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Abstract: Overcoming symmetry in combinatorial evolutionary algorithms is a challenge for existing
niching methods. This research presents a genetic algorithm designed for the shrinkage of the
coefficient matrix in vector autoregression (VAR) models, constructed on two pillars: conditional
Granger causality and Lasso regression. Departing from a recent information theory proof that Granger
causality and transfer entropy are equivalent, we propose a heuristic method for the identification of
true structural dependencies in multivariate economic time series. Through rigorous testing, both
empirically and through simulations, the present paper proves that genetic algorithms initialized
with classical solutions are able to easily break the symmetry of random search and progress towards
specific modeling.

Keywords: vector autoregression; genetic algorithms; combinatorial symmetry; structural
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1. Introduction

1.1. The Vector Autoregression Model and Its Limitations

In the field of econometrics, the vector autoregression (VAR) model has been used extensively by
researchers, finance professionals and policymakers for describing the linear dependencies between
economic variables and their past realizations. This framework makes use of simultaneous and
linear equations to identify the underlying causal connections in complex systems, benefiting
recently from information theory proofs that causality in the Granger sense and transfer entropy are
equivalent [1]. Since its proposal [2], the VAR has proven itself as a reliable tool for forecasting, being
extensively used in macroeconomics with ramifications to neuroscience [3] and genetics [4]. It is mainly
data-driven, with intervention from the researcher being required mainly for the customization of
the model to the dataset, then on the estimation procedure itself. Due to its simplicity, the VAR is
an alternative to complicated dynamic stochastic equilibrium models that require expert knowledge
about economic theory, with explicit assumptions being made about business cycles, economic growth
and economic agents.

Vector autoregressions are systems of simultaneous equations expressed in matrix form.
A VAR with k variables and p lags is written as:

yt = a0 +

p∑
i=1

Aiyt−i + εt (1)
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where yt is a k × 1 vector of explained variables, a0 is the vector of intercepts, Ai is the k × k matrix
of linear coefficients for the i’th lagged observations of y and εt represents a vector of independent
error terms.

Despite their success, VAR models present some disadvantages that have challenged the academic
community to improve this methodology over the years. As with any statistical regression, there is a risk
of over-parametrization, meaning the possibility of over-fitting the parameters of the equations to the
dataset with a loss to prediction power. From this point of view, the VAR is prone to over-parametrization,
geometrically proportional to the number of variables considered. To be precise, for a VAR model
with n variables and p lags, the total number of parameters to be estimated increases with the square
of the variable number, i.e., n+pn2. This issue has been dubbed “the curse of dimensionality” or the
tendency of a model to produce biased coefficients when the number of its variables increases [5].

It is well known that bias exists even for first-order VAR. Analytical formulas for asymptotic bias
of the OLS estimator of the slope coefficient matrix for first-order multivariate VAR have been derived
by Reference [6] and in equivalent form by Reference [7] as proved by Reference [8]. In econometric
practice, VAR estimations become biased for ensembles that approach or go beyond six variables, as the
explanatory power is distributed between all variables equally, with loss of economic pertinence [9].
Furthermore, if the number of observations is smaller than the number of variables multiplied by the
number of lags, the system becomes undetermined and cannot be solved.

1.2. Coefficient Shrinkage Methods

One solution to the aforementioned disadvantages consists of imposing restrictions to the sign or
value of some coefficients, a procedure that asks for in-depth knowledge of the phenomena under
study. Incorporating prior beliefs about the direction of the impact of innovations is one of the first
steps taken by researchers towards structure discovery in VARs [10,11].

The over-fitting pitfall of VAR modeling was recognized early on by authors who proposed
Bayesian shrinkage methods for the coefficient matrix. One example is the Minnesota prior [12],
also called the “Litterman prior”, was the first in a series of shrinkage methods that formed
a new class of Bayesian VARs, where the model coefficients are considered stochastic variables
and the assumption about their distribution functions can reduce the search space during numerical
optimization. Specifically, Reference [13] considers that if prior knowledge about the VAR parameters
is sufficiently informative, the noise in the dataset will not overshadow the true signals that explain
most of the model variance. Departing from the assumption of a multivariate “random walk plus drift”
behavior [14], a probability distribution is assigned to the model parameters, reducing the problem of
the estimation from n + pn2 parameters to a few hyperparameters. The prior mean of the coefficients
determines to what level the shrinkage should be done, whereas the prior variance decides by how
much the shrinkage will be done. Other hyperparameters decide the importance ranking between
own lags, other variable lags and exogenous factors. In the original Minnesota prior methodology,
the tightness of the prior was set by maximizing a pre-sample of the data and for that set, minimizing
the out-of-sample forecast error.

When dealing with systems that are dependent on a large number of variables, selecting those
that have statistical significance can become a separate procedure from the actual estimation of the
parameters. Information loss measures like the Akaike [15] or Bayesian [16] criteria help decide which of
a series of competing models has the best goodness of fit and lowest complexity. Choosing between the
two criteria can be a challenging task as Akaike asymptotically yields the lowest prediction error [17],
whilst the Bayesian criterion identifies the true model [18], provided it is present in the candidate set.
Research has proved that asymptotically, the two criteria cannot be combined [19], though the same
researcher shows that when model uncertainty is high [20], mixing AIC and BIC is advantageous.

Usually, in linear regression modeling, we are faced with the trade-off between bias and variance
of the estimators. The more complex a model is the lower the bias of the coefficients but the higher
their variance. Therefore, finding the optimal model complexity is very important for more accurate
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estimations. Considering that linear regression for a high number of variables is an “ill-posed”
problem, [21] proposed the ridge regression, where the optimization focuses on reducing the total sum
of squared errors and adding a penalty for coefficient size. Through regularization, all coefficients have
their size reduced, some of them becoming close, but not equal to zero, which basically is equivalent to
variable selection. A more novel but similar technique is called the Lasso regression [22]. Departing
from the same concept of penalizing coefficient size, the lasso procedure takes the sum of absolute
values of the coefficients when calculating the penalty term, whereas the ridge regression uses the
squared coefficient values. It has been shown that the lasso procedure actually makes some estimators
equal to zero and thus performs shrinkage and variable selection simultaneously [23].

1.3. Model Selection Methods

As with many other areas of statistics, new methodologies of estimation and forecasting have
arisen from the necessity of solving complex real problems. One such field that has pushed the VAR
into explaining the large system of variables is neuroscience and genetics. Just like in the economic
realm, the brain functions as a result of numerous events at the synapse level, with propagation
amongst neighboring neurons in a deterministic and self-reinforcing manner. Parallel to this, genotype
expression is dependent on the activation of individual genes, sometimes with cascading effects.
Scientists have tried applying the VAR methodology to these challenging research problems in order
to gain insight into complex systems that are a priori, difficult to model.

