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Abstract: Molecular conformation as a subproblem of the geometrical shaping of the molecules
is essential for the expression of biological activity. It is well known that from the series of all
possible sugars, those that are most naturally occurring and usable by living organisms as a source
of energy—because they can be phosphorylated by hexokinase, the first enzyme in the glycolysis
pathway—are D-sugars (from the Latin dextro). Furthermore, the most naturally occurring amino
acids in living cells are L-sugars (from the Latin laevo). However, a problem arises in dealing with
the comparison of their conformers. One alternative way to compare sugars is via their molecular
alignment. Here, a solution to the eigenproblem of molecular alignment is communicated. The
Cartesian system is rotated, and eventually translated and reflected until the molecule arrives in a
position characterized by the highest absolute values of the eigenvalues observed on the Cartesian
coordinates. The rotation alone can provide eight alternate positions relative to the reflexes of
each coordinate.

Keywords: eigenproblem; eigenvalues; molecular alignment; orthogonal alignment

1. Introduction

The topological description of a molecule requires knowledge of the adjacencies (the bonds)
between the atoms as well as their identities (the atoms). If this problem is simplified to the extreme,
by disregarding the bond types and atom identities, then the adjacencies are simply expressed as 0 or 1
in the vertex adjacency matrix ([Ad]) and the identities are expressed as 0 or 1 in the identity matrix
([Id]). The characteristic polynomial (ChP) is the natural construction of a polynomial in which the
eigenvalues of the [Ad] are the roots of the ChP, as follows:

λ is an eigenvalue of [Ad]↔ it follows that [v] , 0 eigenvector such that λ·[v] = [Ad]·[v]
(λ·[Id] − [Ad])·[v] = 0); since v , 0→ [λ·Id − Ad] is singular→ det([λ·Id − Ad]) = 0.
Therefore, the characteristic polynomial is defined by:

ChP def
=

∣∣∣λ·[Id] − [Ad]
∣∣∣.

The characteristic polynomial is a polynomial in λ of the degree of the number of atoms. The
eigenproblem (the determination of eigenvalues and eigenvectors) is applicable to any Hessian [1]
matrix [A] ([Ad]→ [A]). The mixed derivatives of a scalar-valued function f are the entries off the main
diagonal in the Hessian. Assuming that the derivatives are continuous, the order of differentiation
does not matter (a result known as Schwarz’s, Clairaut’s, or Young’s theorem), and then the Hessian of
f is a symmetric matrix.

Indeed, this is the case (a symmetric matrix) for the (vertex) adjacency matrix, and for the distance
matrix—both topological (by bonds) and geometrical (by the atom coordinates).
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Related to this problem is the issue of determining the best rotation to relate two sets of vectors.
To this issue, a solution was proposed by calculating a symmetric matrix of Lagrange multipliers
which is used to minimize the residuals of the linear association between the vectors [2]. Later,
different approaches were proposed, such as geometric hashing [3], clique detection [4], the embedding
problem [5], Gaussian molecular representation, Gaussian overlap optimization [6], and others covered
in [7]. Some of the proposed solutions go a different way, involving physical means forcing the
alignment [8,9], while the formulation of similarity metrics was one of the most recently proposed
computational alternatives [10]. The alignment serves as a tool for other studies, including similarity
analysis [11], docking [12], and structure–activity relationships [13].

The eigenproblem in relation to geometrical alignment was stated before in the context of surface
analysis and control [14], and also can go another direction into the context of the molecule. In this
context, the molecule is seen as more than a simple unweighted undirected molecular graph with
undistinguishable atoms [15].

The eigenproblem of molecular alignment is analyzed in this paper.

2. Materials and Methods

The alignment of molecules can be stated in many ways, as listed in the introduction. For instance,
one approach is to search for topological alignment, and another is to search for geometrical alignment.
To anticipate the type of molecular alignment, it is necessary to employ the latter method—to search
for geometrical alignment.

A molecule is taken here as an example from PubChem CID 444173 ((2R,3S,4R,5R)-oxane-
2,3,4,5-tetrol), as shown in Figure 1.
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Figure 1. 3D representation of the model of PubChem CID 444173.

For convenience, hydrogen atoms are excluded from the data and the analysis. The next table
(Table 1) contains the relevant information for the heavy atoms in the reference molecule.



