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Abstract: This article presents a multilevel design for infill patterns. The method partitions an input
model into subareas and each subarea are applied with different scales of infill patterns. The number
of subareas can be decided by users. For each subarea, there are different values of the scaling
parameter that determines the number of columns and rows of pattern elements, which is useful to
change the weight and strength of a certain area by user demands. Subareas can be symmetric or
asymmetric to each other depending on the geometry of a 3D model and the application requirements.
In each subarea, there are generated symmetric patterns. The proposed method is also applicable
to combining different patterns. The aim of our work is to create lightweight 3D fabrications with
lighter interior structures to minimize printing materials and supplementary to strengthen thin parts
of objects. Our approach allows for the composition of sparse and dense distributions of patterns of
interior 3D fabrications in an efficient way so users can fabricate their own 3D designs.

Keywords: 3D fabrication; subdivision; pattern; multilevel design

1. Introduction

Recent additive manufacturing technology enables to fabricate objects with any geometrical
complexity from scanned real objects or designed digital models. Additive manufacturing is widely
integrated into different fields through various fabrication methods such as the fused deposition
method (FDM) [1] that prints objects by layers, stereolithography (SLA) [2], and the selective laser
sintering method (SLS) [3] for manufacturers.

Modeling tools [4–6] allow users to design objects with the desired shape and complexity.
To improve the durability and mechanical properties of 3D fabrications, there is an efficient and
practical approach that fills the interior of 3D fabrications with geometrical patterns using various
slicing tools [7–9].

In addition, numerous studies focus on the interiors of 3D fabrications to achieve specific functions
in terms of the quality of printed objects. An alternative approach to interior structures is the topology
optimization that deforms the original shape of the provided design. Commonly, topology optimization
algorithms greatly improve the structural soundness of 3D fabrications, as well as minimize material
consumption. However, they are not feasible for topology sensitive designs such as mechanical designs,
where any geometric interference is not required, and most of the industrial samples demand high
topological accuracy. In fact, mostly 3D fabrication techniques are used for creating 3D models with
certain functions and purposes, where any geometry modifications do not occur. Moreover, most of the
topology optimization methods are complicated, due to the complex and time-consuming pipelines.

Among the studies dedicated to infill patterns, the most related work is adaptive multilevel
interior structures [10]. Multilevel design is the best choice for the interior of 3D fabrications as it
improves the physical properties of 3D objects and saves printing material.

The existing slicing tools control the pattern size with the volume percentage, but it is difficult
to estimate the final pattern size by only setting the required volume percentage. Compared with
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slicing tools, the proposed method enables the user to specify the number of columns and rows of
pattern elements with the specific scaling parameter that generates symmetrically positioned patterns
for each subarea.

Therefore, our method makes users to create tailored 3D fabrications with certain qualities in an
easy way. In fact, the adaptive multilevel design improves the physical properties of 3D fabrications
and reduces material consumption better than uniformly structured patterns—however, it is feasible
mostly for simple geometries. In addition, the computational cost is high, and its integration can be
complicated for geometrically complex patterns. On the other hand, the proposed method is applicable
to many different patterns with different geometrical complexities. In addition, it can be combined
with different patterns and can be integrated into 2D and 3D models with ease. Our approach can
also balance conflicting requirements such as strengthening and reducing material consumption of 3D
fabrications. Moreover, with a scaling parameter, users can create lighter interiors for 3D fabrications
by manipulating the sizes of elements according to the user desired requirements. In our method,
we use border conditions to prevent overlapping problems for each created subarea of a selected
object area. Furthermore, we provide detailed descriptions of the designed subdivision schemes for
each presented pattern. We developed three different patterns for our comparison test and integrated
a scaling parameter for each scheme to generate outputs. We also applied a scaling parameter for
uniformly structured patterns to conduct a comparison test between uniformly structured patterns
and multilevel patterns developed by our method.

The main contributions of our study are the followings:
We develop a multilevel design approach with a scaling parameter where users can provide the

number of columns and rows of pattern elements to create 3D fabrications with tailored qualities.

• We develop three patterns and provide the designed subdivision schemes.
• We show the practical application of our method in 2D and 3D models.
• We focus on saving printing materials by creating lightweight 3D fabrications.

