
symmetryS S

Article

Measuring Performances of a White-Box Approach in
the IoT Context

Daniele Giacomo Vittorio Albricci 1, Michela Ceria 1 , Federico Cioschi 1, Nicolò Fornari 2,
Arvin Shakiba 1 and Andrea Visconti 1,*

1 Department of Computer Science, Università degli Studi di Milano, via Celoria 18, 20133 Milan, Italy
2 Open Systems AG, Räffelstrasse 29, 8045 Zurich, Switzerland
* Correspondence: andrea.visconti@unimi.it

Received: 12 June 2019; Accepted: 26 July 2019; Published: 3 August 2019
����������
�������

Abstract: The internet of things (IoT) refers to all the smart objects that are connected to other objects,
devices or servers and that are able to collect and share data, in order to “learn” and improve their
functionalities. Smart objects suffer from lack of memory and computational power, since they are
usually lightweight. Moreover, their security is weakened by the fact that smart objects can be placed
in unprotected environments, where adversaries are able to play with the symmetric-key algorithm
used and the device on which the cryptographic operations are executed. In this paper, we focus on
a family of white-box symmetric ciphers substitution–permutation network (SPN)box, extending
and improving our previous paper on the topic presented at WIDECOM2019. We highlight the
importance of white-box cryptography in the IoT context, but also the need to have a fast black-box
implementation (server-side) of the cipher. We show that, modifying an internal layer of SPNbox, we
are able to increase the key length and to improve the performance of the implementation. We measure
these improvements (a) on 32/64-bit architectures and (b) in the IoT context by encrypting/decrypting
10,000 payloads of lightweight messaging protocol Message Queuing Telemetry Transport (MQTT).

Keywords: symmetric cryptography; IoT; MQTT; white-box approach; the SPNbox family

1. Introduction

The name internet of things (IoT), coined by the MIT researcher Kevin Ashton [1], usually refers
to smart objects, connected through the internet to other sensors, devices and servers with which
collect and/or share data for improving their functionalities. IoT can also be combined with other
technologies, for example with cloud computing [2]. It is possible to create a sustainable smart home
aiming to reduce resources’ consumption or develop specific applications in the medical field [3] such
as wearable devices which monitor our physical conditions, specific devices used to check patients
with chronic illnesses, and so on. Data collected by IoT devices need to be (a) processed to form
informations by applying, for example, data mining techniques [4]; (b) evaluated in order to make
decision by adopting agent based models [5,6], bayesian decision models [7], fuzzy logic [8] and so on;
(c) protected from attacks, failures and leaks during communication [2].

Several issues have to be faced in securing IoT applications. An important example is given by
the intrinsic constraints of the devices [9], that usually have a small amount of memory and cannot
perform heavy computations. It is very likely to have such devices in non-protected environment,
where an adversary can access them and perform attacks. In particular, she/he can perform an analysis
of the controlled binary [10] or perform differential fault analysis [11,12]. Moreover, since these devices
are connected, compromising one of them can open the way to botnet attacks [2,3]. We can observe that
we are exactly in a white-box framework, and white-box cryptography [13] has been first developed to
cope with the scenario in which an attacker can physically interact both with the implementation of the

Symmetry 2019, 11, 1000; doi:10.3390/sym11081000 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-6059-9930
https://orcid.org/0000-0001-5689-8575
http://www.mdpi.com/2073-8994/11/8/1000?type=check_update&version=1
http://dx.doi.org/10.3390/sym11081000
http://www.mdpi.com/journal/symmetry


Symmetry 2019, 11, 1000 2 of 19

used cryptographic algorithm and with the device on which the encryption/decryption operations are
executed. The usually studied scenario, namely black-box, in which the execution cannot be observed
nor modified by the attacker, is not always suitable for IoT applications [14]. The reader can think
about what happens in the context of digital rights management where discovering the key means to
have the possibility to spread digital contents to people that have not payed such contents.

The effort of researchers towards white-box cryptographic schemes materialized with [13,15]
where white-box versions of AES and DES have been implemented. Nevertheless, it is important
to remark that these implementations have been attacked via algebraic attacks [16] (improved
by [17]), [18–20]. Moreover, also Jacob et al. in [21] can easily break Chow’s implementations.

The need to have white-box algorithms for practical applications leads to develop some specific
algorithms. Examples of block ciphers developed to be employed in the framework of white-box
cryptography are ASASA [22] and SPACE [23]. However, these ciphers are not free of drawbacks or
weaknesses. In particular, decomposition attacks can affect ASASA’s security while SPACE is heavy
from a computational point of view [24]. An important step forward for white-box cryptography,
was the development of substitution–permutation network (SPN)box [24], another block cipher that
relies on internal block ciphers with the aim to reduce the computation time. In [9], the problem of
intrinsic constraints on computational power and memory of IoT devices in unprotected environment
is addressed. The authors refer to smart objects with limited computational power and memory that
may contain sensitive data and can be easily lost or stolen. Differently from AES/DES white-box
implementations, the authors do not decline a well-known cipher into the new framework, but they
develop a new one, relying on a modification of Lai-Massey structure. The crucial point is that only
the encryption is thought to be done on the IoT constrained device, while the decryption phase is
supposed to be done on a computer or server and in a black box scenario. In [25] the authors refer
to embedded distributed devices which collect and securely send information to centralized servers.
Subsequently, these servers decrypt and process all the information. As previously mentioned, the
collected information may be sensitive and it is possible for an attacker to get control of the whole
device. The scheme proposed in [25] is lightweight and suitable for constrained devices. In particular,
such a new design has the following peculiarities:

• the employed operations are very simple; they essentially consist of lookup tables and
bit operations;

• the lookup tables and the structure containing sensitive data are small in memory;
• the provided security is medium-level (∼263) and protection is ensured for reasonable amount

of time;
• it is possible to update the key at small costs.

The scheme is based on a Fesitel structure, but it adds two bijections, as a defence against attacks.
Moreover, to cope with structural cryptanalysis [25,26] different size components are used.

This paper improves of a previous work entiteled “White-box Cryptography: A Time-security
Trade-off for the SPNbox Family” [27], presented by F.Cioschi, N.Fornari and A.Visconti at the
2nd International Conference on International Conference on Wireless, Intelligent and Distributed
Environment for Communication (WIDECOM 2019). In this paper, we (a) introduce the white-box
approach in the IoT context, explaining the importance of protecting data in an environment where
attackers have full control over the whole system; (b) explain the importance of having a fast black-box
implementation of a white-box cipher; (c) summarize our previous idea [27] explaining how to modify
the internal block ciphers of the SPNbox family in order to increase the size of the key space; (d) measure
the performance of a black-box implementation (server-side) on 32- and 64-bit architectures and by
encrypting/decrypting 10,000 payloads of a lightweight messaging protocol—i.e., MQTT—which
contains the data sent over the internet.

The remainder of the paper is organized as following. In Section 2, block ciphers are introduced.
In Section 3, we present several white-box implementations and related attacks published in literature.



Symmetry 2019, 11, 1000 3 of 19

In Sections 4 and 5, we summarize two block ciphers’ families, namely, SPACE and SPNbox, which are
white-box friendly by design. In Section 6, we explain the importance of increasing the number of bits
of the key used in each round. In Section 7, the testing activities are presented. Finally, Section 8 is
devoted to discussion and conclusions.

2. Block Ciphers

There exist two main families of block ciphers: SPN and Feistel network. The main difference
between them is that Feistel networks play only with one half of the cipher state in each round.