One such research departs from the concept of Granger causality, the idea that causation is
intrinsically dependent on time [17]. Granger postulated that causation is equivalent to past events
having an effect on current ones. This concept is theoretically sound, but even lagged values of random
variables might exhibit multicollinearity and thus require the application of variable selection, so as to
discern true dependencies from indirect ones. Departing from this reality an improved version of
Granger causality was constructed, i.e., conditional Granger causality, introduced by [24] and improved
by [25]. Conditional Causality assumes that the interaction between two variables is composed of three
parts: two asynchronous causal links from one variable to the other, together with a simultaneous link,
which results from the manifestation of a common latent factor. The concept was further expanded
to the multivariate case [19]. Through a causal search algorithm in a network of possible coefficient
dependencies, links that only intermediate causation between variables are phased out because they
become insignificant, conditional on combinations of other variables. Our previous research has
empirically shown that by applying conditional Granger causality to VAR, the number of significant
coefficients in the estimators’ matrix can be reduced [26].

All of the aforementioned methods rely on stable theoretical grounding in statistics. Recently,
thanks to the availability of relevant computing power, more heuristic approaches have made their
way through the field of linear inference and prediction. Such an approach belongs to the field of
evolutionary computation, or “genetic algorithms”, applied predominantly in the domain of machine
learning [27]. This methodology consists of iterating through large spaces of possible solutions,
with the goal of optimizing and objecting functions by selecting and crossbreeding those coefficient
combinations that yield the best results. It was initially applied to the domains of “hard” sciences
like physics, chemistry and biology where the statistical tools have to deal with numerous amounts
of experimental features, with little indication on which variables to choose for adequate [23,28,29].
As early as they were in building new methodology, the authors proved sufficient rigor to highlight
the dangers of partially mathematical, partially empirical modeling. For example, Reference [30] talks
about the incalculable nature of candidate solutions where the covariance matrix of the regressors is
ill-conditioned due to multicollinearity.

Translating to the economic sphere, initial attempts for the incorporation of evolutionary logic into
regression were mainly oriented towards the univariate case, like ARMA identification, or towards
the regressor selection [31–33]. Subsequently, the multivariate case was tackled, with applications
in reducing model complexity for those cases where the total number of calculations required for



Symmetry 2019, 11, 1004 4 of 23

estimation renders the research effort computationally expensive. Specifically, VAR model identification
was proved to be efficient through testing in simulation studies, where a synthetic dataset was
generated using a predetermined model [34]. Useful economical applications for the evolutionary VAR
methodology were mainly orientated towards the manipulation of complex environments for stock
market trading systems or commodities markets forecasting [35,36].

The current research proposes the use of lasso regression and conditional Granger causality,
as components of an evolutionary variable selection methodology applied to the VAR coefficient matrix.
In Section 2, we detail the two-step methodology, composed of a causality search and lasso regression
selection, with enhancements through genetic algorithms (GA). Section 2 will consider the application
of the Lasso-Granger-GA methodology to synthetic and empirical data. Results and a discussion on
the effectiveness of Lasso -Granger-GA algorithm, compared with other methods, will be presented in
Section 3, followed by conclusions in Section 4.

2. Methodology

One of the core principles of natural selection is having a vast genetic pool of candidates from which
the fittest are selected to breed and pass on their characteristics to the next generation. Our approach is
original in the sense that the process of generating candidate solutions to a VAR model identification
is not completely random. Whether it is Granger causality search, or coefficient regularization with
its three flavors—lasso, ridge and elastic net—or any other method for that matter, none of them can
claim supremacy in efficiently modeling all possible data sets. It is for this reason that our approach
considers all multivariate regression algorithms as viable candidates for selection in the framework of
evolutionary optimization.

Classic genetic algorithms are inherently random in nature. Departing from empiric principles,
optimization through evolution believes that given sufficient iterations and a vast base of candidate
solutions, the objective function must converge to its global minima. This holds true if the assumptions
are also true. Sadly, due to limitations in computing power, enormous search space or flawed
initial conditions of the model, genetic algorithms in their purest form remain nothing other than
stochastic optimizations.

In the present research, we employ multiple proven model identification methodologies as a base
for the initial step of population inception in the evolutionary procedure. As such, the search effort
for an optimum value of the objective function is not completely random. In the paragraphs ahead,
three competing coefficient selection algorithms are proposed (stepwise regression VAR, conditional
Granger causality VAR and lasso regression VAR), with the fourth, the evolutionary framework, that
unites them all.

2.1. Competing Approaches to VAR Model Selection

Of the many available possibilities for VAR variable and coefficient selection, four different
approaches have been submitted to performance testing. The first one is represented by the unrestricted
full VAR, where all positions of the matrix of coefficients are considered viable. This will be the
benchmark for comparison against all other methods that attempt to eliminate variables or shrink
coefficients. The second algorithm refers to a form of stepwise variable selection based not on
consecutive additions or subtractions, but on the principle of conditional Granger causality. Moving
forward, the third algorithm belongs to the regression regularization process. Precisely, we apply
the lasso regression technique to the equation by equation process of estimating the VAR, with
the objective of shrinking irrelevant coefficients towards zero. The fourth and final method focuses
on genetic algorithms, with an emphasis on initial population generation using all the previously
mentioned methods.
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2.1.1. Unrestricted VAR and the Identification Problem

As first defined by Reference [1], the vector autoregression represents a multivariate stochastic
process or a simultaneous equation model of the following form:

B0yt = c0 + B1yt−1 + B2yt−2 + . . .+ Bpyt−p + εt. (2)

Equation (2) is the structural representation of a VAR of order p where each variable y is a (k × 1)
vector of historical observation of a stochastic process and εt is a (k × 1) vector of independent
and standard normally distributed errors, ε~N(0,1). In the structural form of the VAR, each term
of the equation has a specific form with a corresponding functional meaning; thus, B0 is a full
rank (k × k) matrix with ones on the main diagonal and possible none zero off-diagonal elements.
From a non-statically viewpoint, B0 describes the contemporaneous causality between variables in
the system. c0 is a (k × 1) vector of constants (bias), or mean values the variables, εt is the vector of
structural shock or innovations. One important feature of these error terms under the structural form
of the VAR is that their covariance matrix Σ = E(εtεt’) is diagonal.

Structural VAR models depart from the assumption that all variables are endogenous to the
stochastic generation process and all should be taken into consideration. The drawback lies with
the presence of B0, the contemporaneous causality effect matrix that cannot be uniquely identified,
requiring k(k − 1)/2 zero restrictions in order to render the OLS estimation of the system possible after
variable reordering. Moreover, in the structural VAR, the error terms are correlated with the regressors.
To solve this issue, both sides of the equation are multiplied by the inverse of B0, leading to the reduced
form of the VAR:

yt = B−1
0 c0 + B−1

0 B1yt−1 + B−1
0 B2yt−2 + . . .+ B−1

0 Bpyt−p + B−1
0 εt. (3)

Replacing B0
−1c0 with c, B0

−1Bp with Ap and B0
−1εt with e, the reduced form of (3) can be

reinterpreted as:
yt = c + A1yt−1 + A2yt−2 + . . .+ Apyt−p + e (4)

In the reduced form, Ω = E(εtεt’) is no longer diagonal. If B0 was known, then, going backwards,
the system could be rewritten in its structural form and estimated. However, there are many possible
values for B0 so that its inverse, multiplied with e, yields an identity matrix. If we instead aim at
measuring the covariance between the error terms of Ω = E(εtεt’), the lower triangular part of the
matrix has (k2/2) + k positions to estimate with k2 unknowns in the B0 matrix, so the system is
undetermined. Faced with these issues, economists resort to short-run restrictions, sign restrictions,
long-run restrictions, Bayesian restrictions or variable ordering depending on the degree of exogeneity.

