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Abstract: When solving multiple attribute decision making (MADM) problems, the 2-tuple linguistic
variable is an effective tool that can not only express complex cognitive information but also prevent
loss of information in calculation. The picture fuzzy set (PFS) has three degrees and has more
freedom to express cognitive information. In addition, Archimedean t-conorm and t-norm (ATT) can
generalize most existing t-conorms and t-norms and Maclaurin symmetric mean (MSM) operators
can catch the relationships among the multi-input parameters. Therefore, we investigate several
novel aggregation operators, such as the picture 2-tuple linguistic MSM (2TLMSM) operator based
on the ATT (ATT-P2TLMSM) and the picture 2-tuple linguistic generalized MSM (2TLGMSM)
operator based on ATT (ATT-P2TLGMSM). Considering that the input parameters have different
importance, we proposed picture 2-tuple linguistic weighted MSM (2TLWMSM) operators based on
ATT (ATT-P2TLWMSM) and picture 2-tuple linguistic weighted generalized MSM (2TLWGMSM)
operators based on ATT (ATT-P2TLWGMSM). Finally, a MADM method is introduced, and an
expositive example is presented to explain the availability and applicability of the developed
operators and methods.

Keywords: picture fuzzy set; 2-tuple linguistic variable; MSM operators; ATT; MADM

1. Introduction

The multiple attribute decision making (MADM) problem is a significant area of decision science,
whose theories and methods are widely used in engineering, economics, management, the military
and many other fields. Generally, decision makers will provide an evaluation of each alternative for
every attribute or criterion according to their own cognitive beliefs. The main task of solving MADM
problems is sorting a group of choices and finding the best one based on decision information provided
by decision makers.

Since being proposed by Zadeh [1] in 1965, fuzzy theory has been widely used with applications
in various areas. However, the fuzzy theory can only express membership—Non-membership
cannot be represented. The intuitionistic fuzzy set (IFS) presented by Atanassov [2], which is an
important extension of traditional fuzzy sets, contains membership degree and non-membership degree.
Because of the ambiguity of objects and the uncertainty of human thought and cognition, decision
makers have difficulty using crisp numbers to evaluate relevant decision making problems, such as
student assessment and car performance evaluation. Decision makers are more accustomed to making
evaluations directly in linguistic terms, such as good, generally, and not good. Therefore, many methods
and models have been developed to solve real problems based on linguistic variables [3–6]. For example,
since the type 2 fuzzy sets (T2FSs) could better represent the indeterminacy and simplify the calculation
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process, the interval type 2 hesitant fuzzy sets (IT2HFSs) can reflect the uncertainty of inaccurate
information more effectively. Deveci et al. [7] proposed a method including T2FSs and the IT2HFSs to
access airlines’ service quality. Finally, accurate data results and practical implications were obtained.

Herrera and Martinez [8] proposed the concept of 2-tuples made up of a linguistic variable and
a numerical value to prevent loss of information when addressing MADM problems. Subsequently,
many operators and methods based on 2-tuples have been proposed. On the basis of the power average
(PA) operator, Xu and Wang [9] studied several 2-tuple linguistic power average (2TLPA) operators
which could alleviate the impact of partial arguments on the aggregated consequences. Furthermore,
the method proposed in the paper considered all the decision parameters and the interrelationships
of each other. However, there is a slight disadvantage in that it ignores the relationship between the
two parameters. In addition, considering the significance of different parameters, a 2-tuple linguistic
weighted PA (2TLWPA) operator was proposed. Wei and Zhao [10] came up with series aggregation
operators according to 2-tuple linguistic information and a dependent operator that eliminates the
influence of unjust 2-tuple linguistic parameters on the aggregation results. Jiang and Wei [11] developed
a 2-tuple linguistic Bonferroni mean (2TLBM) operator based on the Bonferroni mean (BM)operator
and a 2-tuple linguistic weighted BM (2TLWBM) operator to account for the different importance
of the input parameters. Merigó et al. [12] introduced some aggregation operators based on 2-tuple
linguistic information that provide a more complete understanding of the situation being considered.
Moreover, the authors also studied the applicability of the novel method in different fields. A modified
composite scale that can enhance the precision of decision making was developed by Wang et al. [13]
to overcome the limitation of the 2-tuple linguistic representation model. Qin and Liu [14] proposed
several operators based on 2-tuple linguistic information and the Muirhead mean (MM) operator. It is
known as a mean type aggregation operator that can utilize the intact relation between the multi-input
parameters. Meanwhile, they applied the method proposed in the paper for supplier selection.

As the decision environment and content become increasingly complex, the use of 2-tuple
linguistic variables alone fails to accurately describe ambiguous and fragmentary cognitive information.
Cuong [15] developed the picture fizzy set (PFS) to express uncertain cognitive information characterized
by three degrees: A positive membership degree µ(x), a neutral membership degree ν(x) and a negative
membership degree η(x). Therefore, PFS allows several types of answers when solving decision making
problems, such as yes, abstain, no, and refusal. Many research achievements have been made in the field
of PFS theory. Singh [16] applied the correlation coefficient to clustering analysis where the attribute
values are in the form of PFS. Because the PFS contains more information about people’s evaluation
than IFS, the proposed correlation coefficients are a further generalization of IFSs. Yang et al. [17]
proposed picture fuzzy soft sets and studied their relevant properties. In particular, there is a method
based on adjustable soft discernibility matrix which could obtain a sequential relationship between all
objects. Son [18] proposed a generalized distance measure for pictures and the method of hierarchical
picture clustering (HPC). Wei [19] proposed picture fuzzy cross entropy to address the MADM problem
which can reflect the fuzziness of subjective judgment easily. Thong and Son [20] developed a novel
hybrid model including picture fuzzy clustering and intuitionistic fuzzy recommender systems that
are applicable to health care support systems. These models not only improve the accuracy of medical
diagnosis but also guarantee the development of a medical security system. But the limitations of
these models are the time complexity and the capability of the model when new patients are added to
the system.

Archimedean t-norms and t-conorms (ATT) are types of t-norms and t-conorms that have
become important tools for explaining the conjunction, and the operational rules have been defined.
Beliakov et al. [21] used ATT to calculate the IFS, thus simplifying and extending the existing
constructions. Liu [22] developed single-valued neutrosophic number operators based on ATT which
are able to extend to most of the existing t-norms and t-conorms and single-valued neutrosophic
numbers (SVNNs). Liu [23] developed some operators based on ATT and PFS and studied several
properties and particular cases of the operators.
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The aggregation operator is a crucial tool for addressing MADM problems. Many effective
aggregation operators have been developed for situations where the input arguments have some
relations. Yager [24] introduced the PA operator. In the process of aggregation, parameter values support
each other. Tan and Chen [25] investigated the induced Choquet ordered averaging (I-COA) operator
and demonstrated its relationship to the induced ordered weighted averaging operator. Bonferroni [26]
developed the Bonferroni mean (BM) operator, which can effectively address the relationships among
input parameters. Liu et al. [27] presented several intuitionistic uncertain linguistic Bonferroni OWA
(IULBOWA) operators that can aggregate max and min operators and introduced relevant score
functions, accuracy functions, and comparative methods. Li and Liu [28] proposed novel aggregation
operators according to the Heronian mean (HM) operator that considered the interrelationships of
attribute values. BM and HM operators can only account for relationships between input arguments and
not the correlation between multiple arguments. To overcome this limitation, Maclaurin [29] proposed
a Maclaurin symmetric mean (MSM) operator to capture the relationships among multiple input
arguments. Qin and Liu [30] solved MADM problems based on MSM operators under a hesitant fuzzy
environment. Wang et al. [31] extended MSM aggregation operators with single-valued neutrosophic
linguistic variables and developed methods for multiple-criteria decision making (MCDM). Wei and
Lu [32] proposed the Pythagorean fuzzy MSM (PFMSM) and Pythagorean fuzzy weighted MSM
(PFWMSM) operators and discussed their desirable properties. Liu and Zhang [33] extended MSM
operators with the single-valued trapezoidal neutrosophic number (SVTNNs) to not only account for
the correlation between multi-input arguments but also conveniently depict uncertain information in
the decision making process.

Inspired by the above analysis, although the PFS can address complex and uncertain problem
flexibly, PFS has difficulty expressing cognitive information. Therefore, we use the picture 2-tuple
linguistic set based on PFS and 2-tuple linguistic information to address MADM problems, thereby
overcoming the above limitation and preventing loss of information in the calculation and aggregation
processes. In addition, we apply the ATT to address MADM problems described by picture 2-tuple
linguistic numbers (P2TLNs). Then, we extend MSM operators under a P2TLN environment, such
as ATT-P2TLMSM and ATT-P2TLGMSM, to capture the interrelationships among multiple input
parameters. In cases where the input parameters have different significances, ATT-P2TLWMSM and
ATT-P2TLGWMSM are proposed. Based on the above operators, we propose a method to handle
MADM problems.

The framework of this paper is as follows. In Section 2, we explain several basic concepts and
theories. In Section 3, a novel operation for picture 2-tuple linguistic sets based on ATT is proposed.
In Section 4, we develop novel P2TLMSM operators. In Section 5, we present models based on the
ATT-P2TLWMSM operator and the ATT-P2TLGWMSM operator to solve the MADM problems. Finally,
an expositive instance is provided in Section 6.