2.1. Substitution-Permutation Networks

A SPN is a design for block ciphers proposed by Shannon in [28], where he suggested to use
multiple mixing layers interleaving substitutions and permutations. Although weak on its own,
applying substitutions and then permutations presents good “mixing” properties. Substitutions
contribute to local confusion and permutations spread such a local confusion to the more distant
subblocks, thus providing diffusion [28]. If a single input bit is flipped, it affects the m output bits of a
specific S-box which, subsequently, are sent to different S-boxes by a permutation. Considering the
output of such a network, about fifty percent of the bits are affected by this change. Therefore an
outcome of a single bit change at the input is difficult to predict, especially if the bit of the secret key
are XORed into the block between the encryption layers. In order to get better diffusion properties,
several block ciphers adopt linear (as in the case of AES) or affine mappings instead of permutations.

Definition 1. Let φ : (F2)
r × (F2)

l → (F2)
r, with r = bt be a block cipher with N rounds. Let k ∈ (F2)

l be
the cipher key and (k(0), · · · , k(N)) be the N + 1 round keys generated by k through the key schedule.
Then φ is an SPN block cipher if

φk(x) = τN ◦ τN−1 ◦ . . . ◦ τ0(x) x ∈ (F2)
r

where τi = σk(i) ◦ λ(i) ◦ γ(i) and

• γ(i) : (F2t)b → (F2t)b is a non linear substitution
• λ(i) ∈ AGL((F2)

r) where AGL((F2)
r) is the subgroup of the affine transformations of (F2)

r

• σk(i) is the addition with the round key

σk(i) : (F2)
r → (F2)

r

x 7→ x⊕ k(i)

where by ⊕ we denote the bitwise addition (XOR).

2.2. Feistel Networks

A Feistel network is a block cipher introduced by H. Feistel and D. Coppersmith in 1973 [29]
which has the advantage of having the encryption and decryption functions almost identical, making
the implementation easier and cheaper compared to translation based ciphers.
Let us define the following functions before describing the encryption process.

Definition 2. Let πt be a projection, with t ∈ {1, . . . , 2n}, defined as:

πt : F2n → Ft

(x1, . . . , x2n) 7→ (x1, . . . , xt)

Considering x ∈ F2n as a vector of bits, we can use projection πt to choose the t most significant bits
of x.



Symmetry 2019, 11, 1000 4 of 19

Definition 3. Let $t be a projection, with t ∈ {1, . . . , 2n}, defined as:

$t : F2n → Ft

(x1, . . . , x2n) 7→ (x2n−t+1, . . . , x2n)

In the same way, using projection $t we can choose the t least significant bits of x.
Given m ∈ F2n (a message) and k ∈ Fl (a secret key), for some positive integer l, the encryption

process works as follows:

1. N + 1 round keys k0, ..kN are generated from k by means of the key schedule
2. message m is split into a left block and right block, initialized as

L0 = πn(m) R0 = $n(m)

3. for i ∈ {1, . . . , N + 1} the round function is applied in the following way:

Li = Ri−1 Ri = Li−1 ⊕ F(Ri−1, ki−1) (1)

4. final ciphertext c is (RN+1, LN+1).

Encryption and decryption only differ in the reverse order of the round keys, as a matter of fact
the decryption of ciphertext (RN+1, LN+1) is accomplished computing for i ∈ {N, N − 1, . . . , 0}

Ri = Li+1 Li = Ri+1 ⊕ F(Li+1, ki) (2)

An advantage of Feistel networks is that Feistel function F is non-necessarily invertible.This can
be clearly seen by analyzing how encryption and decryption work (see Equations (1) and (2)).

3. The White-Box Approach

The White-Box approach aims to avoid key recovery attacks by embedding the cryptographic key
into a robust representation of the cipher. Consider a block cipher φ. We compute a map ψ : Fn → Fn

such that, given a key k̄ ∈ Fl , it holds φ(x, k̄) = ψ(x) ∀x ∈ Fn. If an attacker knows even both φ and ψ,
it should be very hard for him to find out the key.

Example 1. Let φ and ψ be defined as follows:

φ(x) := k + x mod 4 x ∈ {0, . . . , 3}
ψ(x) := S[x] S = [3, 0, 1, 2]

If k = 3, we can consider ψ as a white-box implementation of φ, by representing ψ as a lookup table.

The first white-box AES implementation has been proposed by Chow et al. in [13]. The authors
suggest that key extraction can be avoided by a careful use of lookup tables. In particular, given
a secret key and a block cipher, it is possible to create a lookup table which maps the plaintext
in a corresponding ciphertext. In some cases, this lookup table may be huge and unusable due
to its dimension. Therefore, a block cipher φ can be represented as a network of smaller lookup
tables (see Figure 1) that have to be read in a particular order [13]. Unfortunately, in the white-box
framework an adversary has full access to these tables, exposing the cipher to possible attacks. Since
there is no reason to make an attacker’s life easier, tables can be protected by means of internal
encodings [13]. This means that a map is composed after table i and its inverse before table (i + 1),
leaving the ciphertext unchanged. However, internal encoding does not protect against code-lifting
attacks. Indeed, an attacker may recover the tables of the cipher and understand their concatenation
order. Doing so, she/he is able to decrypt messages even though he had not recovered the secret key.



Symmetry 2019, 11, 1000 5 of 19

Therefore, another protection is required: external encoding. Internal and external encodings are also
discussed in [30], while a different approach, based on polynomial algebra techniques [31], gave rise to
a perturbated white-box implementation of AES [32], broken by [33] in 2010.

Figure 1. Table-based white-box implementation: the key k is scrambled by a network of lookup tables.

Chow’s work is a milestone for white-box cryptography and its framework has also been
used by some subsequent works such as [34,35]. However, researchers found attacks also for these
new approaches:

• White-Box AES Implementation: Chow [13]; Attack: [16]; Work Factor: 230;
• White-Box AES Implementation: Karroumi [34]; Attack: [18,20]; Work Factor: 222;
• White-Box AES Implementation: Xiao Lai [35]; Attack: [18]; Work Factor: 232;
• White-Box AES Implementation: Xiao Lai [35] generic linear version; Attack: [18]; Work

Factor: 238;
• White-Box AES Implementation: Xiao Lai [35] affine/non-affine version; Attack: [19]; Work Factor:

at least 249.

The attacks listed above may require to know the internal data representation and sometimes this
means to produce a significant reverse engineering effort. An improved AES implementation is given
in [36]. This implementation is immune to attacks described in [16,18] but it is not to the one presented
in [37].

The first paper aiming to break all white-box implementations belonging to the framework
introduced in [13] is [19], but it has the weak point to require some additional hypotheses. Differently,
Derbez et al. [38] breaks all the papers in Chow’s framework by solving the affine equivalence problem
(see [39,40]). Chow’s framework has also been used by [41] and subsequently attacked by [42].

A significant advance from the attacker’s point of view became feasible by shifting the focus from
the attacks previously described to side channel attacks [43]. In particular, new approaches to verify the
security of a white-box implementation have been proposed in [44] where Bos et al. present differential
fault analysis (DFA) and differential computational analysis (DCA) attacks (further information on
fault-injection and differential power analysis attacks can be found in [45,46] respectively). In addition,
in [47,48] the authors explained more formally why DCA is effective against linear and nibble encoding,
Rivain and Wang [43] provide an extensive analysis on the effectiveness of DCA, finally Biryukov and
Udovenko [49] give a general protection method for white-box implementations against DCA.