The rest of the paper is organized as follows: Section 2 includes related work where we review
previous studies on the interior patterns of 3D fabrications and subdivision methods. Section 3
describes the construction of our method. Sections 4 and 5 describe the details of the subdivision
schemes for the developed patterns. Section 6 discusses the experiment results, and the conclusion is
provided in Section 7.

2. Related Work

2.1. Fabrication

To control the physical properties of 3D models, various research teams have presented different
interior structuring methods. In the first attempt toward improving the physical properties of objects,
as well as reducing material usage, the study [11] proposed a skin frame method which was efficient in
saving material—however, it produced a structure that could not withstand high stresses according
to the comparison test from the study [12]. The researchers in Reference [12] proposed a method
integrated with the Voronoi diagram and computed specific levels for creating each cell depending on
the model shape. It greatly strengthens the structurally weak parts of 3D fabrications, but determining
the carving level for each cell can be time-consuming.

Porous structures have been widely used for the interior design of 3D fabrications, due to its
valued properties of being lightweight, stress-sustainable, and cost-effective. There are several studies
dedicated to porous structures. One of the studies [13] presented bone-like porous structures, and
another [14] was proposed anisotropic porous structures based on anisotropic centroidal Voronoi
tessellations. In the study [15], researchers developed a density-aware internal porous supporting
structure to improve the structural soundness of 3D fabrications. The above studies propose more
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options for the interior design of 3D fabrications in order to improve mechanical performance and
minimize material consumption.

Another approach [16] used a medial axis tree to support the interior of objects, similar to a
skeleton; this method combined several components that help to improve the physical properties of
3D fabrications.

In the following research work, density manipulation of the microstructures was performed [17];
researchers manipulated microstructures to control the elasticity of 3D fabrications. This method
assembled small-scaled microstructures to produce the effect of soft materials. In Reference [18],
researchers developed a method to fabricate 3D objects by filling them with microstructures as in
the previous study to control their elasticity. Another study [19] was proposed with rhombic cells
that automatically satisfies manufacturing requirements regarding the overhang angle and wall
thickness. Unlike previous studies, in the research [20], a method of hollowing the interior of 3D
fabrications with ellipses to save material and improve their physical properties was proposed. Such
studies as [21,22] were conducted where researchers used topology optimization to handle material
distributions accordingly with specific requirements.

In the survey study [23], researchers reviewed biomimetic designs in additive manufacturing.
Most of the biomimetic designs are microstructural complex topology structures with composite
holes or irregular surface morphology that requires special fabrication. To fabricate such biomimetic
microstructures, it is necessary to print mostly with SLS 3D printers—powder-based 3D printers
that are mostly used by manufacturers, since it is impossible to fabricate accurately with FDM 3D
printers. The exceptions for FDM printability among biomimetic structures are a very limited number
of structures, including hexagonal-shaped structures.

In fact, the fabrication technology will vary depending on the biomimetic design and scale,
including material. For infill patterns, their printability is extremely important. As mentioned earlier,
not all biomimetic designs are suitable for printing, particularly with FDM 3D printers, most people
utilize home customized FDM 3D printers—therefore, we developed infill patterns that are printable by
FDM 3D printers. Topology optimization is an efficient approach for improving physical properties of
3D fabrications. One of the related works to topology optimization is the study [24], where researchers
proposed a topology optimization method for generating new profile samples. The method modifies
the original profile that is represented by a curve derived from the composed cubic Bezier where each
segment contains control points which are transformed in order to generate new design samples. It can
be considered as a good option for generating creative designs where topological shape sensitivity
of samples is not required. In this study, we do not consider applications of topology optimization,
since our goal is the fabrication of 3D objects without topology modifications. In fact, most people
use 3D printing technology to fabricate 3D objects with certain functionality like mechanical design,
industrial samples or 3D models mostly with geometrical accuracy rather than 3D fabrications with
topological freedom.

Our observation has revealed that the above-mentioned studies are targeted only for a single
type pattern, while our method is applicable to patterns with different geometries. In our method,
we divided the boundary of a 3D model into subregions that can be symmetric or asymmetric to each
other; for each subregion, there is a defined feasible value with a scaling parameter that determines the
number of steps where patterns will be created. Our method can be considered as a goal-oriented
fabrication approach for creating lightweight 3D fabrications and strengthening only the required parts
by applying densely distributed patterns while the remaining part of the input model can contain
sparsely distributed patterns.