Symmetry 2019, 11, 1027 3 of 8

Table 1. 3D structural data for CID 444173 (heavy atoms, geometric coordinates, and atom symbols).

x (Å) y (Å) z (Å) Atom and Label

0.7428 −1.4498 −0.0709 O 1
−1.1425 1.1688 1.3882 O 2
1.1461 1.0581 −1.4377 O 3
−2.754 −0.3648 −0.3408 O 4
2.7344 −0.2934 0.3835 O 5
−0.7774 1.0064 0.0187 C 6
0.7504 0.9905 −0.0675 C 7
−1.3475 −0.306 −0.532 C 8
1.3187 −0.2968 0.5474 C 9
−0.671 −1.513 0.1111 C 10

The general way of constructing a characteristic polynomial is to provide an identity matrix [Id]
and a Hessian matrix (herein labeled as [A]). If considering the topology of the molecule, then it is
necessary to have the information regarding the connections between the atoms (e.g., bonds). Since
all bonds are single bonds for the selected molecule, listing the atoms pairs of the bonds is enough
(Table 2).

Table 2. Topology data for CID 444173 (list of bonds between heavy atoms).

(1, 9) (1, 10) (2, 6) (3, 7) (4, 8) (5, 9) (6, 7) (6, 8) (7, 9) (8, 10)

A deeper look into the eigenproblem (|λ·I − A| = 0) is performed in the next section, with a specific
focus on changing of the mathematical properties of the eigenproblem when the adjacencies in [A]
change from symmetric to anti-symmetric.

3. Results and Discussion

From Table 2, the adjacency matrix [Ad] is immediate—zeros represent the entries without a
bond between the labeled atoms, while ones appear otherwise. The adjacency matrix is Hessian. For
convenience, its characteristic polynomial is:

ChP(λ; CID444173, “[Ad]”) = 1·λ10
− 10·λ8 + 31·λ6

− 35·λ4 + 11·λ2
− 1·λ0.

As can be seen, the degree of the polynomial is 10, which is equal to the number of the (connected)
atoms in the molecule. The general rule is that a characteristic polynomial is always of a degree equal
to the size of the square matrices [I] and [A] (see the before given equation), from which it was derived.

The same strategy can be applied if the adjacency matrix [Ad] is replaced by the distance matrix
[Di]. For convenience, Table 3 lists these two matrices.

Table 3. Adjacency and distance matrices for CID 444173 (heavy atoms).

Ad 1 2 3 4 5 6 7 8 9 10 Di 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 1 1 1 0 4 3 3 2 3 2 2 1 1
2 0 0 0 0 0 1 0 0 0 0 2 4 0 3 3 4 1 2 2 3 3
3 0 0 0 0 0 0 1 0 0 0 3 3 3 0 4 3 2 1 3 2 4
4 0 0 0 0 0 0 0 1 0 0 4 3 3 4 0 5 2 3 1 4 2
5 0 0 0 0 0 0 0 0 1 0 5 2 4 3 5 0 3 2 4 1 3
6 0 1 0 0 0 0 1 1 0 0 6 3 1 2 2 3 0 1 1 2 2
7 0 0 1 0 0 1 0 0 1 0 7 2 2 1 3 2 1 0 2 1 3
8 0 0 0 1 0 1 0 0 0 1 8 2 2 3 1 4 1 2 0 3 1
9 1 0 0 0 1 0 1 0 0 0 9 1 3 2 4 1 2 1 3 0 2
10 1 0 0 0 0 0 0 1 0 0 10 1 3 4 2 3 2 3 1 2 0
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It can be checked (but is also true for the general case) that the distance matrix is Hessian, and
therefore a characteristic polynomial can be computed for it as well. The next equation lists the ChP
computed for the distance matrix [Di]:

ChP(λ; CID444173, ”[Di]”) = 1·λ10
− 313·λ8 + 3488·λ7

− 15456·λ6
− 34720·λ5

− 40832·λ4
− 23808·λ3

− 5376·λ2

The natural extension of this matrix is to employ 3D distances instead of topological distances.
Of course, one consequence of this is that the characteristic polynomial would no longer have
integer coefficients.

The next table lists the 3D distance matrix (distances were cut to four significant digits) and the
roots of the associated characteristic polynomial.

One interesting remark to the data listed in Table 4 is that all roots are real (this is the general
behavior for the roots of a characteristic polynomial).

Table 4. 3D distance matrix and its eigenvalues for CID 444173 (heavy atoms).

