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1. Introduction

The quantization of gravity is one of the most challenging open problems in physics. The Einstein
equations are the Euler–Lagrange equations of the Einstein–Hilbert functional, and quantization of a
Lagrangian theory requires to switch from a Lagrangian to a Hamiltonian view. In a groundbreaking
paper, Arnowitt, Deser, and Misner [1] expressed the Einstein–Hilbert Lagrangian in a form that
allowed to derive a corresponding Hamilton function by applying Legendre transformation. However,
since the Einstein–Hilbert Lagrangian is singular, the Hamiltonian description of gravity is only correct
if two additional constraints are satisfied, namely, the Hamilton constraint and the diffeomorphism
constraint. Dirac [2] proved how to quantize a constrained Hamiltonian system, at least in principle,
and his method has been applied to the Hamiltonian setting of gravity, cf. the paper by DeWitt [3] and
the monographs by Kiefer [4] and Thiemann [5]. In the general case, when arbitrary globally hyperbolic
spacetime metrics are allowed, the problem turned out to be extremely difficult, and solutions could
only be found by assuming a high degree of symmetry, cf., e.g., [6].

However, in the papers [7,8] we developed a model for the quantization of gravity for general
hyperbolic spacetimes. In these papers, we eliminated the diffeomorphism constraint by reducing the
number of variables and proving that the Euler–Lagrange equations for this special class of metrics
were still the full Einstein equations. The Hamiltonian description of the Einstein–Hilbert functional
then allowed canonical quantization.

We quantized the action by looking at the Wheeler–DeWitt equation in fiber bundle E, where the
base space is a Cauchy hypersurface of the spacetime that was quantized and the elements of the fibers
are Riemannian metrics. The fibers of E are equipped with a Lorentzian metric, such that they are
globally hyperbolic, and the transformed Hamiltonian, which is now a hyperbolic operator Ĥ, is a
normally hyperbolic operator only acting in the fibers. The Wheeler–DeWitt equation has the form
Ĥu = 0 with u ∈ C∞(E,C), and we defined a symplectic vector space and a corresponding Weyl
system with the help of Green’s operator.

The Wheeler–DeWitt equation seems to be the obvious quantization of the Hamilton condition.
However, Ĥ acts only in the fibers and not in the base space, which is due to the fact that the derivatives
are only ordinary covariant derivatives and not functional derivatives. Though they are supposed to
be functional derivatives, this property is not really invoked when a functional derivative is applied to
u, since the result is the same as applying a partial derivative.
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Therefore, we discarded the Wheeler–DeWitt equation in the paper [9] and also in the
monograph [10], and expressed the Hamilton condition differently by looking at the evolution equation
of the mean curvature of the foliation hypersurfaces M(t) and implementing the Hamilton condition
on the right-hand side of this evolution equation. We replaced the left-hand side, a time derivative, by
the corresponding Poisson brackets. After canonical quantization, the modified evolution equation
was transformed to an equation satisfied by operators that acted on functions u ∈ C∞(E,C).

Since the Poisson brackets became a commutator, we could employ the fact that derivatives are
functional derivatives since we had to differentiate the scalar curvature of a metric when we applied
the operator equation to a smooth function and tried to simplify the resulting equation. As a result of
the simplification of the commutator action, we obtained an elliptic differential operator in the base
space, the main part of which was the Laplacian with respect to a fiber element. Here, we considered
functions u depending on variables (x, gij), where x is a point in the base space S0, x ∈ S0, and gij is
an element of the fibers. The fiber metrics have the form

gij = t
4
n σij, (1)

where 0 < t < ∞ is a timelike fiber variable, which is referred to as time, n ≥ 3, is the dimension of S0,
and σij is a Riemannian metric, depending only on x, subject to the requirement

det σij = det χij, (2)

cf. ([10] equs. (1.4.103) & (1.4.104), p. 29) and also ([10], Remark 1.6.8). The arbitrary but fixed metric χij
in S0 was introduced to transform densities det gij to functions.