2.1.2. Conditional Granger Causality VAR

In 1969, Clive Granger embedded the intuition of Wiener about causation into the framework
of simultaneous equation models with feedback or as stated otherwise, vector autoregression
models) [12,29]. According to Granger’s original notation, let Pt(A|B) be the least-squares prediction
of a stationary stochastic process A at time t, given all available information in set B, where B can
incorporate past measurements of one or multiple stochastic variables. Given this definition, the
least-squares autoregressive prediction for A can be:

• Pt(A
∣∣∣A) if only the past of A is considered;

• Pt(A
∣∣∣Ut) if all available information in the measurable past universe (Ut) is incorporated;

• Pt(A
∣∣∣Ut − B) if the perspective of causality from B to A is to be tested.
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A later development of Granger causality [37] tried to set a clear temporal demarcation line between
different types of feedback considering that causation can be decomposed into two instantaneous
components and one lagged component:

FA,B = FA→B + FB→A + FA·B = FB,A (5)

Besides conceptualizing the decomposition of causality, Geweke proposed a proper measure of
“linear feedback” from A to B, or stated otherwise, of causality from A to B, can be defined as:

FB→A = ln
E1

E2
(6)

As explained by Reference [37], this measure has multiple benefits when used to explain causality,
like strict positiveness, invariance to variable scaling, monotony in the direction of causation, asymptotic
chi-square distributional properties. With an in-depth analysis of causality measures being outside the
scope of this paper, readers can find a succinct but comprehensive review about the theory behind
Granger causality and its applications in Reference [38]. Recently, it has been shown [1] that Granger
causality is equivalent to the concept of transfer entropy of Reference [39], bridging the disciplines of
autoregressive modeling and information theory.

We further proceed to detail the conditional Granger causality concept for bivariate VAR and
continue to the same concept for multivariate VAR. First, consider two random variables A and B,
defined as below: {

At =
∑
∞

i=1 a1iAt−i + ε1t, where var(ε1t) = E1

Bt =
∑
∞

i=1 β1iBt−i +ω1t, where var(ω1t) = Ω1
(7)

The bivariate vector autoregression of the two variables can be represented as:{
At =

∑
∞

i=1 a2iAt−i +
∑
∞

i=1 γ2iBt−i + ε2t, where var(ε2t) = E2

Bt =
∑
∞

i=1 β2iAt−i +
∑
∞

i=1 δ2iBt−i +ω2t, where var(ω2t) = Ω2
(8)

with the noise covariance matrix:

Σ1 =

[
var(ε2t) cov(ε2t,ω2t)

cov(ε2t,ω2t) var(ω2t)

]
. (9)

If the measure of feedback between A and B is null, then cov(ε2t,ω2t) = cov(ε2t,ω2t) = 0 and the
coefficients γ2i and β2i are asymptotically zero. If instead the variables are not independent Equation (6)
can be rewritten as

ln
E1 ∗Ω1

det(Σ1)
= ln

Ω1

Ω2
+ ln

E1

E2
+ ln

E2 ∗Ω2

det(Σ1)
= ln

Ω1 ∗ E1

det(Σ1)
(10)

When the conditional Granger causality in a multivariate framework is considered, let us assume
that variable A causes variable C through the intermediation of B, as depicted in Figure 1.
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The bivariate vector autoregression of the A and C can be represented as{
At =

∑
∞

i=1 a1iAt−i +
∑
∞

i=1 λ1iCt−i + ε1t, where var(ε1t) = E1

Ct =
∑
∞

i=1 µ1iCt−i +
∑
∞

i=1 θ1iAt−i +ω1t, where var(ω1t) = Ω1
(11)

with the noise covariance matrix:

Σ1 =

[
E1 cov(ε1t,ω1t)

cov(ω1t, ε1t) Ω1

]
. (12)

By introducing B in the equation system, this becomes:
At =

∑
∞

i=1 a2iAt−i +
∑
∞

i=1 µ2iBt−i +
∑
∞

i=1 λ2iCt−i + ε2t, where var(ε2t) = E2

Bt =
∑
∞

i=1 Υ1iCt−i +
∑
∞

i=1 φ1iBt−i +
∑
∞

i=1 τ1iAt−i + η2t, where var(η2t) = H2

Ct =
∑
∞

i=1 µ1iCt−i +
∑
∞

i=1 δ1iBt−i +
∑
∞

i=1 θ1iAt−i +ω2t, where var(ω2t) = Ω2

. (13)

with the noise covariance matrix:

Σ2 =


E2 cov(ε2t, η2t) cov(ε2t,ω2t)

cov(η2t, ε2t) H2 cov(η2t,ω2t)

cov(ω2t, ε2t) cov(ω2t, η2t) Ω2

. (14)

The Granger causality from A to C conditional on B is:

FA→C|B = ln
E1

E2
(15)

If the causality chain between A and C is entirely dependent on B then the coefficients λ2i should
be uniformly zero and, as a consequence, the variance of the terms ε1t and ε2t is identical and therefore
FA→C|B is equal to 1. The above reasoning can be extended to systems of more than three variables
where the causality is conditioned relative to combinations of multiple time series.

Given the theoretical basis for conditional Granger causality, it is conceivable that a recursive
procedure for real causal connection identification can be devised, with the scope of selecting only
those coefficients in the VAR that point to direct causation. As such we have employed a network
search algorithm that iteratively tests for coefficient significance as explained by Reference [4].

The variable selection algorithm iterations are the following:

(1) Identify for each variable of the dataset which are the individual lags and variables that Granger
cause it. These are called “ancestors”.

(2) After compiling the first list of “ancestors”, each one is tested for significance in a multivariate
VAR by incorporating all possible combinations of two, then three, four, etc. “ancestors”. If during
this testing process the coefficient significance becomes null, the candidate “ancestor” is dropped.

(3) The previous procedure iterates until all possible testing is completed, leaving only the most
resilient “ancestors”.

During algorithm development, variable ordering at initialization was irrelevant to the final
estimation. Regardless of variable or lag shuffling, the procedure yielded the same selection results,
same coefficient values. This stands to show that the principle of conditional Granger causality is
consistent for linear regression.