2.2. Subdivision

The existing subdivision schemes were mostly proposed for smoothing and modeling purposes;
the methods for constructing subdivision schemes are specifically distinct from each other despite some
similarities. In this section, we review the reference schemes from different studies. The study [25]
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summarized an overview of subdivided surfaces, including scheme construction, property analysis,
parametric evaluation, and subdivision surface fitting. Another study [26], was proposed for
non-uniform subdivision for B-splines of arbitrary degrees; their approach is similar to the
Lane-Riensenfeld algorithm that composes the doubled control points. In the following study [27],
the subdivision scheme was designed as the generalized B-splines that unifies classic B-splines with
algebraic-trigonometric B-splines and algebraic-hyperbolic B-splines.

The primal subdivision scheme [28] was introduced by Catmull for generalization of bi-cubic
uniform B-spline surfaces to the arbitrary topology. Loop’s subdivision scheme [29] was introduced to
handle triangle control meshes to create a sculptured smooth surface. Further, Zorin [30] proposed
a framework for primal/dual quadrilateral subdivision schemes and provided explanations of the
schemes to be C1 for irregular surface points.

As it can be observed, most of the presented subdivision schemes are developed for smoothing
and modeling applications. In contrast, we design subdivision schemes for new infill patterns and
show their practical application in additive manufacturing.

3. Multilevel Design Construction

This section describes the construction of our method. In our study, the base area of the
bounding box of an input model is considered as a target area, and the midpoint algorithm is used for
creating subareas.

In our approach, boundary conditions are provided for preventing overlapping problems between
subareas. The number of subareas is determined by the required demands. For each subarea, different
values of Sp are given, which create different-sized elements by forming a multilevel design of a single
pattern. The element size depends on the values of Sp and subareas. To create elements with a smaller
size, the value of Sp must be increased. The element size can be defined as follows:

Selementsize =
A1

St
× S1, (1)

where St is the number of steps, where pattern elements will be created; A = A1 ×A2 is the subarea;
and S1 is defined as S1 = A2

St
and St can be vary for A1 and A2 depending on requirements. It results

in unequal numbers of rows and columns. In this study Sp determines St for columns which can be
written in an extension form as St =

{
h1, h2, . . . . . . hn : n = Z) where ∀hn = [x, y, z]T and St divides

sides of A, with the Euclidean distance as follows:

ED2 = (xn+1 − xn)
2 + (yn+1 − yn)

2 + (zn+1 − zn)
2,

where ED(h1, h2) = ∀ED(hn+1, hn).
In our method, we consider an additional option to iterate after providing Sp, if iterations are

performed, the number of element columns will increase at each refinement level according to the
following arithmetic sequence:

ECn
n+1 = EC1

n + (n− 1)nDn, (2)

where level, (n− 1)n is the term position, and Dn is the difference.
In Figure 1, the base area of the present model was partitioned into three subareas as A, B, and C.

Each subarea was created with different values of Sp. The construction of our method is illustrated
in Figure 1.



Symmetry 2019, 11, 1029 5 of 14

 Symmetry 2019, 8, x FOR PEER REVIEW 5 of 14 

 

 

Figure 1. Construction with scaled elements. 

For each subarea we specified border conditions and 
pS values as follows: 

𝑆𝐴 = {

𝐴 ∈ 𝑆𝑝    𝑓𝑜𝑟   𝑆𝑝 = 5    𝑤ℎ𝑒𝑟𝑒    𝑥 ∈ 𝐴 ∶   𝐴1  ≤ 𝑥 ≤ 𝐴𝑛  𝑎𝑛𝑑   ∃  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛   𝐴𝑛 > 𝐵1 

𝐵 ∈ 𝑆𝑝 𝑓𝑜𝑟 𝑆𝑝 = 1 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝐵 ∶  𝐵1  ≤ 𝑥 ≤ 𝐵𝑛 𝑎𝑛𝑑 ∃ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐴𝑛 > 𝐵1 𝑎𝑛𝑑  𝐵𝑛 > 𝐶1

