_C26N14 ligand there are several strong and medium hydrogen bonds,
first of all between amino groups of ligand and oxygen atom of nanostructure with bond lengths 1.9 Å,
2.47 Å., 2.52 Å and 2.94 Å. In the case of fullerene 156_in_ex with ligand D4_PEI_C58N30, there are
three hydrogen bonds of medium strength; with bond lengths 2.50 Å, 2.80 Å and 2.83 Å (Figure 8).
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and fullerene 308b4 with D3_PEI_C26N14 ligand (middle) and 156_in_ex with ligand D4_PEI_C58N30
(right) after the docking procedure.

After the docking of ligands from L group, different interactions were also found, namely in the
case of fullerene ADA_132 and ligands L_PEI_C10N6 there is only one-week hydrogen bond, the same
as in the case D2_PEI_C10N6-ADA_132 (Figure 9). Again, as in DPEI-308b4 case, there are many
interactions between hydrogen atoms of nitrogen groups of ligand and oxygen atoms of nanostructure
with values 1.99 Å, 2.47 Å, 2.52 Å, 2.94 Å and 3.05 Å (Figure 9).

In the case of fullerene 308b4 and ligand PEI_C18N10_01_0Linear, there are several strong
and medium hydrogen bonds, while in the case of fullerene C60 as references structure with
B1320_PEI_C60N31 ligand there are no important interactions (Figure 10).
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Figure 10. Interactions found in the complexes of fullerene 308b4 and ligands PEI_C18N10_01_0Linear
(left) and fullerene c60 as references structure with ligand B1320_PEI_C60N31 (right) after the
docking procedure.

4. Conclusions

As a proposal for a new nanodrug, an attempt was made to implement PEI ligands on the cube
rhombellane homeomorphic surface. Fourteen types of cube rhombellanes were used together with
three groups of polyethylenimines (PEIs), namely, branched (B-PEI), linear (L-PEI) and dendrimer
(D-PEI). Ligand-fullerenes interactions were described in terms of quality and quantity. Specifically,
there were calculated the affinity values and affinity per quantity of carbon atoms after the docking
procedure for ligand nanostructure. The best binding efficiency was shown by linear ligands L, with
highest values of this parameter, compared with values of ligand from B and D groups. The shorter
the molecule, the better the binding performance, the more the particle grows and the lower the yield.
For linear structures LPEI, as the carbon chain length increases, the binding efficiency decreases and
the saturation around the length of the chain with twenty carbon atoms is clearly visible. Similar
observations have been made for group B ligands. Twofold chain elongation results in a two-fold
decrease in binding efficiency. In the case of dendrimeric structures, as the complexity of the system
increases, the value of binding efficiency decreases. Two populations of affinity values have been
observed, which is closely related to the interaction with two fullerene groups. Small structures of
ligands easily react with small structures of nanoparticles and vice versa. The best binding affinity
of ligands and k max values of binding constant were estimated with the use of binding free energy
obtained for the best complex of ligand with nanostructure. Also, k max differences relative C60

molecule, defining the difference in quality of ligand binding with considered nanostructure in
comparison to reference system, were calculated. The highest positive percentage deviations were
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obtained for ligand–fullerene complexes showing the highest binding energy values. Detailed analysis
of structural properties after docking showed that the values of affinity of the studied indolizine
ligands to the Rhombellanes surface are correlated with the strength/length of hydrogen bonds formed
between them.
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