2. Preliminaries

2.1. 2-Tuple Linguistic Term Sets

Let S = {si|i = 1, 2, . . . , l} be a linguistic term set, where l is
an odd number; for instance, when l = 7, S is defined as S =

{s1 = particularly bad, s2 = bad, s3 = slightly bad, s4 = medium, s5 = slightly good, s6 = good},s7 =particularly
good. Every label si of S is a feasible value of a linguistic variable, and the following characteristics should
be satisfied [6,28,34]:

(1) If and only if i ≺ j, then si ≺ s j.
(2) neg(si) = sl−i−1 is the negation operator.
(3) If i ≥ j, then max(si, s j) = si.
(4) If i ≤ j, then min(si, s j) = si.
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To process fuzzy linguistic information effectively, Herrera and Martinez [8] developed a 2-tuple
fuzzy linguistic representation model via symbolic translation to perform computations with words.
Next, we provide several relevant definitions.

Definition 1. [8,28,35] Let S = (s0, s1, . . . , sl−1) be a linguistic term set and β be a real number in [0, l− 1]
based on the calculation result of a symbolic aggregation operation. Then, the function ∆ used to obtain the
2-tuple corresponding to the elements in S is defined as:

∆ : [0, l− 1]→ S× [−0.5, 0.5)

∆(β) = (si,α) (1)

where i = round(β), α = β− i, α ∈ [−0.5, 0.5), and round(.) is the usual rounding operation.

Definition 2. [8,28,35] Let S = (s0, s1, . . . , sl−1) be a linguistic term set and (si,αi) be a 2-tuple. There is a
function ∆−1 that can obtain β ∈ [0, l− 1] based on the 2-tuple, that is:

∆−1 : S× [−0.5, 0.5)→ [0, l− 1]

∆−1(si,α) = i + α = β (2)

From the above definitions, it is clear that a value of 0 must be added as symbolic translation to
convert a linguistic term into a linguistic 2-tuple:

∆(si) = (si, 0) (3)

2.2. Picture Fuzzy Set

Definition 3. [15] Let X be a fixed universe; a picture fuzzy set (PFS) P on X is defined as
P =

{〈
x,µP(x), ηP(x), νP(x)

〉∣∣∣x ∈ X
}
, where µP(x) ∈ [0, 1], ηP(x) ∈ [0, 1], and νP(x) ∈ [0, 1] are

the positive membership, neutral membership, and negative membership of P, respectively, which satisfy
0 ≤ µP(x) + ηP(x) + νP(x) ≤ 1. Furthermore, π(x) = 1 − µP(x) − ηP(x) − νP(x) is the degree of refusal
membership of P for all x. For convenience, the set P =

〈
µP, ηP, νP

〉
is called a picture fuzzy number (PFN).

Cuong [15] defined several operations as follows.

Definition 4. [15] Suppose P and G are two PFNs; then,

(1) P ⊆ G if µP(x) ≤ µG(x), ηP(x) ≤ ηG(x), νP(x) ≥ νG(x), ∀x ∈ X;
(2) P∪G =

{
(x, max(µP(x),µG(x)), min(ηP(x), ηG(x)), min(νP(x), νG(x)))

∣∣∣x ∈ X
}
;

(3) P∩G =
{
(x, min(µP(x),µG(x)), max(ηP(x), ηG(x)), max(νP(x), νG(x)))

∣∣∣x ∈ X
}
;

(4) P =
{
(x, νP(x), ηP(x),µP(x))

∣∣∣x ∈ X
}
.

Based on Definition 5, Wei [36] proposed the following operational rules for PFNs.

Definition 5. [36] Suppose P and G are two PFNs; then,

(1) P⊕G = (µP + µG − µPµG, ηPηG, νPνG);
(2) P⊗G = (µPµG, ηP + ηG − ηPηG, νP + νG − νPνG);

(3) λP =
(
1− (1− µP)

λ, ηP
λ, νP

λ
)
, λ � 0;

(4) Pλ =
(
µP

λ, 1− (1− ηP)
λ, 1− (1− νP)

λ
)
, λ � 0.
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2.3. Archimedean T-Norm and T-Conorm

Definition 6. [37,38]. T: [0, 1] × [0, 1]→ [0, 1] is called a t-norm if T satisfies the following four axioms:

(1) T(x, 0) = 0 and T(1, x) = x for all x;
(2) T(x, y) = T(y, x) for all x and y;
(3) T(x, y) ≤ T(x′, y′) if x ≤ x′ and y ≤ y′;
(4) T(T(x, y), z) = T(x, T(y, z)) for all x, y and z.

Definition 7. [37,38] T∗: [0, 1] × [0, 1]→ [0, 1] is called a t-conorm if T∗ satisfies the following four axioms:

(1) T∗(0, x) = x and T∗(1, x) = 1 for all x;
(2) T∗(x, y) = T∗(y, x) for all x and y;
(3) T∗(x, y) ≤ T∗(x′, y′) if x ≤ x′ and y ≤ y′;
(4) T∗(T∗(x, y), z) = T∗(x, T∗(y, z)) for all x, y and z.

If T(x, y) and T∗(x, y) are continuous, and T(x, x) ≺ x and T∗(x, x) � x for all x ∈ (0, 1), then
we call T(x, y) and T∗(x, y) the Archimedean t-norm and t-conorm, respectively. We can obtain a
strict Archimedean t-norm by g(x) as T(x, y) = g−1(g(x) + g(y)), where g(x) is a strictly decreasing
function g : [0, 1]→ [0,∞] such that g(1) = 0. Similarly, we can obtain T∗(x, y) = f−1( f (x) + f (y))
and f (x) = g(1− x).

Based on the above definitions, Tao et al. [39] developed several algebraic operations.

Definition 8. [40] Let x, y∈ [0, 1] and λ � 0 be a scalar; then,

(1) x⊕ y = T∗(x, y) = f−1( f (x) + f (y));
(2) x⊗ y = T(x, y) = g−1(g(x) + g(y));
(3) λ� x = f−1(λ f (x));
(4) xλ = g−1(λg(x)).

Some special cases exist when the generator function is set to different values:

(1) Let g(t) = − log t, f (t) = − log(1− t), g−1(t) = e−t, and f−1(t) = 1 − e−t. Then, the algebraic
t-norm and t-conorm are obtained: TA(x, y) = xy, TA

∗(x, y) = x + y− xy.

(2) Let g(t) = log
(

2−t
t

)
, f (t) = log

(
2−(1−t)

1−t

)
, g−1(t) = 2

et+1 , and f−1(t) = 1− 2
et+1 . Then, the Einstein

t-norm and t-conorm are obtained: TE(x, y) = xy
1+(1−x)(1−y) , TE

∗(x, y) = x+y
1+xy .

(3) Let g(t) = log
(
γ−(1−γ)t

t

)
, f (t) = log

(
γ−(1−γ)(1−t)

1−t

)
, g−1(t) =

γ
et+γ−1 , f−1(t) = 1 − γ

et+γ−1 , and

γ � 0. Then, the Hamacher t-norm and t-conorm are obtained: TH(x, y) =
xy

γ+(1−γ)(x+y−xy) ,

TH
∗(x, y) = x+y−xy−(1−γ)xy

1−(1−γ)xy , γ � 0.

2.4. MSM Operators

Definition 9. [29,31] Let xi(i = 1, 2, . . . , n) be the collection of nonnegative real numbers. An MSM operator
of dimension n is a mapping MSM(m) : (R+)n

→ R+ such that:

MSM(m)(x1, . . . , xn) =


∑

1≤i1<...<im≤n
∏m

j=1 xi j

Cm
n


1
m

(4)
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where (i1, i2, . . . , im) traverses all m-tuple combinations of (1, 2, . . . , n) and Cm
n = n!

m!(n−m)! is the binomial
coefficient. In the following analysis, assume that i1 < i2 < . . . < im. Furthermore, xi j represents the i j th
element of a specific arrangement.

Clearly, the MSM(m) operator has the following important attributes.

(1) Idempotency. If xi = x for each i, MSM(m)(x, x, . . . , x) = x;

(2) Monotonicity. If xi ≤ yi for all i, MSM(m)(x1, x2, . . . , xn) ≤MSM(m)(y1, y2, . . . , yn);

(3) Boundedness. Min {x1, x2, . . . , xn} ≤MSM(m)
{x1, x2, . . . , xn} ≤max {x1, x2, . . . , xn}.

Definition 10. [31] Let xi(i = 1, 2, . . . , n) be the collection of nonnegative real numbers and p1, p2, . . . , pm ≥ 0.
A generalized MSM operator of dimension n is a mapping GMSM(m,p1,p2,...,pm) : (R+)

n
→ R+ such that

GMSM(m,p1,p2,...,pm)(x1, . . . , xn) =


∑

1≤i1<...<im≤n
∏m

j=1 x
p j

ij

Cm
n


1

p1+p2+...pm

(5)

where (i1, i2, . . . , im) traverses all m-tuple combinations of (1, 2, . . . , n) and Cm
n = n!

m!(n−m)! is the
binomial coefficient.