𝐶 ∈ 𝑆𝑝    𝑓𝑜𝑟   𝑆𝑝 = 4    𝑤ℎ𝑒𝑟𝑒   𝑥 ∈ 𝐶 ∶   𝐶1  ≤ 𝑥 ≤ 𝐶𝑛   𝑎𝑛𝑑   ∃  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  𝐵𝑛 > 𝐶1

    (3) 

where ,A ,B C  are the subareas; 
pS is the scaling parameter; SA  is the selected area   

A feasible value of 
pS is defined depending on the specific requirements. For strengthening an 

object we use a high value of 
pS  that is applied to fragile regions of the object, while the remaining 

parts are subjected to a low value of
pS , resulting in a multilevel design. Our method performs for 

patterns with different geometries. In addition, we can combine with other structures, as shown in 

Figure 2. All of our output interiors are generated by applying 
pS  without iterations. 

     

Figure 2. Combined Patterns. 

4. Star Grid (SG) Pattern 

A symmetric grid mesh 
1kGrid 

 with a given value of 
pS  is used and 

1kGrid 
 can be 

written as
1 ( , , )kGrid Grid V E F   with V is the set of vertices, E is the set of edges and F is the 

set of faces; 
1kGrid 

 is consist from 1{ : }k

iG i Z     set of points 1{ :  }k

iV G i Z  . Any 

element of ( , , )Grid V E F can be written in an extension form as the linear combination of the 

control points 1 1 1 1

1 2 3 4{ , , , }k k k k

elementV G G G G    , 1k

elementV Grid  . According to the topological 

rules of the SG pattern, new ( , , )k

SG SG SGSG V E F mesh is created; with newly generated faces SGF  

and a new set of vertices 
1{ , :   and  }k k

SG i jV T M i Z j Z   among 1{ :  }k

iV G i Z  ; here

1kV Grid  ; generally, the entire process can be represented by the following formula:  

SG SG SGS TR GR , (4) 

where SGS is the subdivision; SGTR is the topological rules; SGGR is the geometric rules. Formula (4) 

represents the general case for SG . 

Topological and Geometrical subdivision rules: The topological rule for the scheme is described 

by the process that begins with the generation of new elements; precisely, for each element face
1 1k k

oldF Grid   , there are newly created faces k k

newF SG   with a new set of points

Figure 1. Construction with scaled elements.

For each subarea we specified border conditions and Sp values as follows:

SA =


A ∈ Sp f or Sp = 5 where x ∈ A : A1 ≤ x ≤ An and ∃ condition An > B1

B ∈ Sp f or Sp = 1 where x ∈ B : B1 ≤ x ≤ Bn and ∃ condition An > B1 and Bn > C1

C ∈ Sp f or Sp = 4 where x ∈ C : C1 ≤ x ≤ Cn and ∃ condition Bn > C1

(3)

where A, B, C are the subareas; Sp is the scaling parameter; SA is the selected area.
A feasible value of Sp is defined depending on the specific requirements. For strengthening an

object we use a high value of Sp that is applied to fragile regions of the object, while the remaining
parts are subjected to a low value of Sp, resulting in a multilevel design. Our method performs for
patterns with different geometries. In addition, we can combine with other structures, as shown in
Figure 2. All of our output interiors are generated by applying Sp without iterations.
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4. Star Grid (SG) Pattern

A symmetric grid mesh Gridk−1 with a given value of Sp is used and Gridk−1 can be written
as Gridk−1 = Grid(V, E, F) with V is the set of vertices, E is the set of edges and F is the set of
faces; Gridk−1 is consist from

{
Gk−1

i : i ∈ Z
}
∴ set of points V =

{
Gi

k−1 : i ∈ Z
}
. Any element of

Grid(V, E, F) can be written in an extension form as the linear combination of the control points
Velement =

{
G1

k−1, G2
k−1, G3

k−1, G4
k−1

}
, Velement ∈ Gridk−1. According to the topological rules of the SG

pattern, new SGk(VSG, ESG, FSG) mesh is created; with newly generated faces FSG and a new set of
vertices VSG =

{
Ti

k, M j
k+1 : i ∈ Z and j ∈ Z

}
among V =

{
Gi

k−1 : i ∈ Z
}
; here V ∈ Gridk−1; generally,

the entire process can be represented by the following formula:

SSG = TRSG ◦GRSG, (4)

where SSG is the subdivision; TRSG is the topological rules; GRSG is the geometric rules. Formula (4)
represents the general case for ∀SG.

