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Abstract: Quantum behavior of two oscillator modes, with mutually balanced gain and loss and
coupled via linear coupling (including energy conserving as well as energy non-conserving terms)
and nonlinear cross-Kerr effect, is investigated. Stationary states are found and their stability analysis
is given. Exceptional points for PT -symmetric cases are identified. Quantum dynamics treated
by the model of linear operator corrections to a classical solution reveals nonclassical properties of
individual modes (squeezing) as well as their entanglement.

Keywords: nonlinearly coupled oscillators; PT symmetry; cross-Kerr nonlinearity; stability analysis;
quantum properties

1. Introduction

PT -symmetric systems, which contain gain and loss in mutual balance, have been extensively
analyzed in various configurations and from different points of view since the pioneering work by
Bender and Boettcher occurred [1–3]. The simplest system is composed of two linearly coupled
oscillator modes, one exhibiting gain and the other loss [4]. In real physical applications, there occur
additional nonlinear Kerr-type terms in both oscillator modes. They originate in physical models
of mode amplification and attenuation typically realized via two-level atoms [5]. These models
were developed and extensively discussed in the semiclassical and quantum theories of lasers [6].
Stationary states then occur in such systems due to this nonlinearity. The simplest model of two
coupled nonlinear oscillator modes has been generalized to include more oscillators in various
configurations. The obtained models were applied in many areas of physics including optical
coupled structures [7–10], optical waveguides [11,12], coupled optical micro-resonators [13–15], optical
lattices [16–19], opto-mechanical systems [20,21], etc.

Recently, attention has been devoted to the consistent quantum description of PT -symmetric
systems. To guarantee the validity of commutation relations among the field operators during the
evolution, the fluctuating quantum Langevin forces with specific properties have to be considered
in the system [22–25]. As a consequence, the noise in the system constantly increases during the
evolution both owing to the amplification and attenuation [24]. Despite this, quantum PT -symmetric
systems exhibit interesting and appealing features, such as enhancement of interactions around and at
exceptional points (EPs) [26] or quantum Zeno effect [27]. The enhancement of nonlinear interactions
then opens the door for the generation of nonclassical light (squeezing) and entangled states [28–31].

Here, we investigate the behavior of a specific form of the model of two coupled oscillator modes
with amplification and attenuation that includes only the cross-Kerr nonlinear term. In addition,
linear coupling of both modes through χ(2) parametric interaction that does not conserve energy,
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is considered [32,33]. It adds or removes photons simultaneously in both modes. This coupling leads to
nonclassical properties of the fields and the occurrence of entanglement between the modes [22,32,34],
together with the cross-Kerr nonlinear coupling [35,36]. The cross-Kerr coupling is known to play
a significant role in quantum non-demolition measurement [37], generation of the states defined in
finite-dimensional Hilbert spaces [38] and generation of maximally entangled Bell-type states [39,40]).
In general, the cross-Kerr coupling appearing in the so-called Kerr couplers considerably changes their
quantum properties [41–43]. The cross-Kerr nonlinearity can even enhance the usual Kerr effect, e.g.,
when squeezing effects are analyzed [44].

We show that continuous sets of stationary states occur in the model and we analyze their stability.
Then, in the framework of the model of quantum superposition of signal and noise [22], we address
squeezed-state generation and generation of entangled states around the stationary states. We note that
if one of the oscillator modes in the analyzed model attains an additional Kerr nonlinear term, only the
trivial stationary states exist. On the other hand, if the standard Kerr nonlinear terms are attributed to
both oscillator modes, the system behavior considerably changes and only discrete stationary states
are found [45]. We note that related systems were analyzed from the point of view of squeezed-state
generation in [29] (without parametric interaction) and [31] (no Kerr terms, parametric interaction in
individual modes) and quantum-noise generation [25] (without parametric interaction). In addition,
the work [46], where breaking of the oscillatory regime in a classical two-mode PT -symmetric system
with the Kerr nonlinearity due to larger modes intensities is reported, is worth mentioning.

The paper is organized as follows. In Section 2, the analyzed system is defined and the
corresponding Heisenberg equations are given. Stationary states and their stability are investigated
in Section 3. Nonclassical properties of the evolving states are discussed in Section 4. Section 5
presents conclusions.