3D
3D Distances Eigenvalues

1 2 3 4 5 6 7 8 9 10

1 0 3.541 2.885 3.671 2.347 2.890 2.440 2.427 1.429 1.427 −8.429
2 3.541 0 3.638 2.817 4.264 1.427 2.395 2.430 2.985 3.008 −6.218
3 2.885 3.638 0 4.294 2.769 2.413 1.428 2.983 2.410 3.509 −2.922
4 3.671 2.817 4.294 0 5.536 2.432 3.767 1.421 4.169 2.421 −1.893
5 2.347 4.264 2.769 5.536 0 3.762 2.406 4.183 1.425 3.627 −1.275
6 2.890 1.427 2.413 2.432 3.762 0 1.530 1.533 2.524 2.523 −1
7 2.440 2.395 1.428 3.767 2.406 1.530 0 2.510 1.536 2.884 −0.65
8 2.427 2.430 2.983 1.421 4.183 1.533 2.510 0 2.876 1.526 0
9 1.429 2.985 2.410 4.169 1.425 2.524 1.536 2.876 0 2.372 3.60 × 10−15

10 1.427 3.008 3.509 2.421 3.627 2.523 2.884 1.526 2.372 0 22.386

Up until this point, the ideas presented in this paper have been reported before. Herein follows
the extension to the extant knowledge. What if the same formula is applied to define the ChP for
Cartesian coordinate distance matrices instead of for the Euclidian distance matrix?

Next three tables (Tables 5–7) list those results (the number of digits is displayed according to the
input data—see Table 1).

Table 5. First Cartesian coordinate (“x”) distances matrix for CID 444173 (heavy atoms).

Dx 1 2 3 4 5 6 7 8 9 10

1 0 1.8853 −0.4033 3.4968 −1.9916 1.5202 −0.0076 2.0903 −0.5759 1.4138
2 −1.8853 0 −2.2886 1.6115 −3.8769 −0.3651 −1.8929 0.2050 −2.4612 −0.4715
3 0.4033 2.2886 0 3.9001 −1.5883 1.9235 0.3957 2.4936 −0.1726 1.8171
4 −3.4968 −1.6115 −3.9001 0 −5.4884 −1.9766 −3.5044 −1.4065 −4.0727 −2.0830
5 1.9916 3.8769 1.5883 5.4884 0 3.5118 1.9840 4.0819 1.4157 3.4054
6 −1.5202 0.3651 −1.9235 1.9766 −3.5118 0 −1.5278 0.5701 −2.0961 −0.1064
7 0.0076 1.8929 −0.3957 3.5044 −1.9840 1.5278 0 2.0979 −0.5683 1.4214
8 −2.0903 −0.2050 −2.4936 1.4065 −4.0819 −0.5701 −2.0979 0 −2.6662 −0.6765
9 0.5759 2.4612 0.1726 4.0727 −1.4157 2.0961 0.5683 2.6662 0 1.9897

10 −1.4138 0.4715 −1.8171 2.0830 −3.4054 0.1064 −1.4214 0.6765 −1.9897 0
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Table 6. Second Cartesian coordinate (“y”) distances matrix for CID 444173 (heavy atoms).

Dy 1 2 3 4 5 6 7 8 9 10

1 0 −2.6186 −2.5079 −1.0850 −1.1564 −2.4562 −2.4403 −1.1438 −1.1530 0.0632
2 2.6186 0 0.1107 1.5336 1.4622 0.1624 0.1783 1.4748 1.4656 2.6818
3 2.5079 −0.1107 0 1.4229 1.3515 0.0517 0.0676 1.3641 1.3549 2.5711
4 1.0850 −1.5336 −1.4229 0 −0.0714 −1.3712 −1.3553 −0.0588 −0.0680 1.1482
5 1.1564 −1.4622 −1.3515 0.0714 0 −1.2998 −1.2839 0.0126 0.0034 1.2196
6 2.4562 −0.1624 −0.0517 1.3712 1.2998 0 0.0159 1.3124 1.3032 2.5194
7 2.4403 −0.1783 −0.0676 1.3553 1.2839 −0.0159 0 1.2965 1.2873 2.5035
8 1.1438 −1.4748 −1.3641 0.0588 −0.0126 −1.3124 −1.2965 0 −0.0092 1.2070
9 1.1530 −1.4656 −1.3549 0.0680 −0.0034 −1.3032 −1.2873 0.0092 0 1.2162

10 −0.0632 −2.6818 −2.5711 −1.1482 −1.2196 −2.5194 −2.5035 −1.2070 −1.2162 0

Table 7. Third Cartesian coordinate (“z”) distances matrix for CID 444173 (heavy atoms).