Obfuscation techniques or the randomization of the location of the lookup tables can be used to
enhance security of white-box algorithms [50], while [51] examines how these techniques are successful
against both DCA and differential power attacks (DPA). The paper [52] exploits noncommutative
groups to obfuscate operation that should be made on commutative ones and it is employed in the IoT
framework. Finally, an evaluation on software protections to white-box implementations is provided
by [51].



Symmetry 2019, 11, 1000 6 of 19

Some improvements to DCA have been developed by [43,53]. The first one extends DCA to
successfully address implementations using masking and shuffling techniques [53]. The second one
provide a DCA-like collision attack with a good complexity [43].

Some paper such as [54–56] address the problem of incompressibility or code hardness. The
idea is that an attacker in the white-box framework should not be able to rewrite the code of some
implementation in order to decrease the code-hardness. In [54] two incompressible white-box
schemes called “WhiteKey” and “WhiteBlock” are introduced and one instance for each scheme
is provided (called PuppyCipher and CoureurDesBois respectively), [55] describes the concept of
code-hardness, time-hardness and memory-hardness, while [56] provides a new incompressible
white-box implementation based on the assumption of one-way permutations.

We conclude our extensive analisys of implementations and attacks, citing a white-box signature
scheme [57] and the methods [58] used to attack the most resistant implementation submitted to the
white-box competition called “CHES 2017 CTF Challenge”.

In the sequel, we will analyze in detail two family of white-box cipher called SPACE (Section 4)
and SPNbox (Section 5).

4. SPACE: A Block Cipher

SPACE is a block cipher developed by Bogdanov and Isobe in [23], that is based on a Feistel
network. This cipher is designed so that security against key extraction in the white-box context
reduces to the well studied problem of key recovery for block ciphers in the standard black-box setting.

SPACE is a generalized Feistel network [29]. Given a message m ∈ Fn and a secret key k ∈ K,
it encrypts m to a ciphertext c ∈ Fn. In describing SPACE, three quantities are often employed:
n, na, nb ∈ N. In particular, in [23] n = 128, na ∈ {8, 16, 24, 32} and nb = n− na.

We summarize here the encryption procedure:

1. The state Xr at round r can be seen as given by l = n/na vectors xr
i ∈ Fna so

Xr = {xr
0, xr

1, . . . , xr
l−1}.

2. X0 = m, so it is initialized with the plaintext.
3. For r ∈ {1, . . . , R + 1} the state is updated this way:

Xr+1 =
(

Fr
na(xr

0)⊕ (xr
1||xr

2|| . . . ||xr
l−1)

)
||xr

0

where Fr
na : Fna → Fnb is the Feistel function and || is the concatenation.

4. XR+1 = c so we have found the ciphertext.

At each encryption round, the Feistel function takes xr
0 as input. Then Fr

na(xr
0) is added to the rest

of the state (xr
1|| . . . ||xr

l−1). The first nb bits of the new state are given by the result of this operation.
The last na are filled with xr

0.
Now, consider πt be the projection of Definition 2 and the Feistel function Fr

na used by SPACE,
specified in Definition 4.

Definition 4. Let φk be a block cipher and r the round number represented in binary with nb digits (so we see it
as an element of Fnb ). The Feistel function Fr

na is defined as

Fr
na(x) : Fna → Fnb

x 7→ (πnb(φk(

nb︷ ︸︸ ︷
0, . . . , 0 ||x)))⊕ r.

We give a specific notation for the round independent part of Fna .



Symmetry 2019, 11, 1000 7 of 19

Definition 5. The round independent part of the Feistel function Fna is

F
′
na : Fna → Fnb

x 7→ πnb(φk(

nb︷ ︸︸ ︷
0, . . . , 0 ||x))

Notice that, differently from traditional Feistel networks, SPACE does not use round keys. There is one
secret key k used by φk. This secret key cannot be hardcoded, hence F′na is implemented as a look-up
table. The reader might ask himself the reason for designing SPACE over another block cipher φk when
φk could be directly implemented as a look-up table. It turns out that this second possibility cannot be
developed. If we were to implement φk as a look-up table we would need 2n · n bits of space:

n︷ ︸︸ ︷
(0, . . . 0, 0) 7→

n︷ ︸︸ ︷
φk(0, . . . 0, 0)

(0, . . . 0, 1) 7→ φk(0, . . . 0, 1)
...

(1, . . . 1, 1) 7→ φk(1, . . . 1, 1)

For n = 128 the construction of such a look-up table is practically impossible. Therefore Bogdanov
and Isobe propose to truncate the output of φk, computed over a smaller domain (see Figure 2):

(

nb︷ ︸︸ ︷
0, . . . , 0 ||

na︷ ︸︸ ︷
0, . . . 0, 0) 7→

nb︷ ︸︸ ︷
πnb(φk(0, . . . , 0||0, . . . 0, 0)

(0, . . . , 0||0, . . . 0, 1) 7→ πnb(φk(0, . . . , 0||0, . . . 0, 1))
...

(0, . . . , 0||1, . . . 1, 1) 7→ πnb(φk(0, . . . , 0||1, . . . 1, 1))

Figure 2. The value of each image of F
′
na
(x) is saved as a row in a look-up table. Every row is indexed

by the value of x, x ∈ {0, . . . , 2na − 1}.

Since the first nb zeros are used as padding in order to form an n-bit input to provide to φk, it is
completely useless to store them, hence the look-up table implementation needs 2na · nb bits. Thus, the
size of the tables for different values of na ∈ {8, 16, 24, 32}—SPACE(na,R), where R is the suggested
number of rounds—is the following:

• SPACE-(8,300); Table: 3.84 KB
• SPACE-(16,128); Table: 918 KB
• SPACE-(24,128); Table: 218 MB
• SPACE-(32,128); Table: 51.5 GB

Notice that (1) AES white-box implementations of Chow et al. [13] and Xiao Lai [35] has a table of
752 KB and 20.5 MB respectively; (2) not all na values are suitable, indeed, for na = 32 and na = 24 the
size of the table is not good enough to be used in practice. On the contrary, for na = 16 the table has
the same size of that described in [13].

5. The SPNbox Family

The SPACE family of space-hard block ciphers [23] benefits of the Feistel structure from a security
point of view and prevents the use of parallel execution (see Section 4). However, as suggested in [24],
using an SPN-type design it is possible to satisfy the requirement of parallelism maintaining a suitably
high level of space hardness. Thus, Bogdanov et al. described the SPNbox family of space-hard block
ciphers [24]. Let us briefly explain their idea.



Symmetry 2019, 11, 1000 8 of 19

SPNbox-nin is a substitution-permutation network (SPN) with a block length of n bits, a k-bit
secret key, and based on nin-bit substitution boxes.