On the right-hand side of the evolution equation, the interesting term was H2, the square of the
mean curvature. It transformed to a second time derivative, the only remaining derivative with respect
to a fiber variable, since differentiations with respect to the other variables canceled each other. The
resulting quantized equation is then a wave equation in a globally hyperbolic spacetime

Q = (0, ∞)× S0, (3)

of the form
1

32
n2

n− 1
ü− (n− 1)t2− 4

n ∆u− n
2

t2− 4
n Ru + nt2Λu = 0, (4)

where S0 is a Cauchy hypersurface of the original spacetime and the Laplacian and scalar curvature
R are formed with respect to a metric σij satisfying (2), and Λ is a cosmological constant. Function u
depends on (x, t, σij).

Since metric χij is also a fiber metric, we may choose σij = χij, and because it is also arbitrary, we
may set χij to be the original metric of Cauchy hypersurface S0, cf. ([10], Remark 1.6.8 on page 49).
Function u then only depends on (t, x), u = u(t, x). For a detailed derivation of Equation (4), we refer
to ([10], Chapter 1.6) or ([9], Section 6).

When S0 is a space of constant curvature then the wave equation, considered only for functions u
that do not depend on x, it is identical to the equation obtained by quantizing the Hamilton constraint
in a Friedmann universe without matter, but including a cosmological constant, cf. ([10], Remark 1.6.11
on page 50) or ([9], Remark 6.11).

There exist temporal and spatial self-adjoint operators H0 resp. H1, such that the hyperbolic
equation is equivalent to

H0u− H1u = 0, (5)

where u = u(t, x). Operator H0 is defined by

H0w = ϕ−1
0 {−

1
32

n2

n− 1
ẅ− nt2Λw}, (6)
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where w = w(t), w ∈ C∞
c (R+,C), and ϕ0 = t2− 4

n , while the definition of H1 is given by

H1v = −(n− 1)∆v− n
2

Rv, (7)

where v = v(x), v ∈ C∞
c (S0,C). More precisely, operators Hi, i = 0, 1, are the corresponding unique

self-adjoint extensions of the operators defined above in the appropriate function spaces.
Assuming Λ < 0, we proved that H0 has a pure point spectrum with positive eigenvalues λi, cf.

([10], Chapter 6.2), especially ([10], Theorem 6.2.5 on page 144), while, for H1, it is possible to find
corresponding eigendistributions for each of the eigenvalues λi, if S0 is asymptotically Euclidean or
if the quantized spacetime is a black hole with a negative cosmological constant, cf. [11–13] or ([10],
Chapters 3–5), and also if S0 is the hyperbolic space S0 = Hn, n ≥ 3, cf. Section 6 on page 13.

Let wi, i ∈ N, be an orthonormal basis for the temporal eigenvalue problems

H0wi = λiwi (8)

and vi be corresponding smooth eigendistributions for spatial eigenvalue problems

H1vi = λivi, (9)

then
ui = wivi (10)

are special solutions of the wave Equation (4).
Temporal eigenvalues λi all have multiplicity 1, the spatial eigenvalues are the same eigenvalues,

but they may have higher multiplicities. In the case of black holes, this is caused by very compelling
intrinsic mathematical reasons, cf. ([10], Chapter 6.4), but unless there are either convincing intrinsic or
extrinsic reasons, like data, we chose the spatial eigenspaces to be one-dimensional because spatial
eigenvalues in general belong to the continuous spectrum of spatial Hamiltonian H1. If S0 is the
Cauchy hypersurface of a Friedmann universe, we only considered smooth spherically symmetric
spatial eigenfunctions, which also leads to one-dimensional spatial eigenspaces, cf. ([10], Chapter 6.6)
for the Euclidean case and Section 6 on page 13 for the hyperbolic case.

One can then define an abstract Hilbert spaceH spanned by the ui and a self-adjoint operator H,
unitarily equivalent to H0, such that

Hui = λiui. (11)

e−βH is then of trace class in H for all β > 0 and the canonical extension of H to the corresponding
symmetric Fock space F , which is still called H, shares this property. Hence, we can define partition
function Z,

Z = tr e−βH , (12)

the operator density
ρ̂ = Z−1e−βH , ∀ β > 0, (13)

the average energy and the von Neumann entropy in F . Eigenvectors ui can also be viewed as
elements of F , and they are also then eigenvectors of ρ̂.