2. Quantum Hamiltonian and Dynamical Equations

Introducing annihilation (âj) and creation (â†
j ) operators of photons for oscillator modes 1 (j = 1)

and 2 (j = 2) with identical frequencies ω, the considered system is described by the following
interaction Hamiltonian Ĥ [22]:

Ĥ = −iγ1 â†
1 â1 − iγ2 â†

2 â2 +
[
εâ†

1 â2 + κâ1 â2 + h.c.
]
+ βc â†

1 â†
2 â1 â2. (1)

We assume that mode 1 is attenuated γ1 ≥ 0 and mode 2 is amplified γ2 ≤ 0. Transfer of energy
in the system is described by linear coupling constants ε and κ. Whereas the coupling constant ε

characterizes transfer of energy between the modes, the constant κ quantifies energy inserted and
removed to/from both modes in the same amount in the χ(2) parametric process. The nonlinear
coupling constant βc characterizes in Equation (1) the cross-Kerr nonlinear term that is responsible for
the occurrence of stationary states. Both χ(2) term of parametric interaction and cross-Kerr term occur
together in nonlinear photonic structures [33] (waveguides, nonlinear fibers). Symbol h.c. replaces the
Hermitian conjugated terms.

The Hamiltonian Ĥ in Equation (1) attains its PT -symmetric form provided that the constants γ1,
γ2, ε, κ and βc are real and

γ1 = −γ2 ≡ γ ≥ 0. (2)

Moreover, to allow for simple physical interpretation, PT -symmetric Hamiltonians are usually
applied for the range of parameters in which their linear parts are endowed with real eigenvalues.
For the Hamiltonian Ĥ in Equation (1), this occurs provided that

ε2 − κ2 − γ2 ≥ 0. (3)
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Points in the space of parameters for which equality in Equation (3) holds identify systems with specific
properties. They are called exceptional points (EPs) [1]. Without the loss of generality, we further
assume ε > 0 and κ ≥ 0.

Applying the canonical commutation relations for field operators [5] we obtain the Heisenberg
equations from the Hamiltonian Ĥ in Equation (1),

dâ1

dt
= −γ1 â1 − iεâ2 − iκâ†

2 − iβc â†
2 â2 â1 + l̂1,

dâ2

dt
= −γ2 â2 − iεâ1 − iκâ†

1 − iβc â†
1 â1 â2 + l̂2,

(4)

and the Hermitian-conjugated ones. The fluctuating Langevin operator forces l̂1 and l̂2 are introduced
in Equation (4) in relation to attenuation in mode 1 and amplification in mode 2, respectively.
Their properties [22,23,25],

〈l̂†
1(t)l̂1(t

′)〉 = 0, 〈l̂1(t)l̂†
1(t
′)〉 = 2γ1δ(t− t′),

〈l̂†
2(t)l̂2(t

′)〉 = −2γ2δ(t− t′), 〈l̂2(t)l̂†
2(t
′)〉 = 0, (5)

guarantee validity of the commutation relations for the field operators during the evolution. In mode 1,
they express the fluctuation-dissipation theorem [47,48] according to which any dissipation of the
energy from a system has to be accompanied by back-action from the environment. In analogy,
in mode 2, the Langevin forces represent a part of the ‘fluctuation-amplification theorem’ that occurs as
a consequence of consistent adding the energy into the system [6]. Symbol δ means the Dirac function.

3. Stationary States and Their Stability

First, we address the Heisenberg equations in Equation (4) in their ’classical’ noiseless limit, i.e.,
we write them for the coherent states |αj〉 with complex amplitudes αj = $j exp(iϕj), j = 1, 2:

d$1

dt
= −γ1$1 + [ε sin(ϕ)− κ sin(ψ)] $2, (6)

d$2

dt
= −γ2$2 − [ε sin(ϕ) + κ sin(ψ)] $1, (7)

dϕ1

dt
= − [ε cos(ϕ) + κ cos(ψ)]

$2

$1
− βc$2

2, (8)

dϕ2

dt
= − [ε cos(ϕ) + κ cos(ψ)]

$1

$2
− βc$2

1. (9)

In Equations (6) and (7), we suitably replace the phases ϕ1 and ϕ2 by their sum ψ = ϕ2 + ϕ1 and
difference ϕ = ϕ2 − ϕ1.

To reveal the stationary complex amplitudes α1 and α2, we set the time derivatives in
Equations (6)–(9) to zero. Before analyzing the obtained equations in detail, we note that there
exist the trivial stationary states with $st

1 = $st
2 = 0 and arbitrary values of phases ϕst

1 and ϕst
2 .