State:

The state of SPNbox-nin is representable as a vector of t = n/nin elements of nin bits each:

X = {X0, ..., Xt−1}

Key Schedule:

The k-bit master key is expanded, k0, ..., kRnin
round keys of nin bits, by means of a Key Derivation

Function (KDF)—e.g., PBKDF2 [59–62], ARGON2 [63], Scrypt [64], and so on:

(k0, ..., kRnin
) = KDF(k, nin · (Rnin + 1))

Round Transformation:

We encrypt a plaintext X0 and we get a ciphertext XR, by using the following R transformations—
e.g., R = 10:

XR = (©R
r=1(σ

r ◦ θ ◦ γ))(X0)

The nonlinear layer γ is a substitution layer where t identical bijective nin-bit S-boxes depending on
the key are applied to the state:

γ : F(2nin)t → F(2nin)t

(X0, ..., Xt−1) 7→ (Snin(X0), ..., Snin(Xt−1))
(3)

These identical S-boxes are constituted by an internal small block cipher of block length nin bit.
The linear layer θ, a diffusion layer, applies a t× t MDS matrix to the state:

θ : F(2nin)t → F(2nin)t

(X0, ..., Xt−1) 7→ (X0, ..., Xt−1) ·Mnin

The affine layer σr takes the state and adds round-dependent constants to it:

σr : F(2nin)t → F(2nin)t

(X0, ..., Xt−1) 7→ (X0 ⊕ Cr
0, ..., Xt−1 ⊕ Cr

t−1),

with Cr
i = (r− 1) · t + i + 1 for 0 ≤ i ≤ t− 1.

The Underlying Small Block Ciphers:

The identical nin-bit S-boxes in the γ layer (which depend on the key) are block ciphers. They are
based on the round transformation of AES and they are formed by Rnin rounds operating on a state
x = {x0, ..., xl−1} of l bytes, where l = nin/8:

Snin : F(28)l → F(28)l

x 7→ (©Rnin
i=1 (AKi ◦MCnin ◦ SB))(AK0(x))

where SB, MC and AK indicate the AES transformations SubBytes, MixColumns and AddRoundKey,
respectively. Notice that (a) the number of rounds Rnin that [24] suggests are R32 = 16, R24 = 20, R16 = 32
and R8 = 64; (b) different matrices are employed in the MCnin round transformation. More precisely,
for nin = 32 we use the MC matrix of AES, while in the other cases a sub-matrix of MC is used. If



Symmetry 2019, 11, 1000 9 of 19

nin = 8, MCnin is the identity map’s matrix. Note that, as for the Feistel function in SPACE, in the
white-box setting the small block ciphers Snin are implemented as lookup tables.

6. Issues and Possible Solutions

Although the white-box implementation of the cipher is very important, it may have some
limitations due to the key embedded into the device. If several devices have to communicate with a
server and such devices do not support Transport Layer Security (TLS) protocol due to insufficient
resources, the server needs to manage a number of keys (pre-shared or not) in order to decrypt the
messages. In a white-box context this means having a number of different implementations that run
on our server and this is not a good idea. Therefore, the server will be provided with a fast black-box
implementation of the cipher.

Figure 3 helps us to visualize this idea, where a white-box implementation runs on a number of
devices and a fast black-box implementation runs on our server.

Figure 3. A black-box implementation (server-side).

In order to design a fast black-box implementation of a white-box cipher, we modify the inner
round described in Section 5, increasing the number of bits of the key used in each round. In particular,
we replace the AES’ ShiftRow transformation, omitted by [24], with a key-dependent circular bit shift
transformation (see Figures 4 and 5).

If we are shifting eight bits of the state, i.e., nin = 8, three bits are required to execute the circular
shift. Thus, we use 11 bits of the key in each round i: eight of them for the AKi transformation and
three for the BitShift transformation. If the state doubled, tripled, or quadrupled, i.e., nin = 16, 24, 32,
the bits of the key used are 11× 2 = 22, 11× 3 = 33 and 11× 4 = 44 respectively.

Figure 4. A BitShift key-dependent: increasing the size of the round key from 8 to 11 bits.



Symmetry 2019, 11, 1000 10 of 19

Notice that the implementation of [24] employs the AES-NI instructions, while the idea described
in this paper does not. In the encryption phase (nin = 32, 24, 16), the matrices involved in the
computation of the MixColumns transformation (A24, and A16 for short) are sub-matrices of that
used in AES (A32). On the contrary, in the decryption phase, we need to invert A24 and A16. Since
their inverse matrices are not sub-matrices of A−1

32 and the decryption instruction of AES-NI is based
only on A−1

32 , for nin = 24, 16 we cannot use the AES-NI instructions. Anyway, in IoT context, the
impossibility of using AES-NI instructions is not a problem in itself because not all IoT devices support
this instruction set.

Figure 5. Substitution–permutation network (SPN)box: a new inner round γ.

7. Testing Activities

The testing activity reported is twofold. In the first part, we measure the performance of internal
layer γ (see Algorithm 1)—the external part (layer θ and σ) is exactly the same as in [24], so it would
be pointless to evaluate it.



Symmetry 2019, 11, 1000 11 of 19

Algorithm 1: Layer γ with BitShift transformation.

1 Function SPNbox(state):
2 for r = 1→ R do
3 layer_gamma(state)
4 layer_theta(state)
5 layer_sigma(state, r)

6 Function layer_gamma(state):
7 Set nin = 8, 16, or 32
8 foreach chunk of length nin in state do
9 Snin(state)

10 Function Snin(state):
11 AddRoundKey(state)
12 for i = 1→ Rnin do
13 SubBytes(state)
14 BitShift(state)
15 MixColumns(state)
16 AddRoundKey(state)

17 Function layer_theta(state):
18 return

19 Function layer_sigma(state,r):
20 return

We run our code on laptops with different hardware configurations. More precisely, our laptops
are equipped with

• Intel R© CoreTM i3-330M, 2.13 GHz processor with 3 MB SmartCache, 8 GB RAM and Ubuntu
18.04.1 LTS 64-bit. The source code has been compiled with GCC 7.3.0 with -O3 optimization
enabled (see Table 1);

• Intel R© CoreTM i3-350M, 2.26 GHz processor with 3 MB SmartCache, 8 GB RAM and Ubuntu
18.04.2 LTS 64-bit. The source code has been compiled with GCC 7.4.0 with -O3 optimization
enabled (see Table 2);

• Intel R© CoreTM i7-2860QM, 2.50/3.60 GHz processor with 8 MB SmartCache, 16 GB RAM and
Kubuntu 18.10 64-bit. The source code has been compiled with GCC 7.3.0 with -O3 optimization
enabled (see Table 3);

• Intel R© CoreTM i7-5500U, 2.40/3.00 GHz processor with 4 MB Cache, 8 GB RAM and Ubuntu
18.04.2 LTS 64-bit. The source code has been compiled with GCC 7.4.0 with -O3 optimization
enabled (see Table 4);

• Intel R© CoreTM i7-8550U CPU, 1.80/4.00 GHz processor with 8 MB SmartCache, 32 GB RAM
and Ubuntu 18.04.2 LTS 64-bit. The source code has been compiled with GCC 7.4.0 with
-O3 optimization enabled (see Table 5);

• Intel R© CoreTM i3-350M, 2.26 GHz processor with 3 MB SmartCache, 4 GB RAM and Debian
GNU/Linux 9 32-bit. The source code has been compiled with GCC 6.3.0 with -O3 optimization
enabled (see Table 6);



Symmetry 2019, 11, 1000 12 of 19

Table 1. Results of tests on i3-330M with Ubuntu 18.04.1 LTS 64-bit.

γ γ with BitShift

nin = 32, encryption 1.178316 s 0.955048 s
nin = 32, decryption 1.447580 s 1.168507 s
nin = 16, encryption 3.946748 s 3.222751 s
nin = 16, decryption 4.193261 s 3.308678 s
nin = 8, encryption 2.547156 s 2.192452 s
nin = 8, decryption 2.564750 s 2.250102 s

Table 2. Results of tests on i3-350M with Ubuntu 18.04.2 LTS 64-bit.