It can easily be seen that the GMSM(m,p1,p2,...,pm) operator has the following desirable properties.

(1) Idempotency. If xi = x for each i, then GMSM(m,p1,p2,...,pm)(x, x, . . . , x) = x;

(2) Monotonicity. If xi ≤ yi for all i, GMSM(m,p1,p2,...,pm)(x1, x2, . . . , xn) ≤

GMSM(m,p1,p2,...,pm)(y1, y2, . . . , yn);
(3) Boundedness. min{x1, x2, . . . xn} ≤ GMSM(m,p1 ,p2 ,...,pm )(x1, x2, . . . xn) ≤ max{x1, x2, . . . xn} .

Definition 11. [31] Let xi(i = 1, 2, . . . , n) be the collection of nonnegative real numbers and p1, p2, . . . , pm ≥ 0.
A geometric MSM operator of dimension n is a mapping GeoMSM(m,p1,p2,...,pm) : (R+)

n
→ R+ such that

GeoMSM(m,p1,p2,...,pm)(x1, . . . , xn) =
1

(p1+p2+...+pm)

 ∏
1≤i1<...<im≤n

(
p1xi1 + p2xi2 + . . .+ pmxim

)
1

Cm
n

(6)

where (i1, i2, . . . , im) traverses all m-tuple combinations of (1, 2, . . . , n) and Cm
n = n!

m!(n−m)! is the
binomial coefficient.

Clearly, the GeoMSM(m,p1,p2,...,pm) operator has the following desirable properties.

(1) Idempotency. If x > 0 and xi = x for each i, then GeoMSM(m,p1,p2,...,pm)(x, x, . . . , x) = x;

(2) Monotonicity. If xi ≤ yi for all i, GeoMSM(m,p1,p2,...,pm)(x1, x2 . . . , xn) ≤

GeoMSM(m,p1,p2,...,pm)(y1, y2 . . . , yn);
(3) Boundedness. min{x1, x2, . . . xn} ≤ GeoMSM(m,p1 ,p2 ,...,pm )(x1, x2, . . . xn) ≤ max{x1, x2, . . . xn} .

3. Picture 2-Tuple Linguistic Sets and a New Operation

3.1. Picture 2-Tuple Linguistic Sets

In this section, we introduce several concepts of picture 2-tuple linguistics based on PFS and
2-tuple linguistic term sets.
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Definition 12. [36,41]A =
{
(si,α), (µA(x), ηA(x), νA(x)), x ∈ X

}
is called a picture 2-tuple linguistic set if

µA(x) ∈ [0, 1], ηA(x) ∈ [0, 1], νA(x) ∈ [0, 1], 0 ≤ µA(x) + ηA(x) + νA(x) ≤ 1, si ∈ S and α ∈ [−0.5, 0.5).
µA(x), ηA(x), νA(x) are the degrees of positive membership, neutral membership and negative membership,
respectively of element x to (si,α). Then, π(x) = 1−µP(x)− ηP(x)− νP(x) is the degree of refusal membership
of element x to (si,α) for all x.

For convenience, we call Φ =
〈
(si,α),

(
µϕ, ηϕ, νϕ

)〉
a picture 2-tuple linguistic number (P2LTN),

and µϕ ∈ [0, 1], ηϕ ∈ [0, 1], νϕ ∈ [0, 1], µϕ + ηϕ + νϕ ≤ 1, si ∈ S and α ∈ [−0.5, 0.5).

Definition 13. [36,41] Let Φ =
〈
(si,α),

(
µϕ, ηϕ, νϕ

)〉
be a P2TLN; the score function S of a P2TLN can

be defined as:

S(Φ) = ∆
(
∆−1(si,α) ·

1 + µϕ − νϕ

2

)
, ∆−1(S(Φ)) ∈ [0, l− 1] (7)

Definition 14. [36,41] Let Φ =
〈
(si,α),

(
µϕ, ηϕ, νϕ

)〉
be a P2TLN; the accuracy function H of a P2TLN can

be defined as:

H(Φ) = ∆
(
∆−1(si,α) ·

µϕ + ηϕ + νϕ

2

)
, ∆−1(H(Φ)) ∈ [0, l− 1] (8)

Based on Definitions 13 and 14, Wei [36,41] presented a related comparison of P2TLN as follows.

Definition 15. [36,41] Let Φ1 =
〈
(si1,α1),

(
µϕ1, ηϕ1, νϕ1

)〉
and Φ2 =

〈
(si2,α2),

(
µϕ2, ηϕ2, νϕ2

)〉
be two

P2TLNs, S(Φ1) and S(Φ2) be the scores of Φ1 and Φ2, and H(Φ1) and H(Φ2) be the accuracy degrees of Φ1

and Φ2, respectively.

If S(Φ1) ≺ S(Φ2), then Φ1 is smaller than Φ2, denoted by Φ1 ≺ Φ2.
If S(Φ1) = S(Φ2),

(a) If H(Φ1) ≺ H(Φ2), Φ1 is smaller than Φ2, denoted by Φ1 ≺ Φ2.
(b) If H(Φ1) = H(Φ2), Φ1 is the same as Φ2, denoted by Φ1 = Φ2.
(c) If H(Φ1) � H(Φ2), Φ1 is larger than Φ2, denoted by Φ1 � Φ2.

3.2. New Operations for Picture 2-Tuple Linguistic Sets Based on ATT

In this section, inspired by the new operational laws of 2-tuple linguistic and picture fuzzy
linguistic sets, we introduce the operational rules of P2TLNs based on ATT.

Definition 16. Let Φ1 =
〈
(si1,α1),

(
µϕ1, ηϕ1, νϕ1

)〉
and Φ2 =

〈
(si2,α2),

(
µϕ2, ηϕ2, νϕ2

)〉
be two

P2TLNs; then,

(1) Φ1 ⊕Φ2 =

〈
∆
(
(l− 1) f−1

(
f
(

∆−1(si1,α1)
l−1

)
+ f

(
∆−1(si2,α2)

l−1

)))
,

 f−1
(

f
(
µϕ1

)
+ f

(
µϕ2

))
, g−1

(
g
(
ηϕ1

)
+ g

(
ηϕ2

))
,

g−1
(
g
(
νϕ1

)
+ g

(
νϕ2

)) 〉;

(2) Φ1 ⊗Φ2 =

〈
∆
(
(l− 1)g−1

(
g
(

∆−1(si1,α1)
l−1

)
+ g

(
∆−1(si2,α2)

l−1

)))
,

 g−1
(
g
(
µϕ1

)
+ g

(
µϕ2

))
, f−1

(
f
(
ηϕ1

)
+ f

(
ηϕ2

))
,

f−1
(

f
(
νϕ1

)
+ f

(
νϕ2

)) 〉;

(3) λ�Φ1 =
〈
∆
(
(l− 1) f−1

(
λ f

(
∆−1(si1,α1)

l−1

)))
,
(

f−1
(
λ f

(
µϕ1

))
, g−1

(
λg

(
ηϕ1

))
, g−1

(
λg

(
νϕ1

)))〉
;

(4) Φ1
λ =

〈
∆
(
(l− 1)g−1

(
λg

(
∆−1(si1,α1)

l−1

)))
,
(
g−1

(
λg

(
µϕ1

))
, f−1

(
λ f

(
ηϕ1

))
, f−1

(
λ f

(
νϕ1

)))〉
.

If g(x) takes different forms, we obtain some special cases.
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Case 1. If g(x) = − log x, then we have:

(1) Φ1 ⊕A Φ2 =
〈
∆
(
∆−1(si1,α1) + ∆−1(si2,α2) −

∆−1(si1,α1)·∆−1(si2,α2)
l−1

)
,
(
µϕ1 + µϕ2 − µϕ1µϕ2 , ηϕ1ηϕ2 , νϕ1νϕ2

)〉
;

(2) Φ1 ⊗A Φ2 =
〈
∆
(

∆−1(si1,α1)·∆−1(si2,α2)
l−1

)
,
(
µϕ1µϕ2 , ηϕ1 + ηϕ2 − ηϕ1ηϕ2 , νϕ1 + νϕ2 − νϕ1νϕ2

)〉
;

(3) λ�A Φ1 =

〈
∆
(
(l− 1)

(
1−

(
1−

(
∆−1(si1,α1)

l−1

)λ)))
,
(
1−

(
1− µϕ1

)λ
,
(
ηϕ1

)λ
,
(
νϕ1

)λ)〉
;

(4) Φ1
λ =

〈
∆
(
(l− 1)

(
∆−1(si1,α1)

l−1

)λ)
,
((
µϕ1

)λ
, 1−

(
1− ηϕ1

)λ
, 1−

(
1− νϕ1

)λ)〉
.