Topological and Geometrical subdivision rules: The topological rule for the scheme is described by
the process that begins with the generation of new elements; precisely, for each element face ∀Fold

k−1
∈

Gridk−1, there are newly created faces ∀Fnew
k
∈ SGk with a new set of points VSG =

{
Ti

k : i = Z
}
,

and its centroid M j
k+1 that is defined as M j

k+1 = 1
n

n = 4∑
i = 1

Ti
k where i ∈ Z and j ∈ Z among vertices
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Gi
k−1
∈ Gridk−1(V, E, F). The entire procedure of topological subdivision is illustrated in Figure 3. Each

element of SG pattern is symmetric as it can be seen from the picture.
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k = 1 for the presented equations of SG pattern, where Gi
k−1 =

{
Gi

0 : i ∈ Z
}
∈ Grid0.

Each element of the newly generated SGk is constructed according to the subdivision scheme expressed
by the following subdivision matrix:

Telement
k = SmVelement where Velement ∈ Gridk−1 (5)

Velement = [G1 G2 G3 G4]
T

Telement
k =

1
2

Velement


1
0
0
1

1
1
0
0

0
1
1
0

0
0
1
1

, (5a)

here Ti
k is the set of points; Sm is the subdivision matrix.

As described earlier, the construction of our method involves creating subareas from the selected
area to generate multiple patterns. For each subarea, different values of Sp are applied depending on
the specific application. The practical application of our method is illustrated in Figure 4.
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Figure 4. The output of the SG pattern.

During pattern generation, vertices are inserted according to the topological and geometrical
rules of the subdivision scheme. In the generated SG patterns with new vertices VSG and faces FSG,
the edges ESG are increased during iterations. SG pattern elements are generated through the nested
subdivision process that is expressed as follows:

Grid0
⊂ SG1, . . . . . . ⊂ ∪∞n = 0Gridn

⊂ SGn+1. (6)

Here, the coarsest level is SG1 and denser levels are SG2, SG3 . . . . . . SGn+1 where n ≥ 3. In fact,
SGn+1 can be a competitive option when it is necessary to strengthen 3D fabrications. The presented
subdivision scheme is designed to produce SG patterns. Moreover, in the scheme Sp is used to control
the size of elements. The size of the pattern elements affects factors such as material consumption,
printing time, cost, and weight, in addition to the stress-sustainability of 3D fabrications. Furthermore,
the element size depends on the value of Sp and if we iterate from the refinement level and applied
area. In smaller areas, the sizes of elements will be smaller even with a high value of Sp. We obtained
outputs with Sp for the SG patterns, as shown in Figure 5.
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5. Hexagonal Patterns

In the study [31], it is revealed that hexagonal shapes can provide high strength; moreover,
these patterns make efficient use of space and building materials by creating more space with less
material consumption. Therefore, we considered the hexagonal pattern types as one of the efficient
structures for the interior of 3D fabrications that meets major user demands such as reduced consumption
of printing materials and strengthening the required parts of 3D fabrications. To create hexagonal
pattern types, we design a subdivision scheme that generates natural-looking hexagonal structures.

All hexagonal elements are identical with its symmetry.

Scheme for Hexagonal Patterns

From the provided symmetric Gridk−1 = Grid(V, E, F) mesh with a value of Sp,
HMk = HM(VHM, EHM, FHM) mesh with a new set of vertices VHM =

{
Hi

k : i = Z
}

is constructed.
The newly formed faces FHM and edges EHM. There are two types of hexagonal patterns with slight
differences in topology, as illustrated in Figure 6. They were created with the presented subdivision
scheme but with some differences in topological rules.
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Figure 6. Topological rules for two types of hexagonal patterns: (left) Hexagonal pattern and (right)
hexagonal trapezoid pattern.