γ γ with BitShift

nin = 32, encryption 1.116117 s 0.902140 s
nin = 32, decryption 1.367435 s 1.150235 s
nin = 16, encryption 3.717744 s 3.035942 s
nin = 16, decryption 3.954781 s 3.116000 s
nin = 8, encryption 2.395998 s 2.061877 s
nin = 8, decryption 2.405397 s 2.114405 s

Table 3. Results of tests on i7-2860QM with Kubuntu 18.10 64-bit.

γ γ with BitShift

nin = 32, encryption 0.837671 s 0.668838 s
nin = 32, decryption 0.925293 s 0.816856 s
nin = 16, encryption 2.667934 s 2.147471 s
nin = 16, decryption 2.811657 s 2.394600 s
nin = 8, encryption 1.886357 s 1.565764 s
nin = 8, decryption 2.030491 s 1.777118 s

Table 4. Results of tests on i7-5500U with Ubuntu 18.04.2 LTS 64-bit.

γ γ with BitShift

nin = 32, encryption 0.861415 s 0.701899 s
nin = 32, decryption 0.954985 s 0.782088 s
nin = 16, encryption 2.980274 s 2.461575 s
nin = 16, decryption 3.155612 s 2.543056 s
nin = 8, encryption 1.860916 s 1.774127 s
nin = 8, decryption 1.879749 s 1.785562 s

Table 5. Results of tests on i7-8550U with Ubuntu 18.04.2 LTS 64-bit.

γ γ with BitShift

nin = 32, encryption 0.681576 s 0.526522 s
nin = 32, decryption 0.723118 s 0.587942 s
nin = 16, encryption 2.396308 s 1.898987 s
nin = 16, decryption 2.462049 s 1.933232 s
nin = 8, encryption 1.160104 s 1.258072 s
nin = 8, decryption 1.179036 s 1.248327 s



Symmetry 2019, 11, 1000 13 of 19

Table 6. Results of tests on i3-350M with Debian GNU/Linux 9 32-bit.

γ γ with BitShift

nin = 32, encryption 1.247818 s 1.041543 s
nin = 32, decryption 1.967226 s 1.558086 s
nin = 16, encryption 3.721377 s 3.381363 s
nin = 16, decryption 4.164744 s 3.262065 s
nin = 8, encryption 2.399780 s 2.065451 s
nin = 8, decryption 2.412146 s 2.127425 s

In the second part, as explained in Section 6, we examine the cipher in the IoT context, where
black-box and white-box implementations are involved.

7.1. 32/64-Bit Architectures

We compared the performance of internal layer γ (yellow rectangles of Figure 5) with and without
BitShift transformation (green rectangles of Figure 5) for different nin sizes. We avoid the operations
involved in θ and σ layers.

Tables 1–6 show the time required to encrypt/decrypt one million of different plaintexts (fixed
size of 128 bits) using the same key (randomly chosen). Notice that in addition to the key bits needed
for the initial AddRoundKey AK0, SPNbox layer γ uses 512 key bits—i.e., 512 bit = 16 round × 32 bit
(nin = 32), or 512 bit = 32 round × 16 bit (nin = 16), or 512 bit = 64 round × 8 bit (nin = 8). Therefore, we
set to 512 the minimum amount of key bits to be used in our solution. In particular, we will execute:
12 rounds (Rnin = 12), using 528 key bits (nin = 32); 24 rounds (Rnin = 24), using 528 key bits (nin = 16);
and finally 47 rounds (Rnin = 47), using 517 key bits (nin = 8).

Our testing activities show that implementations with BitShift are generally faster than those
without it. In particular, several cases show that the improvement in the execution time exceeds 20%.
Only in Table 5, nin = 8, encryption and decryption, we find a different result.

7.2. IoT Environment

The testing activity has been performed using MQTT [65], a lightweight communication protocol
designed for small sensors and mobile devices in low bandwidth environments. By default data are
sent in clear text over the internet, thus we encrypt data contained in the payload. We measure the
performance of layer γ as described in Algorithm 2. More precisely, we compare the performances
with and without BitShift transformation for different nin—size of 32, 16, and 8 bits—encrypting
one million of different plaintexts—size of 16, 64, 256, and 1024 bytes—using the same key. Then,
we send one hundred MQTT messages, each of which contains 10,000 encrypted payloads. Finally,
adopting the same approach, the server collects and decrypts the same number of MQTT messages
with encrypted payloads.



Symmetry 2019, 11, 1000 14 of 19

Algorithm 2: MQTT: testing activity executed for each payload (16, 64, 128, and 1024 bytes).

1 Function layer_gamma_without_Bitshift(state, nin, key):
2 foreach chunk of length nin in state do
3 AddRoundKey(state, key)
4 for i = 1→ Rnin do
5 SubBytes(state)
6 MixColumns(state)
7 AddRoundKey(state, key)

8 Function layer_gamma_with_Bitshift(state, nin, key):
9 foreach chunk of length nin in state do

10 AddRoundKey(state, key)
11 for i = 1→ Rnin do
12 SubBytes(state)
13 BitShift(state)
14 MixColumns(state)
15 AddRoundKey(state, key)

16 Function main():
17 Open a connection
18 Set key k = Random()

19 Set plaintext p = Random()

20 foreach nin in (8, 16, 32) do
21 Set timer t1 = 0
22 Set p1 = p
23 for i = 1→ 100 do
24 for j = 1→ 10, 000 do
25 layer_gamma_without_BitShift(p1, nin, k)

26 Send p1 as payload with a MQTT message

27 Stop timer t1

28 Set timer t2 = 0
29 Set p2 = p
30 for i = 1→ 100 do
31 for j = 1→ 10, 000 do
32 layer_gamma_with_BitShift(p2, nin, k)

33 Send p2 as payload with a MQTT message

34 Stop timer t2

35 Compare t1 and t2

36 Close the connection

Our testing activity has been executed on a machine equipped with an Intel R© CoreTM i7-6500U
CPU @ 2.50 GHz × 4 processor, with 12 GB SDRAM DDR4-2133, Intel R©HD Graphics 520 (Skylake
GT2) GPU and operating system UbuntuTM 18.04.2 TLS. We used Eclipse MosquittoTM [66] version
1.4.15, which implements the MQTT protocol versions 3.1.1. The source code has been compiled with
GCC 7.4.0, “-O3” optimization enabled. Table 7 summarizes the results obtained.



Symmetry 2019, 11, 1000 15 of 19

Table 7. Encryption/decryption operations with a black-box implementation (server-side).

Payload nin Encryption Decryption

(Bytes) (Bits) w/o BitShift with BitShift Gain w/o BitShift with BitShift Gain

32 3.668 s 3.319 s 9.507% 0.893s 0.741s 16.999%

16 16 6.335 s 5.763 s 9.037% 3.096s 2.412s 22.091%

8 4.510 s 4.882 s −8.254% 1.479s 1.551s −4.929%

32 6.679 s 5.601 s 16.139% 3.636s 2.950 s 18.865%

64 16 14.869 s 12.362 s 16.860% 12.488 s 10.023 s 19.739%

8 8.817 s 9.616 s −9.060% 6.183s 6.446 s −4.253%

32 16.021 s 13.847 s 13.569% 14.166 s 11.827 s 16.512%

128 16 51.098 s 38.998 s 23.680% 50.632 s 39.596 s 21.798%

8 24.280 s 25.709 s −5.884% 24.454 s 25.825 s −5.607%

32 54.047 s 41.716 s 22.816% 56.494 s 47.065 s 16.690%

1024 16 191.262 s 151.101 s 20.998% 195.424 s 154.029 s 21.182%

8 92.651 s 98.998 s −6.850% 93.744 s 98.362 s −4.926%

In particular, for the encryption phase, we got a highest gain (23.680%) in the case of 128-byte
payload and nin = 16, while the highest loss (−9.060%) in the case of a 64-byte payload and nin = 8.
For the decrypt phase, the highest gain (22.091%) is obtained with a 16-byte payload and nin = 16, and
the highest loss (−5.607%) with a 128-byte payload and nin = 8. Notice that the case nin = 8 turned
out to be the worst one.