Under the stationary conditions, Equations (8) and (9) for the phases ϕ1 and ϕ2 are dependent and,
e.g., Equation (8) gives us:

$st
1 $st

2 = −(cε + cκ)/βc. (10)

To simplify the notation, we use in Equation (10) and below the following functions that substitute
the phases ψ and ϕ:

sε = ε sin(ϕst), cε = ε cos(ϕst), sκ = κ sin(ψst), cκ = κ cos(ψst). (11)
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Furthermore, the coupled Equations (6) and (7) considered to be functions of $st
1 and $st

2 have a
nontrivial solution provided that their determinant is zero:

s2
ε − s2

κ + γ1γ2 = 0. (12)

Equation (6) when combined with Equation (10) gives us the stationary solution for amplitudes:

$st
1,2 =

√
γ2,1

βc

cε + cκ

±sε + sκ
. (13)

According to Equations (12) and (13), one phase, e.g., ψst in the stationary solution is free.
The other phase, ϕst, has to fulfill Equation (12) that admits in general four solutions. The amplitudes
$st

1,2 determined by Equation (13) have to be real and also Equation (10) has to give nonnegative $st
1 $st

2 .
To address stability of the stationary solution, we derive the linearized equations for deviations

δ$1, δ$2, δϕ and δψ from their corresponding stationary values $st
1 , $st

2 , ϕst, and ψst:

d
dt


δ$1

δ$2

δϕ

δψ

 =


−γ1 sε − sκ cε$st

2 −cκ$st
2

−sε − sκ −γ2 −cε$st
1 −cκ$st

1
G+ H+ I+sε I+sκ

G− H− I−sε I−sκ




δ$1

δ$2

δϕ

δψ

 . (14)

The parameters G±, H± and I± are given as follows:

G± =
βc$st

1
sε − sκ

[sε (∓γ1/γ2 − 1) + sκ (∓γ1/γ2 + 1)] ,

H± =
βc$st

2
sε + sκ

[sε (γ2/γ1 ± 1) + sκ (−γ2/γ1 ± 1)] ,

I± = (sε − sκ)/γ1 ± (sε + sκ)/γ2. (15)

For the PT -symmetric case, eigenvalues ν of the dynamical matrix from Equation (14) are given
as roots of the following polynomial:

ν
(
ν3 + bν + c

)
= 0,

b = 4(cε + cκ)(cεs2
κ + cκs2

ε)/γ2, c = −8sεsκ(cε + cκ)2/γ. (16)

The eigenvalue ν1 = 0 is related to the freedom in determining, e.g., the phase ψst of a stationary
state. Provided that cε + cκ = 0, we have ν1−4 = 0 and Equation (13) gives us the trivial stationary
state $st

1 = $st
2 = 0 lying on the border of stability.

Assuming PT -symmetry and special case without χ(2) interaction (κ = 0), we have sκ = cκ = 0
and the phase ψst is arbitrary. On the other hand, one solution for the remaining parameters of the
stationary state is derived from Equations (12) and (13) for βc > 0 in the following implicit form:

sε = γ, cε = −
√

ε2 − γ2, $st
1 = $st

2 = 4
√

ε2 − γ2/
√

βc. (17)

Similarly, we reveal one stationary solution for βc < 0:

sε = γ, cε =
√

ε2 − γ2, $st
1 = $st

2 = 4
√

ε2 − γ2/
√
−βc. (18)

Eigenvalues of the dynamical matrix in Equation (14) are obtained for both solutions in
Equations (17) and (18) as ν1−4 = 0, i.e., the states are at the border of stability.
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For nonzero κ, we first address the stationary states in EPs (PT -symmetric case) for specific
values of the phase ψst. The trivial stationary states with $st

1 = $st
2 = 0 and zero eigenvalues ν1−4 = 0

in the stability analysis are found under the conditions summarized in Table 1.

Table 1. Parameters of the trivial stationary states $st
1 = $st

2 = 0 with zero eigenvalues ν1−4 = 0 for
specific values of the phase ψst.