2.1.3. Lasso VAR

As the VAR has the tendency to become over-parametrized as the number of fitted time series
grows, the estimated parameters of the model have to incorporate large amounts of white noise.
In theory, OLS estimators have the property of being best linear unbiased estimators under very strong



Symmetry 2019, 11, 1004 8 of 23

assumptions, according to the Gauss-Markov theorem. The assumptions state that the expected value
of the model error terms is zero, all error terms have identic finite variance and they are uncorrelated.
Take for example the general case of a linear regression: Y = Xβ+ ε where ε ∼ N

(
0, σ2

)
. This matrix

notation can further be expanded to yi =
∑k

j=1 β jXi j + εi. The unobserved parameters βj are said to

have unbiased estimators β̂ if E
[
β̂
]
= β, where β̂ = c1y1 + c2y2 + . . .+ cnyn, a linear combination of

only observed variables. In practice, bias is always present in the estimation results due to unaccounted
factors that lead to heteroskedacity of errors and correlations between error terms.

Moving forward, OLS is an optimization technique that aims to minimize a loss function, expressed
as the sum of squared residuals of the estimated model with reference to the dataset:

minLOLS
(
β̂
)
=

n∑
i=1

(
yi −Xiβ̂

)2
. (16)

The expected error can be decomposed into parts determined by the “quality” of the model
assumptions, the variance of the data around its long term mean, and unexplained variance:

E

 n∑
i=1

(
yi −Xiβ̂

)2
 = (

E
[
Xβ̂

]
−Xβ

)
bias

2
+ E

[
Xβ̂− E

[
Xβ̂

]]2

variance

+ σ2. (17)

Acknowledgement of these imperfections leads to the understanding that in any estimation
procedure, one has to make a tradeoff between the bias and the variance. As the model complexity
increases, the bias of OLS estimators decreases. Wanting to decrease complexity, one has to accept
a higher variance. In practice, this always leads to a lower in-sample goodness of fit, but better
predictions out of sample. Regularization is a technique where minimization of the loss function is
penalized for model complexity.

In the case of Lasso regression, the sum of the absolute values of parameters is also subject to
minimization alongside the sum of squares:

minLlasso
(
β̂
)
= min

β

{∑n
i=1

(
yi − βo −

∑k
j=1 ui jβ j

)2
+ λ

∑k
j=1

∣∣∣β j
∣∣∣} =

min
β

{∑n
i=1 (yi − βo −

∑k
j=1 ui jβ j)

2
}
subject to

∑k
j=1

∣∣∣β j
∣∣∣ ≤ t.

(18)

Whether it is expressed in a standard form dependent on λ or in a Lagrangian form dependent
on t, choosing a value for this penalty parameters determines large regression coefficients to shrink
in size and thus reduce overfitting. In comparison with ridge regression, where the sum of squared
coefficients is minimized, setting a finite value for the sum of absolute coefficient value determines
shrinkage of some parameters to zero which is, in fact, equivalent to variable selection.

2.1.4. Genetic VAR

Genetic algorithms represent an optimization heuristic that can generate high-quality solutions by
using a global search method that mimics the evolution in the real world. Just like in nature where the
fittest individuals survive adverse conditions through competition and selection, genetic algorithms
resort to selection, crossover and mutation to choose between possible solutions to an optimization
problem. First proposed by Reference [40], genetic algorithm procedures were formalized and tested
through the work of Reference [27]. Applications of genetic algorithms in the field of statistical analysis
have been limited due to their large degrees of freedom that imply a high computational cost. It should
be noted that the theoretical background of evolutionary methods is yet to be defined. Nonetheless,
genetic algorithms have benefited from a proven record of identifying original solutions to classical
problems [41,42]. With respect to regression and VAR estimation, we must mention the recent work of
References [32,35].
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In the GA framework, possible solutions to an optimization problem are referred to as “individuals”
or “phenotypes”. Each individual is characterized by a set of parameters that form up the individuals’
genotype or a collection of chromosomes. Evolution towards an optimal solution thus becomes an
iterative procedure composed of operations like initialization, selection, crossover, mutation and
novelty search. At each iteration, the fitness of each surviving individual is assessed and the fitness
function represents the objective function that is being optimized.

Just like evolved organisms have necessitated millions of years to perfect themselves, genetic
algorithms require numerous trials on random individuals to select the fittest ones. Translating
these requirements to variable estimation in the VAR coefficient matrix, an individual is identified by
(lag number × n2) + n genes, representing the lagged coefficients and the constant terms, where n is
the number of variables in the system. If one coefficient is insignificant, then its corresponding gene
value should be zero, meaning that the gene is inactive; otherwise, the gene expression would equal
the true value of the coefficient. The purpose of the genetic algorithm is to select those individuals
who have a corresponding genotype ensuring the best fitness. Just like in classical VAR estimation, the
fitness/objective function should be the maximum likelihood of the model. Other fitness functions
like Akaike or Bayesian criteria could be employed, but in order to compare the GA methodology
with other well-known procedures, consistency must be maintained with respect to the maximum
likelihood objective.

Departing from the theoretical view of linear algebraic equations, the parameter search space of
a VAR can also be regarded as an infinite population of candidate solutions. From this vast population,
different samples can be extracted and tested for fitness in relation to a given objective function.
Through selection, feature cross-over and mutation, a process of repetitive convergence can orient the
search towards a good if not optimal solution for the model parameters. In the case of the VAR the
principles of competitive evolution are described as follows:

Step 1: Initialization. When doing genetic programming, ensuring a high diversity of individuals
is essential for unearthing original combinations. An individual is represented by a matrix of binary
entries, equal in size to the VAR matrix of coefficients (number of variables × number of lags).
For bitstring chromosomes, a standard method [43] of uniformly sampling the search space is to toss
a fair coin, though empirically better procedures have been proposed by Reference [44] The matrix of
coefficients is reshaped into a linear vector with the same number of elements in order to create the
candidate genome required for subsequent operations of mutation and cross-over, as in Figure 2.Symmetry 2019, 11, × FOR PEER REVIEW 9 of 23 
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A zero entry represents an inactive link between a lagged variable and the explained variable
specific to each VAR equation, basically a statistically insignificant coefficient. Entries equal to one refer
to coefficients that will be later estimated. One requirement for the initialization step is to propose
diverse individuals. The more different the proposed genotypes are, the larger the search space covered
during initialization. This insight has proven most useful in the machine learning domain where new
architectures for problem solving are tedious and hard to conceive [45].

The random generation of individuals can be very costly in terms of computational effort.
Canonical genetic algorithms that perform complete random initialization of the population have been
shown to never be able to reach a global optimum without the preservation of the best individual over
generations [46]. One cause of this lies in the symmetry of the search space, where quality solutions
are recombined with their complementary counterparts, resulting in random drift [47]. Moreover,
to find a global solution it is necessary that the initial population set contains an individual close to the
global optimum which increases time complexity, in contradiction with the optimization philosophy of
quick convergence. As an example let us consider the sum of all combinations of n taken k, where n is
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the product (number of model variables × number of lags). According to the binomial theorem:∑n
k=1

(
n
k

)
= 2n

− 1. Therefore, the time required to go through all possible coefficient combinations

grows exponentially with the number of variables and lags as shown in Table 1. One possible solution
to overcome combinatorial randomness is the application of niching methods for the identification of
local optima in the initial solution population [48].