Case 2. If g(x) = log
(

2−x
x

)
, then we obtain the following formulas:

(1) Φ1 ⊕E Φ2 =

〈
∆
(
(l− 1)2 ∆−1(si1 ,α1)+∆−1(si2 ,α2)

(l−1)2+∆−1(si1 ,α1)·∆−1(si2 ,α2)

)
,
(
µϕ1+µϕ2

1+µϕ1µϕ2
,

ηϕ1 ηϕ2
1+(1−ηϕ1 )(1−ηϕ2 )

,
νϕ1 νϕ2

1+(1−νϕ1 )(1−νϕ2 )

)〉
;

(2) Φ1 ⊗E Φ2 =

〈
∆
(
(l− 1) ∆−1(si1 ,α1)·∆−1(si2 ,α2)

(l−1)2+((l−1)−∆−1(si1 ,α1))((l−1)−∆−1(si2 ,α2))

)
,
(

µϕ1µϕ2
1+(1−µϕ1 )(1−µϕ2 )

,
ηϕ1+ηϕ2
1+ηϕ1 ηϕ2

,
νϕ1+νϕ2
1+νϕ1 νϕ2

)〉
;

(3) λ�Φ1 =

〈 ∆
(
(l− 1)

((l−1)+∆−1(si1 ,α1))
λ
−((l−1)−∆−1(si1 ,α1))

λ

((l−1)+∆−1(si1 ,α1))
λ
+((l−1)−∆−1(si1 ,α1))

λ

)
,(

(1+µϕ1 )
λ
−(1−µϕ1 )

λ

(1+µϕ1 )
λ
+(1−µϕ1 )

λ ,
2(ηϕ1 )

λ

(2−ηϕ1 )
λ
+(ηϕ1 )

λ ,
2(νϕ1 )

λ

(2−νϕ1 )
λ
+(νϕ1 )

λ

) 〉
;

(4) Φ1
λ =

〈
∆
(
(l− 1)

2(∆−1(si1 ,α1))
λ

(2(l−1)−∆−1(si1 ,α1))
λ
+(∆−1(si1 ,α1))

λ

)
,
(

2(µϕ1 )
λ

(2−µϕ1 )
λ
+(µϕ1 )

λ ,
(1+ηϕ1 )

λ
−(1−ηϕ1 )

λ

(1+ηϕ1 )
λ
+(1−ηϕ1 )

λ ,
(1+νϕ1 )

λ
−(1−νϕ1 )

λ

(1+νϕ1 )
λ
+(1−νϕ1 )

λ

)〉
.

Case 3. If g(x) = log
(
ξ+(1−ξ)x

x

)
and ξ � 0, then we have the following operational rules:

(1) Φ1 ⊕H Φ2 =

〈 ∆
(
(l− 1) (l−1)∆−1(si1,α1)+(l−1)∆−1(si2,α2)−(1−ξ)·∆−1(si1,α1)·∆−1(si2,α2)

(l−1)2
−(1−ξ)·∆−1(si1,α1)·∆−1(si2,α2)

)
,(

µϕ1+µϕ2−(1−ξ)µϕ1µϕ2
1−(1−ξ)µϕ1µϕ2

,
ηϕ1ηϕ2

ξ+(1−ξ)ηϕ1+ηϕ2−ηϕ1ηϕ2
,

νϕ1νϕ2
ξ+(1−ξ)νϕ1+νϕ2−νϕ1νϕ2

) 〉
;

(2) Φ1 ⊗H Φ2 =

〈 ∆
(
(l− 1) ∆−1(si1,α1)·∆−1(si2,α2)

ξ(l−1)2+(1−ξ)((l−1)∆−1(si1,α1)+(l−1)∆−1(si2,α2)−∆−1(si1,α1)·∆−1(si2,α2))

)
,(

µϕ1µϕ2
ξ+(1−ξ)µϕ1+µϕ2−µϕ1µϕ2

,
ηϕ1+ηϕ2−(1−ξ)ηϕ1ηϕ2

1−(1−ξ)ηϕ1ηϕ2
,
νϕ1+νϕ2−(1−ξ)νϕ1νϕ2

1−(1−ξ)νϕ1νϕ2

) 〉
;

(3) λ�H Φ1 =

〈 ∆
(
(l− 1)

((l−1)+(ξ−1)·∆−1(si1,α1))
λ
−((l−1)−∆−1(si1,α1))

λ

((l−1)+(ξ−1)·∆−1(si1,α1))
λ
+(ξ−1)((l−1)−∆−1(si1,α1))

λ

)
,

(1+(ξ−1)µϕ1)
λ
−(1−µϕ1)

λ

(1+(ξ−1)µϕ1)
λ
+(ξ−1)(1−µϕ1)

λ ,
ξ(ηϕ1)

λ

(1+(ξ−1)(1−ηϕ1))
λ
+(ξ−1)(ηϕ1)

λ ,

ξ(νϕ1)
λ

(1+(ξ−1)(1−νϕ1))
λ
+(ξ−1)(νϕ1)

λ


〉
;

(4) Φ1
λ =

〈 ∆
(
(l− 1)

ξ(∆−1(si1,α1))
λ

((l−1)+(ξ−1)·((l−1)−∆−1(si1,α1)))
λ
+(ξ−1)(∆−1(si1,α1))

λ

)
,

ξ(µϕ1)
λ

(1+(ξ−1)(1−µϕ1))
λ
+(ξ−1)(µϕ1)

λ ,
(1+(ξ−1)(ηϕ1))

λ

(1+(ξ−1)ηϕ1)
λ
+(ξ−1)(1−ηϕ1)

λ ,

(1+(ξ−1)(νϕ1))
λ

(1+(ξ−1)νϕ1)
λ
+(ξ−1)(1−νϕ1)

λ


〉
.

4. Picture 2-Tuple Linguistic MSM Operators Based on ATT

Based on the new operations for picture 2-tuple linguistic sets and MSM operators, we developed
a few novel P2TLMSM operators.
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4.1. The ATT-P2TLMSM and ATT-P2TLGMSM Operators

Definition 17. Let Φi =
〈
(si,αi),

(
µϕi, ηϕi, νϕi

)〉
(i = 1, 2, . . . , n) be a set of P2TLNs. Then,

the ATT-P2TLMSM operator Λn
→ Λ is as follows.

ATT − P2TLMSM(m)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
m
⊗

j=1
Φi j

)
Cm

n


1
m

(9)

where Λ is a collection of P2TLNs and m = 1, 2, . . . , n.

According to the operation rules of P2TLNs in Definition 16, the ATT-P2TLMSM operators are
shown below.

Theorem 1. Let Φi =
〈
(si,αi),

(
µϕi, ηϕi, νϕi

)〉
(i = 1, 2, . . . , n) be a collection of P2TLNs with m = 1, 2, . . . , n.

The result of aggregating by Definition 17 is still a P2TLN.

ATT − P2TLMSM(m)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
m
⊗

j=1
Φi j

)
Cm

n


1
m

=

〈 ∆

(l− 1)g−1

 1
m g

 f−1

 1
Cm

n

∑1≤i1<...<im≤n f

g−1

∑m
j=1 g

∆−1
(
si j ,αi j

)
(l−1)








,

g−1
(

1
m g

(
f−1

(
1

Cm
n

(∑
1≤i1<...<im≤n f

(
g−1

(∑m
j=1 g

(
µϕi j

)))))))
,

f−1
(

1
m f

(
g−1

(
1

Cm
n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
ηϕi j

)))))))
,

f−1
(

1
m f

(
g−1

(
1

Cm
n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
νϕi j

)))))))


〉 (10)

where (i1, i2, . . . , in) traverses all m-tuple combinations of (1, 2, . . . , n) and Cm
n = n!

m!(n−m)! is the
binomial coefficient.

Proof. The flowchart of proof is shown in Figure 1.
The specific proof process is as follows.
Because Φi j =

〈(
si j ,αi j

)
,
(
µϕi j , ηϕi j , νϕi j

)〉
(i = 1, 2, . . . , nj = 1, 2, . . . , m)

⇒
m
⊗

j=1
Φi j =

〈
∆

(l− 1)g−1

∑m
j=1 g

∆−1
(
si j ,αi j

)
(l−1)



,(

g−1
(∑m

j=1 g
(
µϕi j

))
, f−1

(∑m
j=1 f

(
ηϕi j

))
, f−1

(∑m
j=1 f

(
νϕi j

)))
〉

⇒ ⊕
1≤i1<...<im≤n

(
m
⊗

j=1
Φi j

)

=

〈 ∆

(l− 1) f−1

∑1≤i1<...<im≤n f

g−1

∑m
j=1 g

∆−1
(
si j ,αi j

)
(l−1)





, f−1

(∑
1≤i1<...<im≤n f

(
g−1

(∑m
j=1 g

(
µϕi j

))))
, g−1

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
ηϕi j

))))
,

g−1
(∑

1≤i1<...<im≤n g
(

f−1
(∑m

j=1 f
(
νϕi j

)))) 
〉



Symmetry 2019, 11, 943 10 of 25

⇒

⊕
1≤i1<...<im≤n

(
m
⊗

j=1
Φi j

)
Cm

n
=

〈 ∆

(l− 1) f−1

 1
Cm

n
f

 f−1

∑1≤i1<...<im≤n f

g−1

∑m
j=1 g

∆−1
(
si j ,αi j

)
(l−1)