The topological difference defined for hexagonal trapezoidal patterns as the connection of
P2

k with P5
k results in equilateral trapezoids forming a hexagon, for further equations Pk = Hk.

Topological and Geometrical subdivision rules: We developed the construction process of
HMk(VHM, EHM, FHM), k > 1 with a new set of points

{
Hi

k : i = Z
}
, the element vertices is defined

by the provided subdivision matrix (8a) with V =
{
Gi

k−1 : i ∈ Z
}
∈ Grid. The general process can be

written as follows:
Shx = TRhx ◦GRhx, (7)

where Shx is the subdivision; TRhx is the topological rules; GRhx is the geometric rules.
The equation for hexagonal subdivision can be written in the following form:

V =
[
Gk−1

1 Gk−1
2 Gk−1

3 Gk−1
4

]
, V ∈ Gridk−1,
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V = VT,

Hi
k = Sm

kV, (8)

Sm
k =

1
8



6 0 0 2
4 4 0 0
0 6 2 0
0 2 6 0
0 0 4 4
2 0 0 6


, (8a)

where Sm
k is the subdivision matrix; Hi

k is a new set of points.
Outputs generated according to the presented subdivision scheme for two hexagonal patterns are

shown in Figure 7.
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In this part, we discuss the creation of multilevel designs with Sp. For multilevel designs, the
selected area of an object is divided into subareas, the number of subareas is determined by application
requirements. As an example, we created a multilevel design of a duck model; the selected area of the
duck was divided into subareas. We used Sp with different values to test our approach and generate
the output presented in Figure 8.
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The coarsest hexagonal pattern types can be achieved with Sp = 1. In Figure 8, the difference
between Sp = 8 and Sp = 6 is visible from the element size of the patterns. In fact, the element size
of the pattern changes depending on the provided value of Sp. We developed hexagonal pattern types
to create a multilevel design with our approach. The subdivision scheme was designed to produce
the presented hexagonal pattern types with slightly different geometries. Such geometries minimize
the amount of printing material used and create lightweight 3D fabrications additionally, while also
improving their structural soundness.
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6. Experimental Results

We compared our method with uniformly structured patterns for 3D fabrications. We printed 2D
and 3D models and conducted a comparison experiment by measuring their weight; moreover, we
evaluated the mechanical behavior of the 3D fabrications by testing them using an electromechanical
testing machine Instron-5690 (Instron, USA) to determine the exact external force sustainability.
Compression was performed at a speed of 10 mm/min. We tested out our method with 2D and
3D models from different object categories (geometrical figures and animals). All the models were
fabricated through an FDM 3D printer MakerBot Replicator 2 (MakerBot, USA) with a size 285 × 153 ×
155 mm; we used acrylonitrile butadiene styrene as the printing material. Our platform was developed
using C++ language with Visual Studio 2015 and rendered with OpenGL API.

We tested our method on different models and compared it against the uniform structuring
method for each presented pattern. We applied Sp in both methods to evaluate the efficiency regarding
cost-effectiveness and additionally external force sustainability.

6.1. Multilevel Design vs. Uniform Design

In this part, we describe the results of the comparison experiments conducted between multilevel
designing and uniformly structured patterns. We printed objects with different values of the scaling
parameter to show the efficiency of our approach. The first experiment was conducted to reveal the
lightest interior structure. We measured the weights of each presented 3D fabrication and compared
them; the results are presented in Table 1.

Table 1. Weights of models used for multilevel design.

No. Model

Weights of Models with Interiors Having a Multilevel Design (Thickness for All Models
is 0.8 mm)

Star Grid Hexagonal Hexagonal Trapezoid

1 5 cm × 5 cm × 5 cm
Cube
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reveal the lightest interior structure. We measured the weights of each presented 3D fabrication and 

compared them; the results are presented in Table 1.  

Table 1. Weights of models used for multilevel design. 

No.  Model 

Weights of models with interiors having a multilevel design (thickness for all models 

is 0.8 mm) 

Star Grid Hexagonal Hexagonal Trapezoid 

1 
5 cm × 5 cm × 5 cm 

Cube 

 

87 g 

 
 

56 g 

 
 

74 g 

2 2D Bear 

  
 

  
 18 g
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can be minimized for patterns with complex topologies. The next part of the experiment involved 

determining how 
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into several subareas, we applied the feasible value of 
pS for each subarea depending on the 

application specifications. The models presented in Table 2 were divided into three parts with 
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Table 1. Cont.