Dz 1 2 3 4 5 6 7 8 9 10

1 0 −1.4591 1.3668 0.2699 −0.4544 −0.0896 −0.0034 0.4611 −0.6183 −0.1820
2 1.4591 0 2.8259 1.7290 1.0047 1.3695 1.4557 1.9202 0.8408 1.2771
3 −1.3668 −2.8259 0 −1.0969 −1.8212 −1.4564 −1.3702 −0.9057 −1.9851 −1.5488
4 −0.2699 −1.7290 1.0969 0 −0.7243 −0.3595 −0.2733 0.1912 −0.8882 −0.4519
5 0.4544 −1.0047 1.8212 0.7243 0 0.3648 0.4510 0.9155 −0.1639 0.2724
6 0.0896 −1.3695 1.4564 0.3595 −0.3648 0 0.0862 0.5507 −0.5287 −0.0924
7 0.0034 −1.4557 1.3702 0.2733 −0.4510 −0.0862 0 0.4645 −0.6149 −0.1786
8 −0.4611 −1.9202 0.9057 −0.1912 −0.9155 −0.5507 −0.4645 0 −1.0794 −0.6431
9 0.6183 −0.8408 1.9851 0.8882 0.1639 0.5287 0.6149 1.0794 0 0.4363

10 0.1820 −1.2771 1.5488 0.4519 −0.2724 0.0924 0.1786 0.6431 −0.4363 0

It can be observed that the Cartesian coordinates distance matrices are no longer symmetric
matrices, but are in fact anti-symmetric, meaning that Mi,j = −Mj,i.

The beauty of the result shown by taking a look at the eigenvalues. The next table (Table 8) lists
the eigenvalues for all matrices.

Table 8. Eigenvalues for CID 444173 (heavy atoms).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

[Ad] −2.318 −1.556 −1.334 −0.506 −0.41 0.41 0.506 1.334 1.556 2.318
[Di] −8.429 −6.218 −2.922 −1.893 −1.275 −1 −0.65 0 3.60 × 10−15 22.386
[3D] −8.722 −5.093 −3.145 −2.521 −1.474 −1.257 −1.05 −0.911 −0.784 25.007
[Dx] 15.299·i −15.299·i 0 0 0 0 0 0 0 0
[Dy] 9.629·i −9.629·i 0 0 0 0 0 0 0 0
[Dz] 6.973·i −6.973·i 0 0 0 0 0 0 0 0

It should be noted that the values listed in Table 7 reveal some computational errors. It is obvious
(and it is so) that 3.6 × 10−15 is actually a “0” and it is necessary to be aware of this type of error coming
from “machine epsilon” [16] which is about 10−7 for “single” precision, 10−16 for “double” precision,
and about 10−19 for “extended” precision. Most floating-point implementations use “double” precision
and thus the listed value (3 × 10−15) “fits in range”.

More important, as can be observed (see Table 7), the eigenvalues of [Dx], [Dy], [Dz] are all 0
excepting (always) two—which are (always) paired and (always) imaginary (i =

√
−1, see Table 8). This

is the opposite of the traditional case of symmetric matrices, when the values are (always) real. This is
the beauty of the result.

Moreover, it should be noted that the polynomial can be expressed with real-value coefficients as
a product of a polynomial of degree 2 and a monomial of degree (n − 2), as listed in Table 9.
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Table 9. The polynomials of [Dx], [Dy], and [Dz] for CID 444173 (heavy atoms).

Matrix (A) |λ·I − A| Polynomial

[Dx] λ8
·(λ2 + 234.0448052)

[Dy] λ8
·(λ2 + 92.7157814)

[Dz] λ8
·(λ2 + 48.6224414)

A consequence is hidden behind this result—to obtain those two coefficients (which are actually
the first and third coefficients, independent of how many atoms are in the molecule) it is necessary to
obtain their roots. Therefore, it is not necessary to run an “eigenvalues” routine to obtain them; it is
enough to run only two steps of a coefficient determination program (such as that described in [17]),
which will produce a result much more quickly.

So, what if we conduct a rotation of the molecule?
For example, by rotating the molecule by 15◦ (15/180 radians; coordinates are given in Table 1),

the values for the polynomials are changed—see Table 10. First it should be pointed out that the
polynomial is no longer invariant due to the choice of the system of coordinates. If invariants are
sought, this is not a good situation—but for the purpose of addressing the alignment problem, this
setup is very useable.

Table 10. The polynomials of [Dx], [Dy], and [Dz] rotated (15◦, 15◦, 15◦) for CID 444173 (heavy atoms).

Matrix (A) |λ·I – A| Polynomial

[Dx] λ8
·(λ2 + 162.836846)

[Dy] λ8
·(λ2 + 90.150945)

[Dz] λ8
·(λ2 + 47.28921)

In the general case, with a1, a2, and a3 as rotation angles defining the rotation matrices (given
below), it is necessary to maximize the variance along the axes of coordinates.