,

f−1
(

1
Cm

n
f
(

f−1
(∑

1≤i1<...<im≤n f
(
g−1

(∑m
j=1 g

(
µϕi j

))))))
,

g−1
(

1
Cm

n
g
(
g−1

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
ηϕi j

))))))
,

g−1
(

1
Cm

n
g
(
g−1

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
νϕi j

))))))


〉

=

〈 ∆

(l− 1) f−1

 1
Cm

n

∑1≤i1<...<im≤n f

g−1

∑m
j=1 g

∆−1
(
si j ,αi j

)
(l−1)






,

f−1
(

1
Cm

n

(∑
1≤i1<...<im≤n f

(
g−1

(∑m
j=1 g

(
µϕi j

)))))
,

g−1
(

1
Cm

n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
ηϕi j

)))))
,

g−1
(

1
Cm

n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
νϕi j

)))))


〉

⇒


⊕

1≤i1<...<im≤n

(
m
⊗

j=1
Φi j

)
Cm

n


1
m

=

〈 ∆

(l− 1)g−1

 1
m g

 f−1

 1
Cm

n

∑1≤i1<...<im≤n f

g−1

∑m
j=1 g

∆−1
(
si j ,αi j

)
(l−1)








,

g−1
(

1
m g

(
f−1

(
1

Cm
n

(∑
1≤i1<...<im≤n f

(
g−1

(∑m
j=1 g

(
µϕi j

)))))))
,

f−1
(

1
m f

(
g−1

(
1

Cm
n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
ηϕi j

)))))))
,

f−1
(

1
m f

(
g−1

(
1

Cm
n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
νϕi j

)))))))


〉

Therefore, Theorem 1 proved to be correct. �
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Figure 1. The flowchart of proof. 

Property 1. Let ( ) ( ), , , ,i i i i i is       = ( )1,2,...,i n=  and ( ) ( )* * * * * *, , , ,i i i i i is       =  

( )1,2,...,i n=  be sets of P2TLNs. ( )
2

m
ATT P TLMSM−  then has several properties. 

(1) Idempotency: If the P2TLNs ( ) ( ), , , ,i s        =  =  for all i , then 

( ) ( ) ( )2 , , , ,
m

ATT P TLMSM s       − =  = . 

(2) Commutativity: Assume 
i  is a permutation of 

*

i  for all i ; then, 
( ) ( ) ( ) ( )* * *

1 2 1 22 , ,..., 2 , ,...,
m m

n nATT P TLMSM ATT P TLMSM−    = −    . 

Figure 1. The flowchart of proof.
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Property 1. Let Φi =
〈
(si,αi),

(
µϕi, ηϕi, νϕi

)〉
(i = 1, 2, . . . , n) and Φ∗i =

〈(
s∗i ,α

∗

i

)
,
(
µ∗ϕi, η

∗

ϕi, ν
∗

ϕi

)〉
(i = 1, 2, . . . , n) be sets of P2TLNs. ATT − P2TLMSM(m) then has several properties.

(1) Idempotency: If the P2TLNs Φi = Φ =
〈(

sϕ,αϕ
)
,
(
µϕ, ηϕ, νϕ

)〉
for all i, then ATT − P2TLMSM(m) =

Φ =
〈(

sϕ,αϕ
)
,
(
µϕ, ηϕ, νϕ

)〉
.

(2) Commutativity: Assume Φi is a permutation of Φ∗i for all i; then, ATT −
P2TLMSM(m)(Φ1, Φ2, . . . , Φn) = ATT − P2TLMSM(m)

(
Φ∗1, Φ∗2, . . . , Φ∗n

)
.

(3) Monotonicity: If (si,αi) ≥
(
s∗i ,α

∗

i

)
, µϕi ≥ µ

∗

ϕi, ηϕi ≤ η
∗

ϕi and νϕi ≤ ν
∗

ϕi for each i (i = 1, 2, . . . , n), then

Φi ≥ Φ∗i and ATT − P2TLMSM(m)(Φ1, Φ2, . . . , Φn) ≥ ATT − P2TLMSM(m)
(
Φ∗1, Φ∗2, . . . , Φ∗n

)
.

(4) Boundedness: If Φ− = miniΦi =
〈
mini(si,αi),

(
mini

(
µϕi

)
, mini

(
ηϕi

)
, mini

(
νϕi

))〉
and

Φ+ = maxiΦi =
〈
maxi(si,αi),

(
maxi

(
µϕi

)
, maxi

(
ηϕi

)
, maxi

(
νϕi

))〉
, then Φ− ≤ ATT −

P2TLMSM(m)(Φ1, Φ2, . . . , Φn) ≤ Φ+.

Proof.

1. Since each Φi = Φ =
〈(

sϕ,αϕ
)
,
(
µϕ, ηϕ, νϕ

)〉
, that is,

ATT − P2TLMSM(m)(Φ, Φ, . . . , Φ)

=

〈 ∆
(
(l− 1)g−1

(
1
m g

(
f−1

(
1

Cm
n

(∑
1≤i1<...<im≤n f

(
g−1

(∑m
j=1 g

(
∆−1(sϕ,αϕ)

(l−1)

))))))))
,

g−1
(

1
m g

(
f−1

(
1

Cm
n

(∑
1≤i1<...<im≤n f

(
g−1

(∑m
j=1 g

(
µϕ

)))))))
,

f−1
(

1
m f

(
g−1

(
1

Cm
n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
ηϕ

)))))))
,

f−1
(

1
m f

(
g−1

(
1

Cm
n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
νϕ

)))))))


〉

=

〈 ∆

(l− 1)g−1

 1
m g

 f−1


Cm

n f
(
g−1

(∑m
j=1 g

(
∆−1(sϕ ,αϕ)

(l−1)

)))
Cm

n




,


g−1

(
1
m g

(
f−1

(
Cm

n f
(
g−1

(∑m
j=1 g(µϕ)

))
Cm

n

)))
, f−1

(
1
m f

(
g−1

(
Cm

n g
(

f−1
(∑m

j=1 f(ηϕ)
))

Cm
n

)))
,

f−1
(

1
m f

(
g−1

(
Cm

n g
(

f−1
(∑m

j=1 f(νϕ)
))

Cm
n

)))


〉

=
〈(

sϕ,αϕ
)
,
(
µϕ, ηϕ, νϕ

)〉
2. This property is obvious, and we do not prove it here.

3. If (si,αi) ≥
(
s∗i ,α

∗

i

)
, µϕi ≥ µ∗ϕi, ηϕi ≤ η∗ϕi, and νϕi ≤ ν∗ϕi for each i (i = 1, 2, . . . , n) and Φi =

Φ =
〈(

sϕ,αϕ
)
,
(
µϕ, ηϕ, νϕ

)〉
,Φ∗i = Φ∗ =

〈(
s∗ϕ,α∗ϕ

)
,
(
µ∗ϕ, η∗ϕ, ν∗ϕ

)〉
, according to idempotency, ATT −

P2TLMSM(m)(Φ, Φ, . . . , Φ) =
〈(

sϕ,αϕ
)
,
(
µϕ, ηϕ, νϕ

)〉
and ATT − P2TLMSM(m)(Φ∗, Φ∗, . . . , Φ∗) =〈(

s∗ϕ,α∗ϕ
)
,
(
µ∗ϕ, η∗ϕ, ν∗ϕ

)〉
. Therefore, we have

P2TLMSM(m)(Φ1, Φ2, . . . , Φn) ≤ P2TLMSM(m)
(
Φ∗1, Φ∗2, . . . , Φ∗n

)
4. According to idempotency, let min{Φ1, Φ2, . . . , Φn} = Φ = ATT − P2TLMSM(m)(Φ, Φ, . . . , Φ)

and max{Φ1, Φ2, . . . , Φn} = Φ∗ = ATT − P2TLMSM(m)(Φ∗, Φ∗, . . . , Φ∗). Based on the
monotonicity, if Φ ≤ Φi and Φi ≤ Φ∗ for each i (i = 1, 2, . . . , n), then we have
Φ = ATT − P2TLMSM(m)(Φ, Φ, . . . , Φ) ≤ ATT − P2TLMSM(m)(Φ1, Φ2, . . . , Φn) and ATT −
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P2TLMSM(m)(Φ1, Φ2, . . . , Φn) ≤ ATT − P2TLMSM(m)(Φ∗, Φ∗, . . . , Φ∗) = Φ∗. Therefore, the
following conclusion can be obtained.

min{Φ1, Φ2, . . . , Φn} ≤ ATT − P2TLMSM(m)
{Φ1, Φ2, . . . , Φn} ≤ max{Φ1, Φ2, . . . , Φn}

�

In the following, we present a detailed formula as an example to introduce the P2TLMSM operator
in the context MADM. When g(x) = − log x, based on Formula (10), we can obtain:

ATT − P2TLMSM(m)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
m
⊗

j=1
Φi j

)
Cm

n


1
m

=

〈 ∆

(l− 1)

1−

∏1≤i1<...<im≤n

1−
∏m

j=1

∆−1
(
si j ,αi j

)
(l−1)





1
Cm

n


1
m
,


(
1−

(∏
1≤i1<...<im≤n

(
1−

∏m
j=1 µϕi j

)) 1
Cm

n

) 1
m

, 1−
(
1−

(∏
1≤i1<...<im≤n

(
1−

∏m
j=1

(
1− ηϕi j

))) 1
Cm

n

) 1
m

,

1−
(
1−

(∏
1≤i1<...<im≤n

(
1−

∏m
j=1

(
1− νϕi j

))) 1
Cm

n

) 1
m



〉 (11)

Next, we study some special cases of the P2TLMSM operator with respect to the parameter m.