No. Model

Weights of Models with Interiors Having a Multilevel Design (Thickness for All Models
is 0.8 mm)

Star Grid Hexagonal Hexagonal Trapezoid

4 Bunny
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patterns is the hexagonal pattern. Moreover, it can be considered a cost-effective structure and 
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models with hexagonal trapezoidal interiors; one of them weighs 33 g, and the other weighs 23 g. 

This experiment demonstrated that the weights of the 3D fabrications could be controlled by 

manipulating the scaling parameter. Through the weight measuring experiment, we observed how

pS  impacted the physical properties of the 3D fabrications. 

Table 2. Comparison table for SG and hexagonal trapezoid. 
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requires less printing time compared to patterns with more edges such as SG and hexagonal 
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Table 2. Comparison table for SG and hexagonal trapezoid. 

No. Model 

Star grid vs. hexagonal trapezoid 
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Table 2. Comparison table for SG and hexagonal trapezoid. 

No. Model 

Star grid vs. hexagonal trapezoid 
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8,  S 6,  S 9p p pS     5,  S 4,  S 6p p pS     
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According to the experimental results, the lightest structure among the multilevel design patterns
is the hexagonal pattern. Moreover, it can be considered a cost-effective structure and requires less
printing time compared to patterns with more edges such as SG and hexagonal trapezoidal patterns.
In fact, patterns with complex geometries consume more printing material, but they are beneficial
for strengthening purposes. With our proposed method, material consumption can be minimized
for patterns with complex topologies. The next part of the experiment involved determining how Sp

impacted the weights of 3D fabrications. By dividing the base area of models into several subareas,
we applied the feasible value of Sp for each subarea depending on the application specifications.
The models presented in Table 2 were divided into three parts with different values of Sp, a high value
of Sp was used only for the thinner parts of the models to strengthen and achieve a compromise between
physical property requirements such as strengthening and creation of lightweight 3D fabrications.
The differences are clearly observable between two duck models with hexagonal trapezoidal interiors;
one of them weighs 33 g, and the other weighs 23 g. This experiment demonstrated that the weights of
the 3D fabrications could be controlled by manipulating the scaling parameter. Through the weight
measuring experiment, we observed how Sp impacted the physical properties of the 3D fabrications.

Table 2. Comparison table for SG and hexagonal trapezoid.

No. Model

Star Grid vs. Hexagonal Trapezoid

Star Grid
Hexagonal Trapezoid

Sp=8, Sp=6, Sp=9 Sp=5, Sp=4, Sp=6

1

2D Duck
Length—10 cm
Width—4 cm

Height—1.2 cm
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Additionally, we performed comparison tests between uniformly structured patterns to 

experimentally evaluate the effectiveness of our developed patterns in terms of saving material. For 

the experiment, we printed 3D fabrications with the same scaling parameters 2pS   for kittens and

4pS   for cubes that are shown in Table 3. As expected, the lightest pattern was the hexagonal 

pattern, owing to its geometry, that aids in the efficient use of material. 
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6.2. Stress-Sustainability Comparison 

As a supplementary part, there was done the second experiment that evaluates the stress-

sustainability of the created patterns. We performed compression tests exceptionally for the cube 

models as the geometry of the models influences the compression test results. 

Therefore, we selected cube models with the three patterns to determine the stress-sustainability 

for each pattern. As it can be noticed from Table 4, we experimented with uniformly structured 

patterns and multilevel patterns to show the efficiency of our proposed method and the designed 

patterns. The compression test results showed that the SG pattern was the best structure for stress-

sustainability rather than the hexagonal pattern and hexagonal trapezoid. Although hexagonal 

structures are known for their high strength and durability among natural structures, they have 
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Additionally, we performed comparison tests between uniformly structured patterns to
experimentally evaluate the effectiveness of our developed patterns in terms of saving material.
For the experiment, we printed 3D fabrications with the same scaling parameters Sp = 2 for kittens
and Sp = 4 for cubes that are shown in Table 3. As expected, the lightest pattern was the hexagonal
pattern, owing to its geometry, that aids in the efficient use of material.
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Table 3. Comparison of uniform structures.