8. Conclusions

In the era of the internet of things, the involved devices are usually lightweight, so they cannot
perform heavy computations nor store a huge amount of data. In addition, these data might be
sensitive—energy consumptions, medical records, and so on—and could be sent in an unprotected
environment. In a white-box scenario, an attacker could easily read these data because she/he has full
access to the whole execution platform and white-box cryptography can be used to secure data in this
specific context.

Considering the effectiveness of side-channel attacks, new ciphers has been designed with
white-box attack model in mind. In this paper, we focused on the SPNbox family [24], suggesting
how to increase the number of key bits used in each round and showing that this improvement affects
the performance of the cipher. The introduction of a key-dependent circular bit shift transformation
helped us to increase the keyspace and to reduce the number of rounds of the cipher, reducing the
execution time too.

We described and analyzed the performance of the modified cipher in the IoT context, where both
white-box and black-box implementations may be required. In particular, we measured its performance
(a) on 32/64-bit architectures and (b) encrypting the payload of an IoT messaging protocol. Our testing
activities have been executed on consumer laptops. The results obtained encrypting and decrypting
one million of different 128-bit plaintexts on 32/64-bit architectures showed that the execution time for
layer γ is reduced up to 22% while the highest loss is about 8%.

Moreover, the testing activities performed with lightweight protocol MQTT had a gain of about
23% and 22% (encryption and decryption phase, respectively) while a loss of about 9% and 5%. In all
our testing activities the case nin = 8 turns out to be the worst one.

Possible future works are try to (a) understand in details why current implementation fails for
nin = 8 and (b) implement a communication protocol based on Transport Layer Security pre-shared
key ciphersuites (TLS-PSK) in order to compare the performance of white-box implementations with
those of lightweight ciphers.



Symmetry 2019, 11, 1000 16 of 19

Author Contributions: All the authors contributed equally to the work. D.G.V.A., F.C., and A.S. wrote the code
and executed testing activities; M.C., N.F., and A.V. wrote the manuscript; All the authors discussed the results
and provided critical comments; A.V. supervised the testing activities.

Funding: This research received no external funding and the APC was funded by Università degli Studi di Milano,
Piano di Sostegno alla Ricerca 2018.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ashton, K. That ‘internet of things’ thing. RFID J. 2009, 22, 97–114.
2. Harini, S.; Jothika, K.; Jayashree, K. A Survey on Privacy and Security in Internet of Things. Int. J. Innov. Eng.

Technol. 2017, 8, 129–134.
3. Bertino, E. Data Security and Privacy in the IoT. EDBT 2016, 2016, 1–3.
4. Tsai, C.; Lai, C.F.; Chiang, M.C.; Yang, L.T. Data mining for internet of things: A survey. IEEE Comm. Surv.

Tut. 2013, 16, 77–97. [CrossRef]
5. Schlesinger, M.; Parisi, D. The agent-based approach: A new direction for computational models of

development. Dev. Rev. 2001, 21, 121–146. [CrossRef]
6. Visconti, A.; Tahayori, H. Artificial immune system based on interval type-2 fuzzy set paradigm. Appl. Soft

Comput. 2011, 11, 4055–4063. [CrossRef]
7. Lee, S.; Kyon-Mo, Y.; Sung-Bae, C. Integrated modular Bayesian networks with selective inference for

context-aware decision making. Neurocomputing 2015, 163, 38–46. [CrossRef]
8. Visconti, A.; Tahayori, H. Detecting misbehaving nodes in MANET with an artificial immune system based

on type-2 fuzzy sets. In Proceedings of the 2009 International Conference for Internet Technology and
Secured Transactions, (ICITST), London, UK, 9–13 November 2009.

9. Shi, Y.; Wei, W.; He, Z.; Fan, H. An ultra-lightweight white-box encryption scheme for securing
resource-constrained IoT devices. In Proceedings of the 32nd Annual Conference on Computer Security
Applications, Los Angeles, CA, USA, 5–8 December 2016; ACM: New York, NY, USA, 2016.

10. Shamir, A.; Van Someren, N. Playing “hide and seek” with stored keys. In Proceedings of the Conference
Financial Crypto 1999 (FC’99), Anguilla, British West Indies, 22–25 February 1999; Franklin, M., Ed.; Springer:
Heidelberg, Germany, 1999; pp. 118–124.

11. Boneh, D.; DeMillo, R.A.; Lipton, R.J. On the importance of checking cryptographic protocols for faults
(extended abstract). In Proceedings of the Conference EUROCRYPT97, Konstanz, Germany, 11–15 May 1997;
Fumy, W., Ed.; Springer: Heidelberg, Germany, 1997; pp. 37–51.

12. Biham, E.; Shamir, A. Differential fault analysis of secret key cryptosystems. In Proceedings of the Conference
CRYPTO97, Santa Barbara, CA, USA, 17–21 August 1997; Kaliski, B.S., Ed.; Springer: Heidelberg, Germany,
1997; pp. 513–525.

13. Chow, S.; Eisen, P.; Johnson, H.; Van Oorschot, P.C. White-box cryptography and an AES implementation.
In Proceedings of the International Workshop on Selected Areas in Cryptography 2002, St. John’s, NL,
Canada, 15–16 August 2002; Nyberg, K., Heys, H., Eds.; Springer: Berlin, Germany, 2002; pp. 250–270.

14. Cho, J.; Kyu Young, C.; Dukjae M. Hybrid WBC: Secure and efficient encryption schemes using the White-Box
Cryptography. IACR Cryptol. ePrint Arch. 2015, 2015, 800.

15. Chow, S.; Eisen, P.; Johnson, H.; Van Oorschot, P.C. A white-box DES implementation for DRM applications.
In Proceedings of the ACM Workshop on Digital Rights Management, Washington, DC, USA, 18 November
2002; Feigenbaum, J., Ed.; Springer: Berlin, Germany, 2002; pp. 1–15.

16. Billet, O.; Henri, G.; Charaf, E. Cryptanalysis of a white box AES implementation. In Proceedings of the
International Workshop on Selected Areas in Cryptography, Waterloo, ON, Canada, 9–10 August 2004;
Handschuh, H., Hasan, M.A., Eds.; Springer: Berlin, Germany, 2004; pp. 227–240.

17. De Mulder, Y.; Roelse, P.; Preneel, B. Revisiting the BGE attack on a white-box AES implementation. IACR
Cryptol. ePrint Arch. 2013, 2013, 450.