Table 1. Number of possible models to generate for different levels of complexity.

Number of lags

1 2 3 4 5

Number of model
variables

1 1 3 7 15 31
2 3 15 63 255 1023
3 7 63 511 4095 32,767
4 15 255 4095 65,535 1,048,575
5 31 1023 32,767 1,048,575 33,554,431
6 63 4095 262,143 16,777,215 107 × 107

7 127 16,383 2,097,151 268 × 106 344 × 108

8 255 65,535 16,777,215 429 × 107 110 × 1010

9 511 262,143 134 × 106 687 × 108 352 × 1011

10 1023 1,048,575 107 × 107 110 × 1010 113 × 1013

Source: Authors’ calculations.

In order to better guide the inception process towards the zones of potential global optimum,
the initial population is inseminated with the results of the simplified, conditional Granger and Lasso
VAR. These three individuals will ensure that potentially beneficial genes are identified from the start
and if so, are guaranteed to survive overall generation. This is our original approach that not only
reduces computation time but as proved in the sections to follow, ensures a good model identification.
By having incorporated in its initial genome a set of very fit individuals the VAR estimation algorithm
does not stray towards potentially deceiving local optimum.

Step 2: Selection. Having an initial candidate population, the algorithm continues by selecting
a small percentage of the fittest individuals. The fitness function takes in the binary coefficient matrix
and estimates the VAR only for the non-zero parameters. The output is the matrix of estimators, together
with its corresponding log-likelihood. As recommended in the literature a batch of random individuals
is also selected, regardless of their fitness [49,50]. Despite being counterintuitive, experience in genetic
algorithm optimization has proven that some gene combinations must survive the selection process as
their utility might become relevant after a few generations [49].

One of the advantages of genetic algorithms is that the fitness function can take any form.
If for OLS the mean squared error is chosen, or the likelihood function for MLE, we chose to minimize
the information criteria. To be precise, the fitness function was the product of the Akaike information
criterion [15] and the Bayesian information criterion [16]. Such a choice was motivated by the actual
purpose of the research, that of extracting structural relations from the VAR matrix of coefficients
by doing variable selection. Both of the information criteria try to strike a balance between the
in-sample goodness of fit and the number of parameters used in the estimation. Denoting the value
of the likelihood function with L, with n the number of observations and with k the total number of
parameters, the formulae for the two information criteria are:

AIC = 2n− 2ln(L) and BIC = ln(n)k− 2ln(L) (19)

Step 3: Cross-over. Individuals that survived the first generations have their genotypes combined
to a certain degree expressed by a percentage at choice. Similar to the natural laws of evolution,
the purpose of selection is cross-over and passing of the strongest genes to off-springs. As the number
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of combinations can become very large even for a small batch of individuals, it is recommended that
the cross-over be done between genotypes with a lower degree of similarity, as shown in Figure 3 [51].
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Step 4: Mutation. The process of continuous selection and crossover may lead to a convergence of
the optimization algorithm to local optima. It is then necessary to introduce random mutations to each
generation so as to keep open other search paths that might have been missed during initialization. Just
like in cross-over, a degree of mutation is chosen beforehand by the user. Precautions must be taken
when setting the percentage of genes that can suffer mutations at each generation. A large coefficient
can lead the optimization to becoming basically a random search. On the other hand, a small mutation
degree can limit the search possibilities and not lead to a globally optimal solution.

Step 5: Fitness improvement. Iterate through steps 3 and 4 (cross-over and mutation) until the
average fitness of each generation cannot be improved. The entire process can be summarized by the
diagram in Figure 4.Symmetry 2019, 11, × FOR PEER REVIEW 11 of 23 
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2.2. Performance Assessment Criteria

Any statistical estimation procedure can present different degrees of performance in-sample or
out-of-sample. A higher number of estimators leads to better goodness-of-fit in-sample model but
yields poor forecasting performance. An optimal model would be characterized by a parsimonious
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structure, a good fit on the calibration data and low error on the test data. For these reasons, the GA
VAR estimation procedure was assessed through multiple criteria, as shown in Table 2.

Table 2. Performance criteria used in simulation testing.

Criterion Source Decision

Likelihood of the model parameters given the data [52] Higher is better
Number of estimated parameters Lower is better
Mean of squared errors for forecasting 5% of the dataset Lower is better
Akaike information criterion [41] Lower is better
Likelihood of the model parameters given the data [42] Lower is better

2.2.1. Performance Assessment of Competing Algorithms through Simulation

One of the main benefits and also the goals of variable selection in VAR estimation is the increase
in model parsimony. As such, the design of the Monte Carlo simulation for testing the efficiency
of the evolutionary VAR versus conditional Granger VAR, unrestricted VAR or lasso VAR, focused
on expanding the data complexity on two dimensions: number of variables and number of lags.
The evident expectation would be that with every step increase in the size of the matrix coefficient, the
model forecast power will become diffuse, spreading equally amongst variables and lags.

Given the fact that solving for a VAR model through numerical optimization has a computational
complexity of O (l × n2) for l lags and n variables, the simulations were capped at a maximum thirty
variables and eight lags. Usually, VAR modeling is limited size if short or long run restrictions are not
imposed on the coefficient matrix and on the covariance matrix. Moving beyond a large number of
variables generates bias risk in OLS or maximum likelihood estimations.

Simulating such large VAR systems requires that the data generated remain wide-sense stationary,
meaning that the mean and variance of each series are constant in time. This stability condition
is equivalent to ensuring that the VARs reverse characteristic polynomial has no roots in or on the
complex unit circle, which is equivalent to ensuring that in the limit the simulated processes do not
reach infinity or do not converge to zero [9].

In terms of simulation parameters, we chose to test for all combinations of two to 14 variables and
one to six lags. Model complexity was increased steadily in both dimensions, with an expectation for
all approaches to recording a reduction in accuracy with regards to the goodness of fit and forecast
power, as the size of the model grew. For each combination of lags and variable number, ten synthetic
datasets were generated, independent of each other in order to average out any extreme values that
might occur in the generation process. A length of 80 time steps was selected, as a proxy for almost
20 years of quarterly macroeconomic data points. For each synthetic dataset a VAR was estimated
through the two proposed methods and subsequent comparison criteria were computed.

2.2.2. Performance Assessment of Competing Algorithms on Empirical Data Sets

Any statistical methodology, regardless of its theoretical grounding, has to withstand the test of
real data. Both in-sample goodness of fit, as well as prediction accuracy, are ultimately the purpose of
devising that methodology. Model selection algorithms have been formulated primarily to push the
limits of linear modeling towards ever increasing complexity. A few decades ago, the VAR paradigm was
originally conceived to leave aside the subjective assumptions economists made about the phenomena
under study [2]. Giving exclusive voice to the data can work as long as the noise component acquired
with it does not drive total model variance over the estimation algorithms capacity of discrimination.