No. Model
Weight of Models with Uniform Structures

Star Grid Hexagonal Pattern Hexagonal Trapezoid

1 2D Kitten
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Additionally, we performed comparison tests between uniformly structured patterns to 

experimentally evaluate the effectiveness of our developed patterns in terms of saving material. For 

the experiment, we printed 3D fabrications with the same scaling parameters 2pS   for kittens and

4pS   for cubes that are shown in Table 3. As expected, the lightest pattern was the hexagonal 
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6.2. Stress-Sustainability Comparison 

As a supplementary part, there was done the second experiment that evaluates the stress-

sustainability of the created patterns. We performed compression tests exceptionally for the cube 

models as the geometry of the models influences the compression test results. 

Therefore, we selected cube models with the three patterns to determine the stress-sustainability 

for each pattern. As it can be noticed from Table 4, we experimented with uniformly structured 

patterns and multilevel patterns to show the efficiency of our proposed method and the designed 

patterns. The compression test results showed that the SG pattern was the best structure for stress-

sustainability rather than the hexagonal pattern and hexagonal trapezoid. Although hexagonal 

structures are known for their high strength and durability among natural structures, they have 
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As a supplementary part, there was done the second experiment that evaluates the stress-

sustainability of the created patterns. We performed compression tests exceptionally for the cube 

models as the geometry of the models influences the compression test results. 

Therefore, we selected cube models with the three patterns to determine the stress-sustainability 

for each pattern. As it can be noticed from Table 4, we experimented with uniformly structured 

patterns and multilevel patterns to show the efficiency of our proposed method and the designed 

patterns. The compression test results showed that the SG pattern was the best structure for stress-

sustainability rather than the hexagonal pattern and hexagonal trapezoid. Although hexagonal 
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sustainability of the created patterns. We performed compression tests exceptionally for the cube 

models as the geometry of the models influences the compression test results. 
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for each pattern. As it can be noticed from Table 4, we experimented with uniformly structured 
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patterns. The compression test results showed that the SG pattern was the best structure for stress-
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6.2. Stress-Sustainability Comparison 

As a supplementary part, there was done the second experiment that evaluates the stress-

sustainability of the created patterns. We performed compression tests exceptionally for the cube 

models as the geometry of the models influences the compression test results. 

Therefore, we selected cube models with the three patterns to determine the stress-sustainability 

for each pattern. As it can be noticed from Table 4, we experimented with uniformly structured 

patterns and multilevel patterns to show the efficiency of our proposed method and the designed 

patterns. The compression test results showed that the SG pattern was the best structure for stress-
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6.2. Stress-Sustainability Comparison

As a supplementary part, there was done the second experiment that evaluates the
stress-sustainability of the created patterns. We performed compression tests exceptionally for
the cube models as the geometry of the models influences the compression test results.

Therefore, we selected cube models with the three patterns to determine the stress-sustainability
for each pattern. As it can be noticed from Table 4, we experimented with uniformly structured patterns
and multilevel patterns to show the efficiency of our proposed method and the designed patterns.
The compression test results showed that the SG pattern was the best structure for stress-sustainability
rather than the hexagonal pattern and hexagonal trapezoid. Although hexagonal structures are
known for their high strength and durability among natural structures, they have revealed less
stress-sustainability compared with SG patterns. SG pattern has a stronger structure than other patterns
that makes more stress-sustainable.

The experimental results showed that the patterns developed using our method effectively
resist external forces; moreover, our approach proved to be cost-effective that creates lightweight
3D fabrications.

6.3. Strengthening Thin Parts

As a supplementary part of our study, we considered strengthening thin parts of objects as
different engineering applications require improved strength of thin parts in samples or industrial
models. In fact, thins parts of objects less stress-sustainable, therefore we determined the thin parts of
models via visual observation and strengthened them by applying a feasible value of Sp, as shown
in Figure 9.
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Table 4. Table presenting stress-sustainability results.

No. Model
Stress-Sustainability of Models with Uniform Structures

Star Grid Hexagonal Hexagonal Trapezoid

1 Cube
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