18. De Mulder, Y.; Roelse, P.; Preneel, B. Cryptanalysis of the Xiao–Lai white-box AES implementation. In
Proceedings of the International Conference on Selected Areas in Cryptography 2012, Windsor, ON, Canada,
15–16 August 2012; Knudsen, L.R., Wu, H., Eds.; Springer: Berlin, Germany, 2012; pp. 34–39.

http://dx.doi.org/10.1109/SURV.2013.103013.00206
http://dx.doi.org/10.1006/drev.2000.0520
http://dx.doi.org/10.1016/j.asoc.2010.12.011
http://dx.doi.org/10.1016/j.neucom.2014.08.089


Symmetry 2019, 11, 1000 17 of 19

19. Michiels, W.; Gorissen, P.; Hollmann, H.D.L. Cryptanalysis of a generic class of white-box implementations.
In Proceedings of the International Workshop on Selected Areas in Cryptography 2008, Sackville, NB,
Canada, 14–15 August 2008; Avanzi, R.M., Keliher, L., Sica, F., Eds.; Springer: Berlin, Germany, 2008;
pp. 414–428.

20. Lepoint, T.; Rivain, M.; De Mulder, Y.; Roelse, P.; Preneel, B. Two attacks on a white-box AES implementation.
In Proceedings of the International Conference on Selected Areas in Cryptography 2013, Burnaby, BC,
Canada, 14–16 August 2013; Lange, T., Lauter, K., Lisoněk, P., Eds.; Springer: Berlin, Germany, 2013;
pp. 265–285.

21. Jacob, M.; Boneh, D.; Felten, E. Attacking an obfuscated cipher by injecting faults. In Proceedings of the
ACM Workshop on Digital Rights Management, 2002, Washington, DC, USA, 18 November 2002; Springer:
Berlin, Germany, 2002; pp. 16–31.

22. Biryukov, A.; Bouillaguet, C.; Khovratovich, D. Cryptographic schemes based on the ASASA structure:
Black-box, white-box, and public-key (Extended Abstract). In Advances in Cryptology, Proceedings of the
ASIACRYPT 2014, Kaohsiung, Taiwan, 7–11 December 2014; Sarkar, P., Iwata, T., Eds.; Springer: Berlin,
Germany, 2014; pp. 63–84.

23. Bogdanov, A.; Takanori, I. White-box cryptography revisited: Space-hard ciphers. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October
2015; ACM: New York, NY, USA, 2015; pp. 1050–1069.

24. Bogdanov, A.; Takanori I.; Tischhauser, E. Towards practical whitebox cryptography: Optimizing efficiency
and space hardness. In Proceedings of the ASIACRYPT 2016, Hanoi, Vietnam, 4–8 December 2016;
Cheon, J.H., Tsuyoshi, T., Eds.; Springer: Berlin, Germany, 2016; pp. 126–158.

25. Shi, Y.; Wei, W.; Fan, H.; Au, M.H.; Luo, X. A Light-Weight White-Box Encryption Scheme for Securing
Distributed Embedded Devices. IEEE Trans. Comput. 2019, in press. [CrossRef]

26. Biryukov, A.; Shamir, A. Structural cryptanalysis of SASAS. J. Cryptol. 2014, 23, 505–518. [CrossRef]
27. Cioschi, F.; Fornari, N.; Visconti, A. White-Box Cryptography: A Time-Security Trade-Off for the SPNbox

Family. In Proceedings of the 2nd International Conference on Wireless Intelligent and Distributed
Environment for Communication (WIDECOM 2019), Milan, Italy, 11–13 February 2019; Woungang, I.,
Dhurandher, S., Eds.; Springer: Cham, Switzerland, 2019; pp. 153–166.

28. Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [CrossRef]
29. Feistel, H. Cryptography and computer privacy. Sci. Am. 1973, 228, 15–23. [CrossRef]
30. Lee, S.; Jho, N.S.; Kim, M. A Key Leakage Preventive White-box Cryptographic Implementation. IACR

Cryptol. ePrint Arch. 2018, 2018, 1047.
31. Bringer, J.; Chabanne, H.; Dottax, E. Perturbing and protecting a traceable block cipher. In Communications

and Multimedia Security, Proceedings of the 10th IFIP TC-6 TC-11 International Conference, Heraklion, Greece,
19–21 October 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 109–119.

32. Bringer, J.; Chabanne, H.; Dottax, E. White box cryptography: Another attempt. IACR Cryptol. ePrint Arch.
2006, 2006, 468.

33. De Mulder, Y.; Wyseur, B.; Preneel, B. Cryptanalysis of a Perturbated White-Box AES Implementation.
In Progress in Cryptology, Proceedings of the Conference INDOCRYPT 2010, Hyderabad, India, 12–15
December 2010; Gong, G., Gupta, K.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 292–310.

34. Karroumi, M. Protecting white-box AES with dual ciphers. In Proceedings of the International Conference
on Information Security and Cryptology 2010, Seoul, Korea, 1–3 December 2010; Rhee, K.H., Nyang, D., Eds.;
Springer: Berlin, Germany, 2010; pp. 278–291.

35. Xiao, Y.; Xuejia, L. A secure implementation of white-box AES. In Proceedings of the 2009 2nd International
Conference on Computer Science and Its Applications, Jeju, Korea, 10–12 December 2009; pp. 1–6.

36. Luo, R.; Lai, X.; You, R. A new attempt of white-box AES implementation. In Proceedings of the International
Conference on Security, Pattern Analysis, and Cybernetics, Wuhan, China, 18–19 October 2014; pp. 423–429.

37. Bai, K.; Wu, C.; Zhang, Z. Protect white-box AES to resist table composition attacks. IET Inf. Secur. 2018, 12,
305–313. [CrossRef]

38. Derbez, P.; Fouque, P.A.; Lambin, B.; Minaud, B. On Recovering Affine Encodings in White-Box
Implementations. In Proceedings of the Conference on Cryptographic Hardware and Embedded Systems
2016 (CHES2016), Santa Barbara, CA, USA, 17–19 August 2016; Gierlichs, B., Poschmann, A.Y., Eds.; Springer:
Heidelberg, Germany, 2016; pp. 121–149.

http://dx.doi.org/10.1109/TC.2019.2907847
http://dx.doi.org/10.1007/s00145-010-9062-1
http://dx.doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://dx.doi.org/10.1038/scientificamerican0573-15
http://dx.doi.org/10.1049/iet-ifs.2017.0046


Symmetry 2019, 11, 1000 18 of 19

39. Biryukov, A.; De Cannière, C.; Braeken, A.; Preneel, B. A toolbox for cryptanalysis: Linear and affine
equivalence algorithms. In Advances in Cryptology—EUROCRYPT 2003, Proceedings of the International
Conference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, 4–8 May 2003;
Springer: Berlin/Heidelberg, Germany, 2003; pp. 33–50.

40. Dinu, I. An improved affine equivalence algorithm for random permutations. In Advances in Cryptology,
Proceedings of the Conference EUROCRYPT 2018, Tel Aviv, Israel, 29 April–3 May 2018; Springer: Cham,
Switzerland, 2018; pp. 413–442.

41. Xu, T.; Wu, C.; Liu, F.; Zhao, R. Protecting white-box cryptographic implementations with obfuscated round
boundaries. Sci. China Inf. Sci. 2017, 61, 039103. [CrossRef]

42. Yongjin, Y.; Dong-Chan, K.; Hun, B.C..; Junbum, S. Cryptanalysis of the Obfuscated Round Boundary
Technique for Whitebox Cryptography. Sci. China Inf. Sci. 2019. [CrossRef]

43. Rivain, M.; Wang, J. Analysis and Improvement of Differential Computation Attacks against
Internally-Encoded White-Box Implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 2019,
225–255.