ψst = 0 sκ = 0 cκ = κ sε = ±γ cε = −κ

ψst = π/2 sκ = κ cκ = 0 sε = ±ε cε = 0

ψst = π sκ = 0 cκ = −κ sε = ±γ cε = κ

ψst = 3π/2 sκ = −κ cκ = 0 sε = ±ε cε = 0

The nontrivial stationary solution with $st
1 = $st

2 =
√

2κ/βc in EPs is revealed for ψst = π and
βc > 0:

sκ = 0, cκ = −κ, sε = γ, cε = −κ. (19)

On the other hand, we have for βc < 0 and ψst = 0 the stationary solution with
$st

1 = $st
2 =

√
2κ/(−βc) in EPs provided that

sκ = 0, cκ = κ, sε = γ, cε = κ. (20)

Both solutions in Equations (19) and (20) have the same eigenvalues ν1,2 = 0 and ν3,4 = ±i2
√

2κ

in the stability analysis, i.e., no amplification of amplitude fluctuations occur.
For an arbitrary phase ψst, Equation (12) admits four possible values for the phase ϕst:

ϕst
1 = ϕst

base, ϕst
2 = π − ϕst

base, ϕst
3 = π + ϕst

base, ϕst
4 = 2π − ϕst

base, (21)

where ϕst
base = arcsin(

√
κ2 sin2(ψst) + γ2/ε). However, only some of them lead to real and

nonnegative amplitudes $st
1 and $st

2 in Equation (13) and nonnegative expression in Equation (10).
According to Equation (12), |sε| ≥ |sκ |. Equation (12) can also be recast into the form suitable for the
discussion:

c2
ε − c2

κ = ε2 − κ2 − γ2. (22)

Considering Equation (22) for ε2 − κ2 − γ2 ≥ 0 we have |cε| ≥ |cκ |. If βc > 0 [βc < 0],
Equation (10) requires cε ≤ 0 [cε ≥ 0] and this admits the phases ϕst

2 and ϕst
3 [ϕst

1 and ϕst
4 ].

The expression (13) for $st
1 requires sε ≥ 0 independently of the sign of βc and so only the phases ϕst

1
and ϕst

2 can be considered. Both conditions are fulfilled only for the phase ϕst
2 [ϕst

1 ] for βc > 0 [βc < 0].
On the other hand, we have |cε| ≤ |cκ | for ε2 − κ2 − γ2 ≤ 0. In this case, cκ ≤ 0 [cκ ≥ 0] is needed

in Equation (10) for βc > 0 [βc < 0] and so ψst ∈ 〈π/2, 3π/2〉 [ψst ∈ 〈0, π/2〉 ∪ 〈3π/2, 2π〉]. Similarly
as above, sε ≥ 0 guarantees nonnegative expression (13) for $st

1 for arbitrary βc, i.e., only the phases
ϕst

1 and ϕst
2 are allowed. According to both conditions, nontrivial stationary states are expected for

the phases ϕst
1 and ϕst

2 in the interval of phase ψst ∈ 〈π/2, 3π/2〉 [ψst ∈ 〈0, π/2〉 ∪ 〈3π/2, 2π〉] for
βc > 0 [βc < 0].

The EPs occurring at the border of two above discussed regions need special attention. According
to Equation (22), we have |cε| = |cκ | at the EPs. The analysis reveals that on the top of the stationary
states characterized in the above two paragraphs, the trivial stationary states with $st

1 = $st
2 = 0

exist for the phase ϕst
3 in the interval ψst ∈ 〈0, π/2〉 ∪ 〈3π/2, 2π〉 and for the phase ϕst

4 in the interval
ψst ∈ 〈π/2, 3π/2〉 independently of the sign of βc.

The above general conclusions are further illustrated in the graphs in Figure 1 where the stationary
states and their stability are analyzed in the plane (γ/ε, ψst) for the case βc > 0. In Figure 1,
we characterize the stationary states by intensities $st2

1 and $st2
2 of modes 1 and 2, respectively. We judge
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the stationary states according to the maximal values of imaginary and real parts of the complex
frequencies ν1−4. A positive (negative) imaginary part means amplification (attenuation) of amplitude
fluctuations around the stationary state (we note the inverse notation for signs for ν and γ). A nonzero
real part then indicates oscillations in the evolution of amplitude fluctuations. We have κ/ε = 0.5 for
the graphs drawn in Figure 1 and so the EP occurs for γEP/ε =

√
3/2 ≈ 0.87. The stationary solutions

for the phase ϕst
1 exist only in the area with exponential increase of amplitudes (γ ≥ γEP), they are

unstable and amplitude fluctuations oscillate. Only at the EP, the amplitudes $st
1 and $st