In the present paper, we want to apply these quantum gravitational results to cosmology by
looking at a Friedmann universe

N = I × S0, (14)

where S0 is an n-dimensional simply connected space of constant curvature κ̃,

κ̃ ∈ {0,−1}, (15)
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i.e., S0 is either Rn or the hyperbolic space Hn, n ≥ 3. We tried to answer some questions related to dark
energy, dark matter, inflation, and the missing antimatter. In doing so, we also show that assuming
a negative cosmological constant is not a contradiction to the observational result of an expanding
universe. Usually, a positive cosmological constant is supposed to be responsible for dark energy, and
dark matter is sometimes explained by assuming so-called extended theories of gravity, confer, e.g., the
papers [14,15]. In this paper, we rely on general relativity combined with some quantum gravitational
ingredients.

Let us summarize the main result as a theorem, where ρdm resp. ρde refer to dark-matter
resp. dark-energy densities, which we defined as eigenvalues of operator density ρ̂ in F , and ρ3

is conventional density. Z is the partition function, T > 0 absolute temperature, and λ0 > 0 the
smallest eigenvalue of the Hamiltonian H.

Theorem 1. Let cosmological constant Λ

− 1 < Λ < 0, (16)

be given, and consider the perfect fluid defined by density

ρ = ρdm + ρde + ρ3 (17)

satisfying Assumptions (88), (89), (101) and (102). Moreover, we suppose that β = T−1 and scale factor a are
functions depending on t. The initial value problems

ä
a
= − κ2

n(n− 1)
{(n− 2)ρ + np}+ 2

n(n− 1)
Λ (18)

and
β̇ = −n

ρdm
∂

∂β (ρdm + ρde)
a−1 ȧ. (19)

with initial values (β0, a0, ȧ0) are then solvable in I = [t0, ∞) provided β0 > 0 is so large that (39) on page 5
as well as

2κ2

n(n− 1)
Z−1{1− 1

2
(n− 2)α0e−βλ0}+ 2

n(n− 1)
Λ > 0 (20)

are valid at β = β0 and a0 > 0 has to be chosen such that after adding

− κ2

n(n− 1)
(n(1 + ω3)− 2)γ3a−n(1+ω3)

0 (21)

to the left-hand side of Inequality (20) the inequality still remains valid at β = β0. Initial value ȧ0 is supposed
to be positive. Solution (β, a) then satisfies

β̇ > 0, (22)

ȧ > 0, (23)

ä > 0 (24)

and
2

n(n− 1)
κ2ρ +

2
n(n− 1)

Λ− κ̃a−2 > 0. (25)

In order that (β, a) also satisfies the first Friedmann equation, ȧ0 has to be chosen appropriately, namely, such
that the first Friedmann equation is valid for t = t0, which is possible, in view of (25).

Remark 1. Let us also mention that we use (modified) Planck units in this paper, i.e.,

c = κ2 = h̄ = KB = 1, (26)
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where κ2 is the coupling constant connecting the Einstein tensor with the stress–energy tensor

Gαβ + Λḡαβ = κ2Tαβ. (27)

2. Dark-Energy Density

In [10], Remark 6.5.5, we proposed to use the eigenvalue of density operator ρ̂ with respect to
vacuum vector η, which is Z−1,

ρ̂η = Z−1η, (28)

as the source of dark-energy density, and though this eigenvalue is the vacuum, or zero-point,
energy, and many authors have proposed vacuum energy is responsible for dark energy, these
proposals all assumed the cosmological constant to be positive, while we assume Λ < 0 because
of the spectral resolution of the wave equation; otherwise, the temporal Hamiltonian does not have a
pure point spectrum. However, if Λ < 0, then we have to assure that Z−1 dominates Λ, which is only
the case if

T < T0 = T0(|Λ|). (29)

Note that Z depends on eigenvalues λi and on

β = T−1. (30)

First, we emphasize that we treat
ρde = Z−1 (31)

as a constant, i.e., we define the perfect fluid stress–energy tensor by

Tαβ = −ρde ḡαβ. (32)

Let λi > 0, i ∈ N, be the eigenvalues of temporal Hamiltonian H0 for a given Λ < 0, and let λ̄i be
the eigenvalues for

Λ = −1, (33)

then
λi = λ̄i|Λ|

n−1
n , (34)

cf. ([10], Lemma 6.4.9, p. 172), and define parameter τ by

τ = |Λ|
n−1

n , (35)

where we now assume
|Λ| < 1, (36)

throughout the rest of the paper. We proved in [10], Theorem 6.5.6, p. 180, that

lim
τ→0

Z = ∞, (37)

or equivalently, that
lim
τ→0

ρde = 0. (38)

However, we now derive a more precise estimate of ρde = Z−1 involving β and Λ.