44. Bos, J.W.; Hubain, C.; Michiels, W.; Teuwen, P. Differential computation analysis: Hiding your white-box
designs is not enough. In Proceedings of the Conference on Cryptographic Hardware and Embedded
Systems 2016 (CHES2016), Santa Barbara, CA, USA, 17–19 August 2016; Gierlichs, B., Poschmann, A.Y., Eds.;
Springer: Heidelberg, Germany, 2016; pp. 215–236.

45. Dusart, P.; Letourneux, G.; Vivolo, O. Differential fault analysis on AES. In Proceedings of the International
Conference on Applied Cryptography and Network Security 2003, Kunming, China, 16–19 October 2003;
Zhou, J., Moti, Y., Han, Y., Eds.; Springer: Berlin, Germany, 2003; pp. 293–306.

46. Kocher, P.; Jaffe, J.; Jun, B.; Rohatgi, P. Introduction to differential power analysis. J. Cryptogr. Eng. 2011, 1,
5–27. [CrossRef]

47. Alpirez Bock, E.; Bos, J.W.; Brzuska, C.; Hubain, C.; Michiels, W.; Mune, C.; Sanfelix Gonzalez, E.; Teuwen, P.;
Treff, A. White-Box Cryptography: Don’t Forget About Grey Box Attacks. IACR Cryptol. ePrint Arch. 2017,
2017, 355. [CrossRef]

48. Bock, E.A.; Brzuska, C.; Michiels, W.; Treff, A. On the ineffectiveness of internal encodings—Revisiting
the DCA attack on white-box cryptography. In Proceedings of the 16th International Conference on
Applied Cryptography and Network Security (ACNS2018), Leuven, Belgium, 2–4 July 2018; Preenel, B.,
Vercauteren, F., Eds.; Springer: Heidelberg, Germany, 2018; pp. 103–120.

49. Biryukov, A.; Udovenko, A. Attacks and countermeasures for white-box designs. In Proceedings of the
International Conference on the Theory and Application of Cryptology and Information Security, Kobe,
Japan, 8–12 December 2019; Springer: Cham, Switzerland, 2019; pp. 373–402.

50. Lee, S.; Kim, T.; Kang, Y. A masked white-box cryptographic implementation for protecting against
differential computation analysis. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2602–2615. [CrossRef]

51. Banik, S.; Bogdanov, A.; Isobe, T.; Jepsen, M. Analysis of software countermeasures for whitebox encryption.
IACR Trans. Symmetric Cryptol. 2017, 2017, 307–328.

52. Marin, L. White Box Implementations Using Non-Commutative Cryptography. Sensors 2019, 19, 1122.
[CrossRef] [PubMed]

53. Bogdanov, A.; Rivain, M.; Vejre, P.S.; Wang, J. Higher-order DCA against standard side-channel
countermeasures. IACR Cryptol. ePrint Arch. 2018, 2018, 869.

54. Fouque, P.A.; Karpman, P.; Kirchner, P.; Minaud, B. Efficient and provable white-box primitives. In Advances
in Cryptology, Proceedings of the ASIACRYPT 2016, Hanoi, Vietnam, 4–8 December 2016; Cheon, J.H.,
Takagi, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 159–188

55. Biryukov, A.; Perrin, L. Symmetrically and Asymmetrically Hard Cryptography. In Proceedings of the
International Conference on the Theory and Application of Cryptology and Information Security, Hong Kong,
China, 3–7 December 2017; Springer: Cham, Switzerland, 2017; pp. 417–445.

56. Bock, E.A.; Amadori, A.; Bos, J.W.; Brzuska, C.; Michiels, W. Doubly half-injective PRGs for incompressible
white-box cryptography. In Proceedings of the Cryptographers’ Track at the RSA Conference, San Francisco,
CA, USA, 4–8 March 2019; Springer: Cham, Switzerland, 2019; pp. 189–209.

57. Feng, Q.; He, D.; Wang, H.; Kumar, N.; Choo, K.K.R. White-Box Implementation of Shamir’s Identity-Based
Signature Scheme. IEEE Syst. J. 2019. [CrossRef]

http://dx.doi.org/10.1007/s11432-016-9171-6
http://dx.doi.org/10.1007/s11432-019-9883-9
http://dx.doi.org/10.1007/s13389-011-0006-y
http://dx.doi.org/10.1007/s00145-019-09315-1
http://dx.doi.org/10.1109/TIFS.2018.2825939
http://dx.doi.org/10.3390/s19051122
http://www.ncbi.nlm.nih.gov/pubmed/30841626
http://dx.doi.org/10.1109/JSYST.2019.2910934


Symmetry 2019, 11, 1000 19 of 19

58. Goubin, L.; Paillier, P.; Rivain, M.; Wang, J. How to reveal the secrets of an obscure white-box implementation.
J. Cryptogr. Eng. 2018. [CrossRef]

59. Moriarty, K.; Kaliski, B.; Rusch, A. PKCS# 5: Password-Based Cryptography Specification Version 2.1.
Internet Requests for Comments. RFC 8018 2017. Available online: https://tools.ietf.org/html/rfc8018
(accessed on 3 June 2019).

60. Visconti, A.; Bossi, S.; Ragab, H.; Calò, A. On the weaknesses of PBKDF2. In Cryptology and Network Security,
Proceedings of the 14th International Conference, CANS 2015, Marrakesh, Morocco, 10–12 December 2015;
Reiter, M., Naccache, D., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 119–126.

61. Visconti, A.; Mosnáček, O.; Brož, M.; Matyáš, V. Examining PBKDF2 security margin—Case study of LUKS.
J. Inf. Secur. Appl. 2019, 46, 296–306. [CrossRef]

62. Visconti, A.; Gorla, F. Exploiting an HMAC-SHA-1 optimization to speed up PBKDF2. IEEE Trans. Dependable
Secur. Comput. 2018. [CrossRef]

63. Biryukov, A.; Dinu, D.; Khovratovich, D. Argon2 (Version 1.2). 2018. Available online: https://password-
hashing.net/submissions/specs/Argon-v3.pdf (accessed on 28 May 2019).

64. Percival, C.; Josefsson, S. The scrypt Password-Based Key Derivation Function. Internet Requests
for Comments. RFC 7914. 2016. Available online: https://tools.ietf.org/html/rfc7914 (accessed on
30 May 2019).

65. Banks, A.; Gupta, R. MQTT Version 3.1.1 Plus Errata 01. Available online: http://docs.oasis-open.org/mqtt/
mqtt/v3.1.1/mqtt-v3.1.1.html (accessed on 24 May 2019).

66. Light, R. A. Mosquitto: Server and client implementation of the MQTT protocol. J. Open Source Softw. 2017, 2,
265–265. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s13389-019-00207-5
https://tools.ietf.org/html/rfc8018
http://dx.doi.org/10.1016/j.jisa.2019.03.016
http://dx.doi.org/10.1109/TDSC.2018.2878697
https://password-hashing.net/submissions/specs/Argon-v3.pdf
https://password-hashing.net/submissions/specs/Argon-v3.pdf
https://tools.ietf.org/html/rfc7914
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://dx.doi.org/10.21105/joss.00265
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Block Ciphers
	Substitution-Permutation Networks
	Feistel Networks

	The White-Box Approach
	SPACE: A Block Cipher
	The SPNbox Family
	Issues and Possible Solutions
	Testing Activities
	32/64-Bit Architectures
	IoT Environment

	Conclusions
	References