(1) When m = 1, Equation (10) degrades to the following formula.

ATT − P2TLMSM(1)(Φ1, . . . , Φn) =

 ⊕
1≤i1≤n

Φi

C1
n


=

〈
∆

(l− 1)

1−
(∏

1≤i1≤n

(
1− ∆−1(si,αi)

(l−1)

)) 1
n
,

(
1−

(∏
1≤i1≤n

(
1− µϕi

)) 1
n ,

(∏
1≤i1≤n ηϕi

) 1
n ,

(∏
1≤i1≤n νϕi

) 1
n

)〉 (12)

(2) When m = 2, Equation (10) degrades to the following formula.

ATT − P2TLMSM(2)(Φ1, . . . , Φn) =


⊕

1≤i1<i2≤n

(
2
⊗

j=1
Φi j

)
C2

n


1
2

=

〈 ∆

(l− 1)

1−
(∏

1≤i1<i2≤n

(
1−

(∆−1(si1 ,αi1))
(l−1)

(∆−1(si2 ,αi2))
(l−1)

)) 1
Cm

n


1
m
,

(
1−

(∏
1≤i1<i2≤n

(
1− µϕi1µϕi2

)) 2
n(n−1)

) 1
2

, 1−
(
1−

(∏
1≤i1<i2≤n

(
1−

(
1− ηϕi1

)(
1− ηϕi2

))) 2
n(n−1)

) 1
2

,

1−
(
1−

(∏
1≤i1<i2≤n

(
1−

(
1− νϕi1

)(
1− νϕi2

))) 2
n(n−1)

) 1
2



〉 (13)

(3) When m = n, Equation (10) degrades to the following formula.

ATT − P2TLMSM(n)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
n
⊗

j=1
Φi j

)
Cn

n


1
n

=

〈
∆

(l− 1)

∏n
j=1

∆−1
(
si j ,αi j

)
(l−1)


1
n
,

((∏n
j=1 µϕi j

) 1
n , 1−

(∏n
j=1

(
1− ηϕi j

)) 1
n , 1−

(∏n
j=1

(
1− νϕi j

)) 1
n

)〉 (14)
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Definition 18. Let Φi =
〈
(si,αi),

(
µϕi, ηϕi, νϕi

)〉
(i = 1, 2, . . . , n) be a set of P2TLNs. Then,

the ATT-P2TLGMSM operator Λn
→ Λ is as follows.

ATT − P2TLGMSM(m,p1,p2,...,pm)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
m
⊗

j=1
Φ

p j

i j

)
Cm

n


1

p1+p2+...+pm

, (15)

where Λ is a collection of P2TLNs and m = 1, 2, . . . , n.

On the basis of the operation rules of P2TLNs in Definition 16, the ATT-P2TLMSM operators are
presented below.

Theorem 2. Let Φi =
〈
(si,αi),

(
µϕi, ηϕi, νϕi

)〉
(i = 1, 2, . . . , n) be a set of P2TLNs and m = 1, 2, . . . , n. Then,

the aggregation result from Definition 17 is also a P2TLN.

ATT − P2TLGMSM(m,p1,p2,...,pm)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
m
⊗

j=1
Φ

pj
i j

)
Cm

n


1

p1+p2+...+pm

=

〈 ∆

(l− 1)g−1

 1
p1+p2+...+pm

g

 f−1

 1
Cm

n

∑1≤i1<...<im≤n f

g−1

∑m
j=1 g

g−1

p jg

∆−1
(
si j ,αi j

)
(l−1)










,

g−1
(

1
p1+p2+...+pm

g
(

f−1
(

1
Cm

n

(∑
1≤i1<...<im≤n f

(
g−1

(∑m
j=1 g

(
g−1

(
p jg

(
µϕi j

)))))))))
,

f−1
(

1
p1+p2+...+pm

f
(
g−1

(
1

Cm
n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
f−1

(
p j f

(
ηϕi j

)))))))))
,

f−1
(

1
p1+p2+...+pm

f
(
g−1

(
1

Cm
n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
f−1

(
p j f

(
νϕi j

)))))))))


〉 (16)

where (i1, i2, . . . , in) traverses all m-tuple combinations of (1, 2, . . . , n) and Cm
n = n!

m!(n−m)! is the
binomial coefficient.

Because the proof is analogous to Theorem 1, we do not repeat it here.

Property 2. Let Φi =
〈
(si,αi),

(
µϕi, ηϕi, νϕi

)〉
(i = 1, 2, . . . , n) and Φ∗i =

〈(
s∗i ,α

∗

i

)
,
(
µ∗ϕi, η

∗

ϕi, ν
∗

ϕi

)〉
(i = 1, 2, . . . , n) be collections of P2TLNs. ATT − P2TLGMSM(m,p1,p2,...,pm) then has a number of properties.

(1) Idempotency: If the P2TLNs Φi = Φ =
〈(

sϕ,αϕ
)
,
(
µϕ, ηϕ, νϕ

)〉
for all i, then ATT −

P2TLGMSM(m,p1,p2,...,pm) = Φ =
〈(

sϕ,αϕ
)
,
(
µϕ, ηϕ, νϕ

)〉
.

(2) Commutativity: Assume Φi is a permutation of Φ∗i for all i; then, ATT −
P2TLGMSM(m,p1,p2,...,pm)(Φ1, Φ2, . . . , Φn) = ATT − P2TLGMSM(m,p1,p2,...,pm)

(
Φ∗1, Φ∗2, . . . , Φ∗n

)
.

(3) Monotonicity: If (si,αi) ≥
(
s∗i ,α

∗

i

)
, µϕi ≥ µ∗ϕi, ηϕi ≤ η∗ϕi and νϕi ≤ ν∗ϕi for each

i (i = 1, 2, . . . , n), then Φi ≥ Φ∗i and ATT − P2TLGMSM(m,p1,p2,...,pm)(Φ1, Φ2, . . . , Φn) ≥ ATT −
P2TLGMSM(m,p1,p2,...,pm)

(
Φ∗1, Φ∗2, . . . , Φ∗n

)
.

(4) Boundedness: If Φ− = miniΦi =
〈
mini(si,αi),

(
mini

(
µϕi

)
, mini

(
ηϕi

)
, mini

(
νϕi

))〉
and

Φ+ = maxiΦi =
〈
maxi(si,αi),

(
maxi

(
µϕi

)
, maxi

(
ηϕi

)
, maxi

(
νϕi

))〉
, then Φ− ≤ ATT −

P2TLGMSM(m,p1,p2,...,pm)(Φ1, Φ2, . . . , Φn) ≤ Φ+.

Because the proof is analogous to Property 1, we do not repeat it here.
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In the following, we present a detailed formula as an example to introduce the P2TLMSM operator
in the context of MADM. When g(x) = − log x, based on Formula (16), we obtain:

ATT − P2TLGMSM(m,p1,p2,...,pm)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
m
⊗

j=1
Φ

pj
i j

)
Cm

n


1

p1+p2+...+pm

=

〈 ∆

(l− 1)

1−

∏1≤i1<...<im≤n

1−
∏m

j=1

∆−1
(
si j ,αi j

)
(l−1)


p j



1
Cm

n


1

p1+p2+...+pm
,



1−
(∏

1≤i1<...<im≤n

(
1−

∏m
j=1 µ

p j

ϕi j

)) 1
Cm

n


1

p1+p2+...+pm

, 1−

1−
(∏

1≤i1<...<im≤n

(
1−

∏m
j=1

(
1− η

p j

ϕi j

))) 1
Cm

n


1

p1+p2+...+pm

,

1−

1−
(∏

1≤i1<...<im≤n

(
1−

∏m
j=1

(
1− ν

p j

ϕi j

))) 1
Cm

n


1

p1+p2+...+pm



〉 (17)

Next, we study several specific cases of the P2TLGMSM operator with respect to the argument m.

(1) When m = 1, Equation (17) degrades to the following formula.

ATT − P2TLGMSM(1)(Φ1, . . . , Φn) =

 ⊕
1≤i1≤n

Φ
p1
i

C1
n


1

p1

=

〈 ∆

(l− 1)

1−
(∏

1≤i1≤n

(
1−

(
∆−1(si,αi)
(l−1)

)p1
)) 1

n


1
p1

,
1−

(∏
1≤i1≤n

(
1− µp1

ϕi

)) 1
n


1
p1

, 1−

1−
(
η

p j

ϕi j

) 1
n


1
p1+p2+...+pm

, 1−

1−
(
ν

p j

ϕi j

) 1
n


1
p1+p2+...+pm


〉 (18)

(2) When m = 2, Equation (17) degrades to the following formula.