Lemma 1. For any Λ satisfying −1 < Λ < 0, there exists exactly one T0 > 0, such that

Z−1(β) > |Λ| ∀ β > β0 = T−1
0 , (39)
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where we recall that
β = T−1. (40)

Proof. In view of Equation (34) we deduce that

Z(β) ≡ Z(β, λi) = Z̄(γ, λ̄i) ≡ Z̄(γ), (41)

where
γ = β|Λ|

n−1
n . (42)

From relations

0 < E = −∂ log Z
∂β

=
∂ log Z−1

∂β
, (43)

cf. ([10], Equations (6.5.30) and (6.5.32), p. 176),

lim
β→∞

Z(β) = 1, (44)

and
lim
β→0

Z(β) = ∞, (45)

cf. ([10], Theorem 6.5.8, p. 181), we then conclude that there exists exactly one γ0, such that

Z̄−1(γ0) = |Λ| (46)

and, furthermore, that
Z̄−1(γ) > Z̄−1(γ0) ∀ γ > γ0, (47)

completing the proof of the lemma.

Thus, defining dark-energy density by Equations (31) and (32), we immediately deduce:

Theorem 2. Let T0 be the temperature defined in Lemma 1, and assume that temperature T satisfies T < T0;
then, dark-energy density guarantees that the Friedmann universe with negative cosmological constant Λ,

− 1 < Λ < 0, (48)

is expanding, such that
ȧ > 0 (49)

as well as
ä > 0. (50)

Proof. The Friedmann equations for a perfect fluid with energy ρ and pressure p are

ȧ2

a2 =
2

n(n− 1)
κ2ρ +

2
n(n− 1)

Λ− κ̃a−2 (51)

and
ä
a
= − κ2

n(n− 1)
{(n− 2)ρ + np}+ 2

n(n− 1)
Λ. (52)

Choosing ρ = ρde, we also specified
p = −ρde (53)
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yielding
ä
a
=

2κ2

n(n− 1)
ρde +

2
n(n− 1)

Λ. (54)

Moreover, in our units,
κ2 = 1 (55)

and we also only considered space forms satisfying

κ̃ ≤ 0, (56)

hence, the theorem is proved in view of Lemma 1.

3. Inflationary Period

Immediately after the Big Bang, the development of the universe had to have been governed by
quantum gravitational forces, i.e., by the eigenfunctions resp. eigendistributions of the corresponding
temporal and spatial Hamiltonians, which we combined to a single Hamiltonian H acting in an abstract
separable Hilbert spaceH spanned by eigenvectors ui

Hui = λiui, (57)

where the eigenvalues, which all have multiplicity 1, are ordered

0 < λ0 < λ1 < · · · (58)

and converge to infinity
lim
i→∞

λi = ∞. (59)

The dominant energies near the Big Bang are therefore eigenvalues

λi = 〈Hui, ui〉 (60)

for large i, and we assume, when considering the development of a Friedmann universe, that this
development is driven by a perfect fluid

Tαβ = −ρi ḡαβ, (61)

where
ρi = λi. (62)

Looking at Friedmann equations

ȧ2

a2 =
2κ2

n(n− 1)
ρi +

2
n(n− 1)

Λ− κ̃a−2 (63)

and
ä
a
=

2κ2

n(n− 1)
ρi +

2
n(n− 1)

Λ (64)

we conclude that the universe is expanding rapidly, depending on eigenvalue ρi = λi.
The corresponding eigenvector, or particle, ui decays after some time and produces lower-order
eigenvectors, or maybe particles that can be looked at as matter or radiation satisfying corresponding
equations of state.

After some time, the inflationary period ends, and only the stable ground state u0,

Hu0 = λ0u0, (65)



Symmetry 2019, 11, 1005 8 of 15

together with conventional matter and radiation are responsible for the further development of the
Friedmann universe.

Eigenvalue λ0 is of the order |Λ| n−1
n in view of (34) on page 5; hence, it dominates Λ for small

values of |Λ|.