2 are zero and
the state is at the border of stability. On the other hand, there exist stationary states for the phase
ϕst

2 in the oscillatory regime of amplitude evolution (γ < γEP). According to the graph in Figure 1b
amplitude fluctuations around these stationary states oscillate. They are amplified except for the line
ψst = π that lies at the border of stability (see Figure 1d). According to the graphs in Figure 1e–h,
the pattern of intensity $st2

1 of mode 1 is a mirror image of the pattern of intensity $st2
2 of mode 2 with

respect to the plane ψst = π (compare Equation (13) for γ2 = −γ1 and ±sκ).
The analysis of the graphs for the case with βc < 0 drawn under the conditions of the graphs in

Figure 1 reveals similarity provided that we replace ϕst
1 by ϕst

2 , shift the phase ψst by π and exchange
mode amplitudes $st

1 and $st
2 . This similarity is illustrated in the graphs in Figure 2 where the stationary

intensities and stability parameters are drawn at the EP for both cases. Considering βc > 0 [βc < 0]
and following the graphs in Figure 2, there exist only the trivial stationary states with $st

1 = $st
2 = 0

at the border of stability for ψst ∈ 〈0, π/2〉 ∪ 〈3π/2, 2π〉 [ψst ∈ 〈π/2, 3π/2〉] and ϕst
2 [ϕst

1 ]. For the
remaining phases ψst nontrivial stationary states are found. These states are unstable except for the
state with ψst = π [ψst = 0] and ϕst

2 [ϕst
1 ] that is at the border of stability and amplitude fluctuations

around this state oscillate. Parameters for this state are given in Equation (19) (Equation (20)).
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Figure 1. Maximal values of the real and imaginary parts of four complex frequencies ν in the stability
analysis expressed via functions Ων = log[1 + |Re(ν)|] (a,b) and Γν = sign[Im(ν)] log[1 + |Im(ν)|]
(c,d), respectively, and intensities $st2

1 (e,f) and $st2
2 (g,h) of modes 1 and 2, respectively, as they depend

on dimensionless attenuation/amplification parameter γ/ε and phase ψst for stationary states with
ϕst

1 (a,c,e,g) and ϕst
2 (b,d,f,h) defined in Equation (21); symbol sign gives the sign of the argument, log

means the decimal logarithm, Re (Im) stands for the real (imaginary) part of the argument, κ/ε = 0.5,
and βc/ε = 0.1.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Maximal values of the real and imaginary parts of four complex frequencies ν in the stability
analysis expressed by functions Ων (a,d) and Γν (b,e), respectively, and intensities $st2 of mode 1 (∗)
and 2 (4) (c,f) as they depend on phase ψst for ϕst

2 (see Equation (21)) and βc/ε = 0.1 (a–c) and ϕst
1 and

βc/ε = −0.1 (d–f); EP condition γ =
√

ε2 − κ2 is assumed. Functions Ων and Γν as well as the other
parameters are given in the caption to Figure 1.

4. Quantum Properties of the Evolving States

We analyze the properties of states evolving from the stationary states determined above and
compare them with those characterizing the states originating from non-stationary states. For an initial
stationary state, the evolution is described by the Heisenberg equations in Equation (4) linearized
around the initial complex amplitudes αst

1 and αst
2 (âj = αst

j + δâj, j = 1, 2),

dδâ1

dt
= −

(
γ1 + iβc|αst

2 |2
)

δâ1 − i
(
ε + βcαst

1 αst∗
2
)

δâ2 − i
(
κ + βcαst

1 αst
2
)

δâ†
2 + l̂1,

dδâ2

dt
= −i

(
ε + βcαst∗

1 αst
2
)

δâ1 − i
(
κ + βcαst

1 αst
2
)

δâ†
1 −

(
γ2 + iβc|αst

1 |2
)

δâ2 + l̂2, (23)

and the Hermitian-conjugated ones. When an initial non-stationary state is assumed, we numerically
solve the classical nonlinear Equations (6)–(9) and linearize the Heisenberg equations around the
evolving complex amplitudes α1(t) and α2(t) [45]. In both cases the solution can be expressed in the
following general form[

δâ1(t)
δâ2(t)

]
= U(t)

[
δâ1(0)
δâ2(0)

]
+ V(t)

[
δâ†

1(0)
δâ†

2(0)

]
+

[
f̂1(t)
f̂2(t)

]
,[

f̂1(t)
f̂2(t)

]
=

∫ t

0
dt′U(t− t′)

[
l̂1(t′)
l̂2(t′)

]
+
∫ t

0
dt′V(t− t′)

[
l̂†
1(t
′)

l̂†
2(t
′)

]
, (24)
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in which the matrices U(t) and V(t) and correlation functions of the fluctuating operator forces f̂ j(t),
j = 1, 2, are determined numerically in general [45] and analytically under specific conditions [35,45].