ATT − P2TLGMSM(2,p1,p2)(Φ1, . . . , Φn) =


⊕

1≤i1<i2≤n

(
2
⊗

j=1
Φ

pj
i j

)
C2

n


1

p1+p2

=

〈 ∆

(l− 1)

1−

∏1≤i1<i2≤n

1−
∏2

j=1

∆−1
(
si j ,αi j

)
(l−1)


p j



2
n(n−1)


1

p1+p2

,



1−
(∏

1≤i1<i2≤n

(
1−

∏2
j=1 µ

p j

ϕi j

)) 2
n(n−1)


1

p1+p2

, 1−

1−
(∏

1≤i1<i2≤n

(
1−

∏2
j=1

(
1− η

p j

ϕi j

))) 2
n(n−1)


1

p1+p2

,

1−

1−
(∏

1≤i1<i2≤n

(
1−

∏2
j=1

(
1− ν

p j

ϕi j

))) 2
n(n−1)


1

p1+p2



〉 (19)

(3) When m = n, Equation (17) degrades to the following formula.

ATT − P2TLGMSM(m,p1,p2,...,pm)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
m
⊗

j=1
Φ

pj
i j

)
Cm

n


1

p1+p2+...+pm

=

〈 ∆

(l− 1)

∏n
j=1

∆−1
(
si j ,αi j

)
(l−1)


p j


1
p1+p2+...+pm

,(∏n
j=1 µ

p j

ϕi j

) 1
p1+p2+...+pm

, 1−
(∏n

j=1

(
1− η

p j

ϕi j

)) 1
p1+p2+...+pm

, 1−
(∏m

j=1

(
1− ν

p j

ϕi j

)) 1
p1+p2+...+pm


〉 (20)

4.2. The ATT-P2TLWMSM and ATT-P2TLWGMSM Operators

We now introduce the weighted ATT-P2TLMSM and ATT-P2TLGMSM operators to improve the
decision making accuracy.
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Definition 19. Let Φi =
〈
(si,αi),

(
µϕi, ηϕi, νϕi

)〉
(i = 1, 2, . . . , n) be a set of P2TLNs and W =

(w1, w2, . . . , wn)
T be the weight vector, where wi represents the importance degree of Φi, satisfying

∑n
i=1 wi = 1

with wi � 0. Then, the ATT-P2TLWMSM operator Λn
→ Λ is as follows.

ATT − P2TLWMSM(m)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
m
⊗

j=1
wi j Φi j

)
Cm

n


1
m

(21)

where Λ is a set of P2TLNs and m = 1, 2, . . . , n.

On the basis of the operation rules of P2TLNs in Definition 16, the ATT-P2TLWMSM operators are
shown below.

Theorem 3. Let Φi =
〈
(si,αi),

(
µϕi, ηϕi, νϕi

)〉
(i = 1, 2, . . . , n) be a set of P2TLNs and m = 1, 2, . . . , n. Then,

the result of aggregating via Definition 19 is also a P2TLN.

ATT − P2TLWMSM(m)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
m
⊗

j=1
wi j Φi j

)
Cm

n


1
m

=

〈 ∆

(l− 1)g−1

 1
m g

 f−1

 1
Cm

n

∑1≤i1<...<im≤n f

g−1

∑m
j=1 g

 f−1

wi j f

∆−1
(
si j ,αi j

)
(l−1)










,

g−1
(

1
m g

(
f−1

(
1

Cm
n

(∑
1≤i1<...<im≤n f

(
g−1

(∑m
j=1 g

(
f−1

(
wi j f

(
µϕi j

)))))))))
,

f−1
(

1
m f

(
g−1

(
1

Cm
n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
g−1

(
wi j g

(
ηϕi j

)))))))))
,

f−1
(

1
m f

(
g−1

(
1

Cm
n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
g−1

(
wi j g

(
νϕi j

)))))))))


〉 (22)

where (i1, i2, . . . , in) traverses all m-tuple combinations of (1, 2, . . . , n) and Cm
n = n!

m!(n−m)! is the binomial
coefficient. The proof of Theorem 3 is analogous to that of Theorem 1, and we do not repeat the proof here.

Property 3. Let Φi =
〈
(si,αi),

(
µϕi, ηϕi, νϕi

)〉
(i = 1, 2, . . . , n) and Φ∗i =

〈(
s∗i ,α

∗

i

)
,
(
µ∗ϕi, η

∗

ϕi, ν
∗

ϕi

)〉
(i = 1, 2, . . . , n) be sets of P2TLNs. ATT − P2TLWMSM(m,p1,p2,...,pm) then has a number of properties.

(1) Monotonicity: If (si,αi) ≥
(
s∗i ,α

∗

i

)
, µϕi ≥ µ∗ϕi, ηϕi ≤ η∗ϕi and νϕi ≤ ν∗ϕi for each

i (i = 1, 2, . . . , n), then Φi ≥ Φ∗i and ATT − P2TLWMSM(m,p1,p2,...,pm)(Φ1, Φ2, . . . , Φn) ≥ ATT −
P2TLWMSM(m,p1,p2,...,pm)

(
Φ∗1, Φ∗2, . . . , Φ∗n

)
.

(2) Boundedness: If Φ− = miniΦi =
〈
mini(si,αi),

(
mini

(
µϕi

)
, mini

(
ηϕi

)
, mini

(
νϕi

))〉
and

Φ+ = maxiΦi =
〈
maxi(si,αi),

(
maxi

(
µϕi

)
, maxi

(
ηϕi

)
, maxi

(
νϕi

))〉
, then Φ− ≤ ATT −

P2TLWMSM(m,p1,p2,...,pm)(Φ1, Φ2, . . . , Φn) ≤ Φ+.

The proof is analogous to that of Property 1 and is therefore omitted.
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In the following, we present a detailed formula as an example to introduce the P2TLMSM operator
in the context of MADM. When g(x) = − log x, based on Formula (22), we obtain:

ATT − P2TLWMSM(m)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
m
⊗

j=1
wi j Φi j

)
Cm

n


1
m

=

〈 ∆

(l− 1)

1−

∏1≤i1<...<im≤n

1−
∏m

j=1

1−

1−
∆−1

(
si j ,αi j

)
(l−1)


wi j





1
Cm

n


1
m
,


(
1−

(∏
1≤i1<...<im≤n

(
1−

∏m
j=1

(
1−

(
1− µϕi j

)wi j
))) 1

Cm
n

) 1
m

, 1−

1−
(∏

1≤i1<...<im≤n

(
1−

∏m
j=1

(
1− η

wi j

ϕi j

))) 1
Cm

n


1
m

,

1−

1−
(∏

1≤i1<...<im≤n

(
1−

∏m
j=1

(
1− ν

wi j

ϕi j

))) 1
Cm

n


1
m



〉 (23)

If we consider some specific values of m, the following formulas can be obtained.

(1) When m = 1, Equation (23) degrades to the following formula.

ATT − P2TLWMSM(1)(Φ1, . . . , Φn) =
⊕

1≤i1<...<im≤n

(
1
⊗

j=1
Φi j

)
C1

n

=

〈
∆

(l− 1)

1−
(∏

1≤i≤n

(
1− ∆−1(si,αi)

(l−1)

)wi
) 1

n
,

1−
(∏

1≤i≤n

(
1− µϕi j

)wi j
) 1

n ,
(∏

1≤i1<...<im≤n η
wi j

ϕi j

) 1
n

,
(∏

1≤i1<...<im≤n ν
wi j

ϕi j

) 1
n
〉 (24)

(2) When m = 2, Equation (23) degrades to the following formula.

ATT − P2TLWMSM(2)(Φ1, . . . , Φn) =


⊕

1≤i1<i2≤n

(
2
⊗

j=1
Φi j

)
C2

n


1
2

=

〈
∆

(l− 1)

1−

∏1≤i1<i2≤n

1−
∏2

j=1

1−

1−
∆−1

(
si j ,αi j

)
(l−1)


wi j





2
n(n−1)


1
2
,



(
1−

(∏
1≤i1<i2≤n

(
1−

∏2
j=1

(
1−

(
1− µϕi j

)wi j
))) 2

n(n−1)

) 1
2

,

1−

1−
(∏

1≤i1<i2≤n

(
1−

∏2
j=1

(
1− η

wi j

ϕi j

))) 2
n(n−1)


1
2

,

1−

1−
(∏

1≤i1<i2≤n

(
1−

∏2
j=1

(
1− ν

wi j

ϕi j

))) 2
n(n−1)


1
2



〉 (25)

(3) When m = n, Equation (23) degrades to the following formula.

ATT − P2TLWMSM(n)(Φ1, . . . , Φn) =


⊕

1≤i1<...<in≤n

(
n
⊗

j=1
Φi j

)
Cn

n


1
n

=

〈
∆

(l− 1)

∏n
j=1

1−

1−
∆−1

(
si j ,αi j

)
(l−1)


wi j




1
n
,

(∏n
j=1

(
1−

(
1− µϕi j

)wi j
)) 1

n , 1−
(∏n

j=1

(
1− η

wi j

ϕi j

)) 1
n

, 1−
(∏n

j=1

(
1− ν

wi j

ϕi j

)) 1
n
〉

(26)
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Definition 20. Let Φi =
〈
(si,αi),

(
µϕi, ηϕi, νϕi

)〉
(i = 1, 2, . . . , n) be a set of P2TLNs and W =

(w1, w2, . . . , wn)
T be the weight vector, where wi represents the importance degree of Φi, satisfying

∑n
i=1 wi = 1

with wi � 0. Then, the ATT-P2TLGWMSM operator Λn
→ Λ is as follows.