Our research chose two macroeconomic different data sets for testing, each with its own purpose
in revealing the advantages or limitations of the current estimation method. All series that were not
stationary, were subsequently rendered so by de-trending, eliminating seasonality and taking the
first difference.
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US dataset—a dataset of seven macroeconomic variables for the United States economy.
The choice was made to employ an identical dataset with the one used by Mathworks (https://www.
mathworks.com/help/econ/examples/modeling-the-united-states-economy.html) in their example of
vector error-correction (VEC) estimation, for reasons of data quality and notoriety. Moreover, this
dataset was inspired by the research done on DSGE modeling for the Euro Area by [53]. The data,
presented in Table 3, is collected from the Federal Reserve Economic Database for the period 1957–2016
on a quarterly frequency.

Table 3. US macroeconomic indicators (1957:Q1 (31 March 1957) through 2016:Q4 (31 December 2016)).

FRED Series Description

GDP Gross Domestic Product (USD billions, Quarterly)
GDPDEF Gross Domestic Product Implicit Price Deflator
COE Paid Compensation of Employees (USD billions, Quarterly)
HOANBS Nonfarm Business Sector Hours of All Persons
FEDFUNDS Effective Federal Funds Rate (Annualized, Percent, Monthly)
PCEC Personal Consumption Expenditures (USD billions, Quarterly)
GPDI Gross Private Domestic Investment (USD billions, Quarterly)

Euro area dataset (the EUROZONE is composed of 19 EU member states that acceded to the zone
in the following order: 11 (Austria, Belgium, Finland, France, Germany, Ireland, Italy, Luxembourg,
Netherlands, Portugal and Spain) 1999; Greece 2001; Slovenia (2007), Cyprus (2008), Malta (2008),
Slovakia (2009), Estonia (2011), Latvia (2014) and Lithuania (2015).)—Quarterly observations for
eight macroeconomic indicators in the Euro area between Q1 2005 and Q2 2017. Due to Euro area
enlargement over the years, the indicators were calculated for the entire country set depending on the
year of reference. We add to this database the global oil price in the form of West Texas Intermediate
(WTI). Data on Euro area macroeconomic indicators originated from Eurostat, while data for oil price
was collected from the Federal Reserve Economic Database. Data are presented in Table 4.

Table 4. Euro area macroeconomic indicators (2015:Q1–2017:Q2).

Indicator Measure

Money market interest rates Rates on money markets, 3-month rates

Euro/USD exchange rates

Gross domestic product at market prices Millions of euros

Real labor productivity per person GDP/ Total employment, all industries, in persons

Nominal unit labor cost based on persons Ratio of labor costs to labor productivity

Employment rate Number of persons aged 20 to 64 in employment by
the total population of the same age group

Government consolidated gross debt Total gross debt at nominal value outstanding at the
end of the year (percentage of GDP)

Global oil price Crude Oil Prices: West Texas Intermediate (WTI)

2.3. Utility of Model Shrinkage and Selection in Explaining Networks

Since its inception, the VAR has been considered a tool for revealing the interdependencies in
a nation’s economy. Used by central banks, international financial institutions like the International
Monetary Fund or the World Bank, the VAR methodology has been perfected to the point that it is
currently used for DSGE model validation [54]. Once estimated, the VAR can serve as a simulation
tool for the sensitivity of the analyzed systems through the use of impulse response functions.

Given that through variable selection the matrix of autoregressive coefficients is stripped of
false causation relations, one can perceive the final estimation result as a structural representation of

https://www.mathworks.com/help/econ/examples/modeling-the-united-states-economy.html
https://www.mathworks.com/help/econ/examples/modeling-the-united-states-economy.html
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economic interactions. In this sense, the coefficient matrix resembles an adjacency matrix characteristic
to graph theory analysis, as follows: (i) Matrix indices can be assimilated to nodes; (ii) viable coefficient
positions (non-zero coefficients) are edges between nodes; (iii) coefficient signs give the edge direction;
(iv) coefficient values symbolize distance measures between nodes. With all these elements in place,
a graphical representation of the VAR estimation results is possible, allowing for a more direct
interpretation of identified causalities. Going forward, this research focuses on a graph like the
representation of the coefficient matrix by employing the minimum spanning tree topology [55].

3. Results and Discussion

Under the present section, the performance of the proposed estimation algorithms is measured.
Two dimensions are given to the evaluation procedure: theoretical performance under a simulation
environment and empirical performance for two different real-world data sets. Despite our best efforts
to design sufficiently extensive simulations so as to converge towards idealistic testing conditions,
the availability of computing power has limited the Monte-Carlo experiments to no more than
14 variable models.

3.1. Simulation Performance Results

For the simulation testing, three algorithms were chosen: unrestricted VAR, conditional Granger
VAR and evolutionary VAR. The first one represents the benchmark for the last two. Despite the
possibility of testing more algorithms, we decided to concentrate on the two most novel and original
approaches to save computing time. Given the limited number of observations (80), for some large
combinations of variables and lags, the unrestricted VAR estimation failed, due to the constraint on the
covariance matrix to be positive definite.

3.1.1. Number of Estimated Model Parameters

Counting the total number of parameters to estimate, where the bias terms are also included,
the simulation results show a clear difference between the three approaches. With no surprise, the
unrestricted VAR presents the highest number of estimated parameters, as there is no variable selection
procedure involved. In second place, the evolutionary approach drives the total parameter count to
about half of the benchmark scenario. A notable difference in evolutionary VAR with respect to all
other methods is the choice of an objective function oriented towards the minimization of information
criteria. Such an optimization principle must take into account both model likelihood as well as the
total number of parameters so it is a type of multi-objective optimization.

Continuing on the path of model complexity evaluation, the conditional Granger causality VAR is
by far the most penalizing with extremely low parameter count, even for the most demanding test.
For example, at 14 variables and 6-lag VAR, there are only 15 parameters to estimate. Upon the analysis
of the coefficient matrix, we have observed that most of the coefficients are clustered towards the most
recent lags with the rest of the matrix converging to zero. One explanation would consist in the way
the conditional Granger causality principle works; if there are any collinearities between the lagged
time series involved, it immediately eliminates.

Thinking of the high number of variables and lags integrated into the most complex models,
the probability is high to encounter linear combinations of two or more series that explain at high
accuracy another one. What is indeed surprising is the migration to most recent lags effects. Though the
selection procedure for the conditional Granger VAR unravels all time lags and treats them with equal
importance, it seems that time causality takes precedence. This effect has in itself sufficient logical
sense as past information is to some degree integrated into the most recent realizations due to the
deterministic generation process that created all observations in the first place. The visual examination
of Table 5 highlights the general tendency of every approach to demand more parameters for estimation
as model complexity increases.
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Table 5. Number of estimated parameters against the number of lags and variables.