4. Dark Matter

Let ρ̂ be the density operator acting in Fock space F ,

ρ̂ = Z−1e−βH , (66)

where we use the same symbol H to denote self-adjoint operator H in separable Hilbert spaceH, as
well its canonical extension to corresponding symmetric Fock space F+(H) ≡ F . In Section 2, we
defined dark-energy density ρde by

ρde = 〈ρ̂η, η〉 = Z−1 (67)

and we propose to define dark-matter density by

ρdm = α0〈ρ̂u0, u0〉 = α0e−βλ0 Z−1, (68)

where u0 is a unit eigenvector of H satisfying

Hu0 = λ0u0 (69)

and
α0 > 1 (70)

an otherwise arbitrary constant. Its presence should guarantee that there exists β0 > 0, such that

∂

∂β
(ρdm + ρde) < 0 ∀ β ≥ β0, (71)

as we now prove:

Lemma 2. Let α0 satisfy (70) and Λ

− 1 < Λ ≤ Λ0 < 0, (72)

then, there exists β0 = β0(α0, |Λ0|), such that Inequality (71) is valid.

Proof. In view (43) on page 6, we have

∂

∂β
(ρdm + ρde) = −α0λ0e−βλ0 Z−1 + α0e−βλ0 Z−1E + Z−1E, (73)

where

E =
∞

∑
i=0

λi

eβλi − 1
=

λ0

eβλ0 − 1
+

∞

∑
i=1

λi

eβλi − 1
, (74)

cf. ([10], Equation (6.5.32), p. 176) or simply differentiate. Hence, we obtain

Eeβλ0 =
λ0eβλ0

eβλ0 − 1
+

∞

∑
i=1

λi

eβ(λi−λ0) − e−βλ0

≤ λ0eβλ0

eβλ0 − 1
+

∞

∑
i=1

λi

eβ(λi−λ0) − 1

(75)
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and we conclude
lim

β→∞
Eeβλ0 = λ0, (76)

since
∞

∑
i=1

λi

eβ(λi−λ0) − 1
=

∞

∑
i=1

λi − λ0

eβ(λi−λ0) − 1
+

∞

∑
i=1

λ0

eβ(λi−λ0) − 1

≤
∞

∑
i=1

µi

eβµi − 1
+ λ0(λ1 − λ0)

−1
∞

∑
i=1

µi

eβµi − 1
,

(77)

where µi is defined by
µi = λi − λ0 ≥ λ1 − λ0 > 0 ∀ i ≥ 1. (78)

Thus, the right-hand side of Equation (77) is estimated from above by

(1 + λ0(λ1 − λ0)
−1)E(β, µi) (79)

and
lim

β→∞
E(β, µi) = 0, (80)

cf. ([10], Equation (6.5.71), p. 181). Furthermore, we know

λ0 = λ̄0|Λ|
n−1

n , (81)

cf. (34). Combining these estimates, we conclude that there exists

β0 = β0(α0, |Λ0|) (82)

such that
∂

∂β
(ρdm + ρde) ≤ −

α0 − 1
2

λ0e−βλ0 Z−1 ∀ β ≥ β0. (83)

The limits in Equations (76) and (80) are also uniform in |Λ| because of (72).

Dark matter is supposed to be dust, i.e., its pressure vanishes, and hence, ρdm cannot be constant,
which is tantamount to

β 6≡ const, (84)

since we assume that Λ is constant. Thus, ρde is also not constant, though we still assume that its
stress–energy tensor is defined by

Tαβ = −ρde ḡαβ. (85)

Therefore, we can only establish the continuity equation for

ρdm + ρde (86)

and not separately for each density. Let a dot or a prime indicate differentiation with respect to time t;
then, the continuity equation has the form

(ρdm + ρde)
′ = −nρdma−1 ȧ, (87)

because
pdm = 0 (88)

and
pde = −ρde. (89)
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The left-hand side of Equation (87) is equal to

∂

∂β
(ρdm + ρde)β̇ (90)

and we see that the continuity equation can only be satisfied if

β̇ = −n
ρdm

∂
∂β (ρdm + ρde)

a−1 ȧ. (91)

From Lemma 2, we immediately derive

Lemma 3. Let the assumptions of Lemma 2 be satisfied and suppose that ȧ > 0; then, for any solution β = β(t)
of (91) in interval