1 0 0
0 cos(a2) sin(a2)

0 − sin(a2) cos(a2)

,


cos(a1) 0 − sin(a1)

0 1 0
sin(a1) 0 cos(a1)

,


cos(a0) sin(a0) 0
− sin(a0) cos(a0) 0

0 0 1


This results a two-step algorithm, described below:

• Since rotation by a0 leaves untouched the “z” coordinate, the first problem is to find a value of a0

such that the squared sum of the eigenvalue(s) for the [Dx] matrix is minimized (or its coefficient
from Table 9, which is x1·x2 = x1·x1 = −x1

2 = −x2
2, is maximized);

• Next, we need to leave untouched the “x” coordinate—which was already fitted in the first step.
For this, we may want to employ rotation by a2, such that the squared sum of the eigenvalue(s)
for the [Dy] matrix is minimized (or its coefficient from Table 9 is maximized);

• There is no third step involving the third rotation matrix, because by maximizing (or minimizing)
the first two coordinates, we have already employed all coordinates (x and y in the first step; y
and z in the second).

Therefore, at this point we have the alignment of the molecule.
The problem of molecular 3D alignment involving the modified characteristic polynomial

(eigenproblem) becomes a combinatorial problem since, after eigenvector minimization by each (two
out of three) Cartesian coordinate, we obtain the molecules in their proper alignment or in the mirror
of the proper alignment, when “xi ← −xi” and/or “yi ← −yi” and/or “zi ← −zi” transformation will
align it.

Of course, a question may arise: what is the meaning of such alignment? This research is ongoing,
but so far it has been found that this alignment corresponds to the minimization of the rotation inertia
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of the coordinates. In other words, the thinnest part of the molecule aligns with one coordinate, and
then the thinnest part of what remains (so the molecule can be rotated around that axis) aligns with the
second coordinate.

Revising the results communicated here, it should be noted that the classical eigenproblem is
addressed to symmetric matrices—such as are the topological adjacency and topological distance
matrices (shown in Table 3) and the geometrical distance matrix (Table 4). The peculiarity of the
Cartesian distance matrices (shown in Tables 5–7) is the fact that they are anti-symmetric, sometimes
called skew-symmetric matrices. This is, in mathematical terms, a strong property—as strong as the
property of symmetry (please note that here the symmetry describes the matrices—namely, matrix
A is symmetric if A = AT and it is anti-symmetric if A = −AT). On the other hand, the elements
of the Cartesian coordinate matrices are mirrored relative to the main diagonal—this property is
called reflection symmetry, line symmetry, or mirror symmetry—which makes these matrices very
suitable for the same set of operations that are typically employed for symmetric matrices. Further,
among the known properties of skew-symmetric matrices is the fact illustrated in Table 8—If A is
a real skew-symmetric matrix and λ is a real eigenvalue, then λ = 0, i.e., the nonzero eigenvalues
of a skew-symmetric matrix are purely imaginary”. Since a skew-symmetric matrix is similar to its
own transposition, they must have the same eigenvalues. It follows that the eigenvalues (λ) of a
skew-symmetric matrix always come in pairs (±λ), a property which is also illustrated in Table 8.

It should be noted that the generation of Cartesian coordinates from the diagonalization of
adjacency or distance-related matrices is quite standard in mathematical chemistry. For instance, the
methods to generate fullerene cages from Schlegel diagrams are normally embedded in fullerene sw
packages (see for example [18]). Thus, the results communicated here may have useful applications in
this regard.

4. Conclusions

The change from symmetry to anti-symmetry in the adjacency matrix of the eigenproblem moves
the eigenvalues from real space into imaginary space. When the eigenequation is applied to the
Cartesian space of the molecule instead of the topological or Euclidean spaces, the resultant roots
(corresponding to the eigenvalues) are all 0 (multiple roots) excepting two, which are always imaginary
(and complementary). The rotation of a molecule induces into the Cartesian space a way of aligning the
molecule by maximizing the magnitude of the roots in a preselected order of the Cartesian axes. This
property can be further exploited for the alignment of multiple molecules, when for highly symmetric
molecules the alignment problem is turned into the (S2)3 conformational problem.

Though the programs provided in the Supplementary Materials can be used to align any molecule,
they are not communicated as a novel tool. Aligning a molecule by its Cartesian coordinates via the
simultaneous alignment of many molecules—such as for molecular docking purposes—will require
further study.

Supplementary Materials: The datafile for CID 444173 and the MATLAB program implementing the Cartesian
alignment of a molecule are available online at http://www.mdpi.com/2073-8994/11/8/1027/s1.

Author Contributions: The author designed and made the study and also wrote the paper.
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