We consider the initial vacuum state for the evolution of operator amplitude corrections. In this
case, the evolving states remain Gaussian and so the following six correlation functions characterize
them completely [22,35]:

〈δâ†
j (t)δâj(t)〉, 〈[δâj(t)]2〉, j = 1, 2, 〈δâ†

1(t)δâ2(t)〉, 〈δâ1(t)δâ2(t)〉. (25)

They are easily determined from Equation (24). All quantities characterizing the evolving states
can then be expressed in terms of the correlation functions (25). For example, the principal squeeze
variance of mode j is obtained as [49]

λj = 1 + 2
[
〈δâ†

j (t)δâj(t)〉 − |〈[δâj(t)]2〉|
]

, j = 1, 2. (26)

Determination of the covariance matrix in the symmetric operator ordering then allows to reach
the logarithmic negativity EN that is a suitable quantifier of the entanglement between the modes
(for details, see [50,51]).

In Figure 3, we compare the state evolution around a stationary state with that occurring around
a non-stationary state. As a stationary state, we consider the state given in Equation (19). The analyzed
non-stationary state evolves from the state that differs from that in Equation (19) in the phase ψinit = 0:

sinit
κ = 0, cinit

κ = κ, sinit
ε = −γ, cinit

ε = κ. (27)

For the stationary state that lies at the border of stability, both intensities $2
1(t) and $2

2(t) increase
during the evolution and the fluctuating forces give dominant contribution to this increase (compare
solid and dashed curves in Figure 3a). Contrary to this, for the initial non-stationary state the intensity
$2

1(t) of attenuated mode 1 first considerably decreases whereas the intensity $2
2(t) of amplified mode 2

increases constantly. According to the curves in Figure 3d, the relative contribution of fluctuating
forces to the dynamics of intensities is small. In both cases, only the attenuated mode 1 exhibits
squeezing (for the principal squeeze variances λ1,2, see Figure 3b,e) and both modes are entangled
(for the logarithmic negativity EN , see Figure 3c,f) for a limited time period. It is worth noting that both
squeezing and entanglement are stronger for the initial non-stationary state. The comparison of curves
in Figure 3b,d for the principal squeeze variances λ1,2 and in Figure 3c,e for the logarithmic negativity
EN drawn with and without the inclusion of fluctuating forces clearly documents substantial role of
these forces in consistent description of PT -symmetric quantum systems.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Intensities $2 (a,d) and principal squeeze variances λ of mode 1 (∗) and 2 (4) (b,e) and
logarithmic negativity EN (c,f) as they evolve along dimensionless time εt for initial stationary
(non-stationary) state with ψst = π [ψinit = 0], $1,2 =

√
2κ/βc and ϕst

2 (a–c) [ϕinit
4 (c–e)] given in

Equation (19) (Equation (27)), assuming γ =
√

ε2 − κ2, κ/ε = 0.5, and βc/ε = 0.1. The initial vacuum
state is assumed, evolution is treated with [without] fluctuating forces (black solid [red dashed] curves).

5. Conclusions

Two oscillator modes with balanced attenuation and amplification were considered to be mutually
coupled via the usual linear coupling, χ(2) parametric process and cross-Kerr nonlinearity. Nontrivial
stationary states that occur owing to the cross-Kerr nonlinearity were identified and their stability was
determined. The stationary states typically form one-parameter systems. There occur only unstable
stationary states and states lying at the border of stability (zero imaginary parts of frequencies in
the stability analysis). The solution of linearized operator equations for mode amplitudes around
these stationary states revealed nonclassical properties of the evolving states (single-mode squeezing,
entanglement). Initial non-stationary states seem to be more suitable for nonclassical-state generation
than the stationary ones at the border of stability. Substantial role of the fluctuating Langevin operator
forces in consistent description of the system was demonstrated.
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