I = [t0, b), t0 < b ≤ ∞, (92)

with initial value
β(t0) ≥ β0 (93)

inequality
β̇ > 0 (94)

is valid and hence
β(t) ≥ β0 ∀ t ∈ I. (95)

Furthermore, β̇ can be expressed in the form

β̇ = nδ(α0 − 1)−1α0a−1 ȧ, (96)

where δ = δ(t, β0) satisfies
1 ≤ δ ≤ 2 (97)

and
lim

β0→∞
δ = 1, (98)

i.e.,
β(t)− β(t0) ≈ nδα0(α0 − 1)−1(log a(t)− log a(t0)). (99)

Proof.
“(94)” Follows from (71) and (91).
“(96)” To prove the claim, we combine (73), (91) and (76).
“(97)” and “(98)” —same argument as before.
“(99)” Obvious in view of (96) and (98).

Now, we are prepared to solve Friedmann Equations (51) and (52) on page 6 for

ρ = ρdm + ρde + ρ3, (100)

where ρ3 is a conventional density satisfying equation of state

p3 = ω3ρ3 (101)

assuming
ω3 > −1. (102)
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ρ3 is only added for good measure, and we are allowed to assume

ρ3 = 0, (103)

since its presence is not essential.
We also emphasize that we have to solve a third equation, namely, Equation (91). We solve the

Friedmann equations and Equation (91) in the interval

I = [t0, ∞), t0 > 0, (104)

for unknown functions (a, β) with prescribed positive initial values (a0, ȧ0, β0). β0 can be arbitrary but
large enough, such that the assumptions in Lemma 2 and Lemma 3 are satisfied. If ρ3 vanishes then
a0 > 0 can be arbitrary, otherwise it has to be large enough. The last initial value ȧ0 > 0 cannot be
arbitrary, instead it has to be chosen such that the first Friedmann equation is initially valid at t = t0.

If these assumptions are satisfied, then we solve Equations (52) on page 6 and (91). The first
Friedmann equation is then automatically valid. For simplicity, we only consider the case

ρ3 > 0 (105)

to avoid case distinctions. Then, we deduce from the continuity equation,

ρ3 = γ3a−n(1+ω3), (106)

where γ3 > 0 is a given constant.
Let us now prove:

Theorem 3. Let cosmological constant Λ

− 1 < Λ < 0, (107)

be given, and consider the perfect fluid defined by density

ρ = ρdm + ρde + ρ3 (108)

satisfying Assumptions (88), (89), (101), and (102). Moreover, we suppose that β = T−1 and scale factor a are
functions depending on t. The initial value problems

ä
a
= − κ2

n(n− 1)
{(n− 2)ρ + np}+ 2

n(n− 1)
Λ (109)

and
β̇ = −n

ρdm
∂

∂β (ρdm + ρde)
a−1 ȧ. (110)

with initial values (β0, a0, ȧ0) are then solvable in I = [t0, ∞) provided β0 > 0 is so large that (39) on page 5
as well as

2κ2

n(n− 1)
Z−1{1− 1

2
(n− 2)α0e−βλ0}+ 2

n(n− 1)
Λ > 0 (111)

are valid at β = β0 and a0 > 0 has to be chosen such that after adding

− κ2

n(n− 1)
(n(1 + ω3)− 2)γ3a−n(1+ω3)

0 (112)
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to the left-hand side of (111) the inequality still remains valid at β = β0. Initial value ȧ0 is supposed to be
positive. Solutions (β, a) then satisfy

β̇ > 0, (113)

ȧ > 0, (114)

ä > 0 (115)

and
2

n(n− 1)
κ2ρ +

2
n(n− 1)

Λ− κ̃a−2 > 0. (116)

In order that (β, a) also satisfies the first Friedmann equation, ȧ0 has to be appropriately chosen, namely,
such that the first Friedmann equation is valid for t = t0, which is possible, in view of (116).

Proof. By introducing a new variable
ϕ = ȧ (117)

we may consider a flow equation for (β, a, ϕ), where ϕ̇ replaces ä and

ȧ = ϕ (118)

is an additional equation.
Then, choosing β0, a0 as above and ϕ0 > 0 arbitrary, the flow has a solution on a maximal time

interval
I = [t0, t1), t1 > t0, (119)

because of Lemma 2 and Lemma 3. It is also obvious that Relations (113)–(116) are valid in view of
these lemmata.