Number of
variables

Number of Lags

Unrestricted Conditional Granger Evolutionary

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

4 16 32 48 64 80 96 3 2 4 2 4 1 4 5 10 10 13 16
6 36 72 108 144 180 216 2 4 7 5 3 3 10 11 17 25 37 56
8 64 128 192 256 320 384 4 8 2 5 2 6 10 27 50 64 82 122

10 100 200 300 400 500 10 8 5 8 7 10 20 53 85 128 202 232
12 144 288 432 576 6 9 18 9 6 17 31 83 142 239 377 226
14 196 392 588 784 8 20 15 10 13 15 43 143 210 742 272 212

3.1.2. VAR Log Likelihood

Ordinary least-squares regression is guaranteed to offer better in-sample fit as the number
of explanatory variables increases. Under the present simulation, one can observe in Table 6 how
unrestricted VAR produces the highest model likelihood, with an unclear differentiation between
conditional Granger and evolutionary VAR. Though this result is expectable for the unrestricted
approach, having similar likelihood between conditional Granger and its genetic selection counterpart
proves that the in-sample fit can also be obtained through parsimonious modeling.

Table 6. Model likelihood by number of variables and number of lags.

Number of
Variables

Number of LAGS

Unrestricted Conditional Granger Evolutionary

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

4 −0.98 −0.96 −0.96 −0.93 −0.93 −0.89 −0.98 −1.01 −1.01 −1.04 −1.04 −1.1 −1.04 −1.03 −1.03 −1.02 −1.04 −1.01
6 −0.96 −0.95 −0.92 −0.89 −0.87 −0.81 −1.01 −1 −1.03 −1.06 −1.08 −1.14 −1.03 −1.04 −1.05 −1.05 −1.06 −1.04
8 −0.95 −0.93 −0.88 −0.86 −0.79 −0.66 −1 −1.04 −1.1 −1.1 −1.15 −1.25 −1.04 −1.03 −1.02 −1.04 −1.06 −1.09

10 −0.95 −0.91 −0.87 −0.79 −0.62 −1 −1.06 −1.09 −1.15 −1.32 −1.15 −1.05 −1.03 −1.05 −1.06 −1.06 −0.85
12 −0.94 −0.88 −0.83 −0.68 −1.02 −1.09 −1.11 −1.27 −1.27 −1.85 −1.04 −1.03 −1.06 −1.05 −0.73 −0.15
14 −0.93 −0.87 −0.74 −0.19 −1.02 −1.09 −1.2 −2.02 −1.67 −1.05 −1.04 −1.04 −1.07 −0.79 −0.33 −0.95

3.1.3. Forecast Error

A final segment of 5% from the synthetically generated data was chosen to assess prediction
error. By visual inspection of Table 7, an uninformed observer can only discriminate the precedence of
the last two selection algorithms over the unrestricted VAR, but cannot synthesize a conclusion over
all scenarios.

Table 7. Model MSE by number of variables and number of lags.

Number of
variables

Number of Lags

Unrestricted Conditional Granger Evolutionary

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

4 1 1 0.8 1.1 1.3 1.4 1 1 1.2 1 0.9 1 1 1 1 0.9 0.8 0.6
6 1 1 1.1 1.2 1.4 1.3 1 1.1 1 1 0.8 0.9 1 0.9 0.9 0.9 0.8 0.8
8 1 1.2 0.9 1.6 1 1.7 1 1 1.1 0.7 1.1 0.7 1 0.9 1 0.7 0.9 0.5

10 1 1.3 1.3 1.6 1.9 1 0.8 0.9 0.9 0.6 1.2 1 0.8 0.8 0.5 0.5 0.8
12 1 1 1.1 1.7 1 1 1 0.6 0.8 0.8 1 1 0.9 0.6 1.2 1.2
14 1.1 0.8 1.2 2.5 1 1 1 0.4 0.8 1.1 0.9 1.2 0.8 0.2 1.2 0.9

By means of plotting the average MSE over all lag scenarios for conditional Granger and genetic
selection, followed by reporting the difference to the unrestricted approach, one can see a slight
advantage for genetic algorithms (Figure 5). Better performance on prediction for the genetic selection
procedure is due to the objective of optimizing both likelihood and model complexity, whereas
conditional Granger causality selection focuses first on model simplification and lastly on goodness
of fit.
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Figure 5. Average MSE for increasing levels of complexity (difference to unrestricted VAR).

Though genetic algorithms produce slightly better predictions out of sample, it is important to
mention that this type of optimization is not a universal solution for all use cases. To prove this we
have conducted an additional simulation for a fixed size VAR model with eight variables and four
lags and steadily increased the sample size from 50 observations up to 300 observations. Under this
new simulation, depicted in Figure 6, the mean square error was indeed higher for the evolutionary
approach only for small sample sizes, up to 100 observations. Beyond this threshold, all models began
converging to similar prediction power. Actually, the conditional Granger and evolutionary algorithms
manifest almost identical forecast errors. This proves that variable selection in VAR models should be
employed only when the sample size reported to model complexity is low and the system either is
under-identified or does not have sufficient observations for efficient inference.Symmetry 2019, 11, × FOR PEER REVIEW 16 of 23 
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3.1.4. Model Information Criteria

As a final step in the evaluation, information criteria isolate in one measurement, model efficiency.
If a researcher attempts to use a model not for forecasting but for relationship inference, then information
criteria point to those configurations that best describe a process in a most simple way. Both AIC and
BIC criteria find a measure for the distance between the true likelihood of the data and the fitted
likelihood. Information criteria have been criticized for their underlying assumptions on parameter
distribution and for the fact that they might lead to over-simplified models [56]. As true as this is,
any other estimation method like OLS or MLE has to resort to a distributional assumption about
the data.

As BIC constantly chooses models with fewer parameters than the AIC, but in the light of the
critique about over-simplification through information criteria, we chose to use both indicators in
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the evaluation. To be precise the product of the two criteria was calculated for all testing scenarios.
These products were later scaled, with reference to the mean of all products. Comparative results can
be found in Table 8.

Table 8. Relative AIC × BIC product.

Number of
Variables

Number of Lags

Unrestricted Conditional Granger Evolutionary

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

4 1 1 1.1 1.1 1.2 1.2 0.9 0.9 0.9 0.9 0.9 0.9 1.1 1 1 0.9 0.9 0.9
6 1 1.1 1.1 1.2 1.2 1.2 1 0.9 0.9 0.9 0.8 0.9 1 1 1 0.9 0.9 0.9
8 1 1.1 1.2 1.2 1.3 1.2 0.9 0.9 0.9 0.8 0.8 0.8 1 1 0.9 0.9 0.9 1

10 1.1 1.1 1.2 1.3 1.2 0.9 0.9 0.8 0.8 0.8 0.9 1 1 1 1 1 1.1
12 1.1 1.2 1.2 1.2 0.9 0.9 0.8 0.8 1 1.8 1 1 1 1 1 0.2
14 1.1 1.2 1.2 0.7 0.9 0.8 0.8 1 1.6 0.9 1 1 1 1.3 0.4 1.1

As depicted in Table 8 and Figures 7 and 8, the conditional Granger causality approach produced
the most efficient model selection. This is most probably due to the extremely low number of
estimated parameters that yielded likelihoods and forecast errors similar to the evolutionary approach.
Under these clear results, we can conclude that conditional Granger causality is a recommendable
method of model selection.Symmetry 2019, 11, × FOR PEER REVIEW 17 of 23 
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3.2. Empirical Performance Results