Furthermore, if interval I was bounded, then the flow would have a singularity at t = t1, which is
not possible in view of Relation (99), which would imply that β, β̇ as well as a and ȧ would tend to
infinity by approaching t1, which, however, contradicts the second Friedmann Equation (109), from
which we then would infer

0 < ä ≤ ca ∀ t ∈ I, (120)

an apparent contradiction. Hence, we deduce

I = [t0, ∞). (121)

It remains to prove that the first Friedmann equation is satisfied if ȧ0 is chosen appropriately.
Define

Φ = ȧ2 − { 2
n(n− 1)

κ2ρ +
2

n(n− 1)
Λ}a2 + κ̃; (122)

then, we obtain
Φ̇ = 0, (123)

in view of the continuity equations and Equation (109), yielding

Φ(t) = Φ(t0) = 0 ∀ t ∈ I. (124)
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5. Missing Antimatter

In [10], Theorem 4.3.1, p. 110, we proved that a temporal eigenfunction w = w(t) defined in R+

can be naturally extended past Big Bang singularity {t = 0} by defining

w(−t) = −w(t), ∀ t > 0. (125)

The extended function is then of class C2,α,

w ∈ C2,α(R), (126)

for some 0 < α < 1 and its restriction to {t < 0} is also a solution of the variational eigenvalue problem.
Hence, we have two quantum spacetimes

Q− = R− × S0 (127)

and
Q+ = R+ × S0 (128)

and a C2,α transition between them. If we assume that common time function t is future directed in
both quantum spacetimes, then the singularity in {t = 0} would be a Big Crunch for Q− and a Big
Bang for Q+; similarly for corresponding Friedmann universes N∓ governed by the Einstein equations.
No further singularities are present, i.e., spacetime N− has no beginning but ends in in a Big Crunch
and is recreated with a Big Bang as spacetime N+.

This scenario would be acceptable if it described a cyclical universe. However, there are no further
cycles, there would only be one transition from a Big Crunch to a Big Bang. Therefore, the mathematical
alternative, namely, that at the Big Bang two universes with opposite light cones are created, is more
convincing, especially if the CPT theorem is taken into account, which requires that the matter content
in the universe with opposite time direction would be antimatter. This second scenario would explain
what happened to the missing antimatter.

6. Spherically Symmetric Eigenfunctions in Hyperbolic Space

Spatial Hamiltonian H1 is a linear elliptic operator

H1v = −(n− 1)∆v− n
2

Rv, (129)

where the Laplacian is the Laplacian in S0 and R the corresponding scalar curvature. We then look for
eigenfunctions or, more precisely, eigendistributions v,

H1v = λv, (130)

such that for each temporal eigenfunction (λi, wi) there exists a matching spatial pair (λi, vi). Product

ui = wivi (131)

would then be a solution of wave Equation (4) on page 2.
If S0 is the hyperbolic space Hn, n ≥ 3, we have

R = −n(n− 1) (132)

and, given any temporal eigenvalue λi, we have to find functions vi satisfying

− (n− 1)∆vi = (λi −
n2

2
(n− 1))vi. (133)
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We also look for spherically symmetric eigenfunctions vi. In hyperbolic space, the radial
eigenfunctions, known as spherical functions, are well-known: For each µ ∈ C, there exists exactly one
radial eigenfunction ϕµ of the Laplacian, satisfying

−∆ϕµ = (µ2 + ρ2)ϕµ (134)

and
ϕµ(0) = 1, (135)

where
ρ =

n− 1
2

, (136)

see, e.g., [16], Section 2 and the references therein. Here, we introduced geodesic polar coordinates
(r, ξ) in Hn, and ϕµ only depend on r. The ϕµ have the integral representation

ϕµ(r) = cn(sinh r)2−n
∫ r

−r
(cosh r− cosh t)

n−3
2 e−iµtdt, (137)

cf. ([17], Equation (6), p. 4).
Since the ϕµ are distributions, they are smooth in Hn, cf. [18], Theorem 3.2, p. 125. Furthermore,

for each i ∈ N, we can choose µi ∈ C, such that

(n− 1)(µ2
i + ρ2) = λi −

n2

2
(n− 1). (138)

Obviously, there are two solutions, µi and −µi, but the corresponding eigenfunctions are identical
as can be easily checked.
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