3.2.1. US Economy Data Set

Table 9 presents the results of our estimations based on the US economy macroeconomic indicators
datasets. Concentrating on the methodological efficiency of the genetic variable selection the most
important observation focuses on the ability of the algorithm to produce the smallest mean squared
error, 0.88% per observation. In the case of the forecast error, the pure GA variable selection method
equals the performance of the simplified VAR algorithm. This latter method has lower likelihood but
also produces a slimmer model with only 32 parameters. Moving on to the log-likelihood, the best
result is represented by the unrestricted VAR, where no variable selection occurs. This is to be expected
of any model that incorporates a higher and higher number estimators, which of course comes at
the expense of forecast accuracy. What stands out is the ability of the GA algorithm to improve the
log-likelihood of the classical unrestricted model, from 7489 to 7860, and also reduce the error from
1.02% to 0.88%. This interesting result proves that evolution through cross-over and mutation can
reduce the variance of the estimators by focusing on model efficiency, a double advantageous result,
from a single objective function to optimize. AIC and BIC criteria pertain only to in-sample data points
but, by the elimination of unnecessary parameters, total variance and bias in the model decrease,
leading to better forecasting.

Table 9. Relative AIC × BIC product.

Indicator Unrestricted
VAR

Simplified
VAR

Conditional Granger
Search

Lasso
Regression

GA Variable
Selection

Log-Likelihood 7489 7294 7286 7420 7860

Model number of
parameters 196 32 16 71 121

Mean squared error 1.02% 0.88% 0.94% 0.92% 0.88%

Akaike criterion −14,571 −14,510 −14,527 −14,684 −15,465

Bayesian criterion −13,879 −14,377 −14,448 −14,418 −15,022

Source: Authors’ calculations.

The lowest number of parameters, 16, is obtained, naturally, when applying the conditional
Granger causality, with the objective of eliminating all indirect links between variables. A similar
result is obtained for the GA modified conditional Granger causality algorithm. Moving forward
to the Akaike and Bayesian information criteria, genetic algorithms produce the best results. This is
most probably due to the high likelihood score that compensates for the large number of parameters
employed. Overall, in the case of an empirical dataset, GA brings improvements to both coefficient
estimation and model selection.

A visual interpretation of the core links in the US economy dataset identifies the great influence
that personal consumption has over the overall level of the GDP and compensations of employees—see
Figure 9. This observation stands out for the US economy, built on consumerism as a driving factor
for growth.

3.2.2. Euro Area Dataset

Our second empirical test was conducted on the Euro area collection of macroeconomic indicators.
In line from the Monte-Carlo simulations, the best performing approaches were those based on
conditional Granger causality and evolutionary selection—see Table 10. A notable observation should
be made for the Lasso regression algorithm: scores were good on all evaluation criteria proving that
the Lasso is a balanced approach that accomplishes model selection and insures both in-sample as well
as out-of-sample fit.
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Table 10. VAR estimation on the Euro area dataset.

Indicator Unrestricted
VAR

Simplified
VAR

Conditional Granger
Search

Lasso
Regression

GA Variable
Selection

Log-Likelihood 143 −228 −223 −80 12

Model number of
parameters 324 70 17 90 149

Mean squared error 0.24 0.45 0.21 0.20 0.22

Akaike criterion 380 615 497 358 293

Bayesian criterion 1114 789 555 576 650

Source: Authors’ calculations.

In terms of genetic optimization design (see Figure 10), convergence reached a plateau after about
ten generations with minor improvements afterwards. This shows that the initial initialization step was
efficient in laying the ground for a fit future population. Our approach of insemination of competitive
genes obtained from other estimation algorithms (Conditional Granger, Lasso), has reduced the search
effort and diminished randomness. Under this approach, steps like initialization and selection take
precedence over mutation.
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The portrayal of the evolution of the best genome of each generation highlights a stabilization of
the chromosome configuration after the 14 generation—see Figure 11. Though the selection process
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loses power after the 10th generation as seen by the plateauing of the fitness score, focusing on the actual
genome configuration, the mutation operation continues to induce change up to the 14th generation.Symmetry 2019, 11, × FOR PEER REVIEW 20 of 23 
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Figure 11. Evolution of genome for the best individual at each generation.

Finalizing the Euro area analysis, a minimum spanning tree representation of the VAR coefficient
matrix was rendered in graphical form under a layout that uses attractive and repulsive forces
between nodes [57]. Depicting the entire coefficient matrix, the bi-directional graph shows a three-party
sectioning of the underlying economic dependencies—see Figure 12. First, interest rates, oil prices and
the EUR/USD exchange rate constitute a distinct group. These are also underlying assets for the most
traded financial contracts on exchanges around the world. Examining the coefficients, an increase
of one percentage point in interest rates triggers an increase of 0.21% in oil prices. Another chain of
dependencies starts with the level of GDP and continues towards labor productivity and cost, which
are in a bidirectional relationship, finishing with the consumer price index. Such a partitioning of
the variables could indicate a separation of the liquid financial aspect of the economy from the real
economy core. Moreover, the last chain of dependencies shows the unidirectional relationship between
debt and employment, suggesting that a 1% increase in the level of debt generates a 0.64% decline in
employment in the Euro area.
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4. Conclusions

Model identification through variable and coefficient selection in vector autoregressions represents
a continuous challenge for the scientific community. As data availability increases alongside computing
power, there comes a desire to move towards much larger models, but without stepping into the
sphere of subjective inference. Proposed by Reference [2] almost four decades ago, the VAR still is
the preferred inference and forecasting tool in the field of macroeconomics by its virtue of giving full
confidence to the data, instead of human experts.

The current research comes forward with a hybrid algorithm that mixes canonical VAR estimation
methods into an evolutionary framework defined by genetic algorithms. Through extensive ample
testing, both through simulation and empirical data sets, we show that genetic algorithms can
partially overcome the “dimensionality curse” for those cases where data is scarce. Specifically,
employing evolutionary search through the targeted generation of an initial population can lead to
efficient solutions that carry in themselves the correct coefficient structure provided by other proven
estimation procedures.

Whether it is a high reduction in the size of the matrix coefficient through conditional Granger
causality search or a well fitted and parsimonious model through Lasso regression, the genetic selection
approach can combine parts of these solutions under a user-defined objective function, for a purpose.

Departing from the current findings, we recommend that future research be oriented towards the
integration of evolutionary algorithms into the field of macroeconomic forecasting. Despite their purely
empirical nature, genetic algorithms can open the door to new techniques of model improvement,
model fusion or even model discovery given sufficient computing power. As future research, genetic
algorithms could be used in bridging the gap between linear and non-linear simultaneous equation
modeling. As an example, the DSGE framework to modeling is currently based on a model being
imagined by a human expert with subsequent validation by a VAR model. Genetic algorithms, through
their capacity of overcoming problems with large degrees of freedom, might be a good choice for
non-linear model identification in an efficient and robust manner.
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