ATT − P2TLGWMSM(m,p1,p2,...,pm)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
m
⊗

j=1

(
wi j Φi j

)p j
)

Cm
n


1

p1+p2+...+pm

(27)

where Λ is a collection of P2TLNs and m = 1, 2, . . . , n.

On the basis of the operation rules of P2TLNs in Definition 16, the ATT-P2TLGWMSM operator is
presented below.

Theorem 4. Let Φi =
〈
(si,αi),

(
µϕi, ηϕi, νϕi

)〉
(i = 1, 2, . . . , n) be a collection of P2TLNs and m = 1, 2, . . . , n.

Then, the result of aggregating with Definition 20 is also a P2TLN.

ATT − P2TLGWMSM(m)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
m
⊗

j=1

(
wi j Φi j

)pj
)

Cm
n


1

p1+p2+...+pm

=

〈 ∆

(l− 1)g−1

 1
p1+p2+...+pm

g

 f−1

 1
Cm

n

∑1≤i1<...<im≤n f

g−1

∑m
j=1 g

g−1

p jg

 f−1

wi j f

∆−1
(
si j ,αi j

)
(l−1)












,

g−1
(

1
p1+p2+...+pm

g
(

f−1
(

1
Cm

n

(∑
1≤i1<...<im≤n f

(
g−1

(∑m
j=1 g

(
g−1

(
p jg

(
f−1

(
wi j f

(
µϕi j

)))))))))))
,

f−1
(

1
p1+p2+...+pm

f
(
g−1

(
1

Cm
n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
f−1

(
p j f

(
g−1

(
wi j g

(
ηϕi j

)))))))))))
,

f−1
(

1
p1+p2+...+pm

f
(
g−1

(
1

Cm
n

(∑
1≤i1<...<im≤n g

(
f−1

(∑m
j=1 f

(
f−1

(
p j f

(
g−1

(
wi j g

(
νϕi j

)))))))))))


〉 (28)

where (i1, i2, . . . , in) traverses all m-tuple combinations of (1, 2, . . . , n) and Cm
n = n!

m!(n−m)! is the binomial
coefficient. The proof of Theorem 4 is similar to that of Theorem 1 and is therefore omitted.

Property 4. Let Φi =
〈
(si,αi),

(
µϕi, ηϕi, νϕi

)〉
(i = 1, 2, . . . , n) and Φ∗i =

〈(
s∗i ,α

∗

i

)
,
(
µ∗ϕi, η

∗

ϕi, ν
∗

ϕi

)〉
(i = 1, 2, . . . , n) be sets of P2TLNs. ATT − P2TLGWMSM(m,p1,p2,...,pm) has the following important properties.

(1) Monotonicity: If (si,αi) ≥
(
s∗i ,α

∗

i

)
, µϕi ≥ µ∗ϕi, ηϕi ≤ η∗ϕi and νϕi ≤ ν∗ϕi for each

i (i = 1, 2, . . . , n), then Φi ≥ Φ∗i and ATT − P2TLGWMSM(m,p1,p2,...,pm)(Φ1, Φ2, . . . , Φn) ≥ ATT −
P2TLGWMSM(m,p1,p2,...,pm)

(
Φ∗1, Φ∗2, . . . , Φ∗n

)
.

(2) Boundedness: If Φ− = miniΦi =
〈
mini(si,αi),

(
mini

(
µϕi

)
, mini

(
ηϕi

)
, mini

(
νϕi

))〉
and

Φ+ = maxiΦi =
〈
maxi(si,αi),

(
maxi

(
µϕi

)
, maxi

(
ηϕi

)
, maxi

(
νϕi

))〉
, then Φ− ≤ ATT −

P2TLGWMSM(m,p1,p2,...,pm)(Φ1, Φ2, . . . , Φn) ≤ Φ+.

The proofs are analogous to those of Property 1 and are therefore omitted.
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In the following, we present a detailed formula as an example to introduce the P2TLGWMSM
operator in the context of MADM. When g(x) = − log x, based on Formula (28), we obtain:

ATT − P2TLGWMSM(m,p1,..,pm)(Φ1, . . . , Φn) =


⊕

1≤i1<...<im≤n

(
m
⊗

j=1

(
wi j Φi j

)pj
)

Cm
n


1

p1+p2+...+pm

=

〈
∆

(l− 1)

1−

∏1≤i1<...<im≤n

1−
∏m

j=1

1−

1−
∆−1

(
si j ,αi j

)
(l−1)


wi j


p j


1

Cm
n


1

p1+p2+...+pm
,



1−
(∏

1≤i1<...<im≤n

(
1−

∏m
j=1

(
1−

(
1− µϕi j

)wi j
)p j

)) 1
Cm

n


1

p1+p2+...+pm

,

1−

1−
(∏

1≤i1<...<im≤n

(
1−

∏m
j=1

(
1− η

wi j

ϕi j

)p j
)) 1

Cm
n


1

p1+p2+...+pm

,

1−

1−
(∏

1≤i1<...<im≤n

(
1−

∏m
j=1

(
1− ν

wi j

ϕi j

)p j
)) 1

Cm
n


1

p1+p2+...+pm



〉 (29)

If we consider some special values of m, the following formulas are obtained.

(1) When m = 1, Equation (29) degrades to the following formula.

ATT − P2TLGWMSM(1,p1)(Φ1, . . . , Φn) =


⊕

1≤i1≤n

(
1
⊗

j=1

(
wi j Φi j

)p1
)

C1
n


1

p1

=

〈 ∆

(l− 1)

1−

∏1≤i1≤n

1−
(
1−

(
1−

∆−1(si1 ,αi1)
(l−1)

)wi1
)p1


1
n


1
p1

,



1−
(∏

1≤i1≤n

(
1−

(
1−

(
1− µϕi1

)wi1
)p1

)) 1
n


1
p1

, 1−

1−
(∏

1≤i1≤n

(
1−

(
1− η

wi1
ϕi1

)p1
)) 1

n


1
p1

,

1−

1−
(∏

1≤i1≤n

(
1−

(
1− ν

wi1
ϕi1

)p1
)) 1

n


1
p1



〉 (30)

(2) When m = 2, Equation (23) degrades to the following formula.

ATT − P2TLGWMSM(2,p1,p2)(Φ1, . . . , Φn) =


⊕

1≤i1<i2≤n

(
2
⊗

j=1

(
wi j Φi j

)pj
)

C2
n


1

p1+p2

=

〈
∆

(l− 1)

1−

∏1≤i1<i2≤n

1−
∏2

j=1

1−

1−
∆−1

(
si j ,αi j

)
(l−1)


wi j


p j


2

n(n−1)


1
p1+p2

,



1−
(∏

1≤i1<i2≤n

(
1−

∏2
j=1

(
1−

(
1− µϕi j

)wi j
)p j

)) 2
n(n−1)


1

p1+p2

,

1−

1−
(∏

1≤i1<i2≤n

(
1−

∏2
j=1

(
1− η

wi j

ϕi j

)p j
)) 2

n(n−1)


1
p1+p2

,

1−

1−
(∏

1≤i1<i2≤n

(
1−

∏2
j=1

(
1− ν

wi j

ϕi j

)p j
)) 2

n(n−1)


1
p1+p2



〉 (31)
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(3) When m = n, Equation (23) degrades to the following formula.

ATT − P2TLGWMSM(n,p1,..,pn)(Φ1, . . . , Φn) =


⊕

1≤i1<...<in≤n

(
n
⊗

j=1

(
wi j Φi j

)pj
)

Cn
n


1

p1+p2+...+pn

=

〈 ∆

(l− 1)

∏n
j=1

1−

1−
∆−1

(
si j ,αi j

)
(l−1)


wi j


p j

1
p1+p2+...+pn

,

(∏m
j=1

(
1−

(
1− µϕi j

)wi j
)p j

) 1
p1+p2+...+pn

, 1−
(∏m

j=1

(
1− η

wi j

ϕi j

)p j
) 1

p1+p2+...+pn
, 1−

(∏m
j=1

(
1− ν

wi j

ϕi j

)p j
) 1

p1+p2+...+pn


〉 (32)

5. MADM Based on the ATT-P2TLMSM Operator

Based on the ATT-P2TLWMSM and ATT-P2TLGWMSM operators, in this section, we address
the MADM problems in which the attribute preference values take the form of picture 2-tuple
linguistic variables.

Let A = {A1, A2 . . . , Am} be a discrete set of alternatives, C = {C1, C2 . . . , Cn} be the set of attributes
and ω = {ω1,ω2 . . . ,ωn} be the weighting vector of the attributes C j( j = 1, 2, . . . , n), where ω j ∈ [0, 1],∑n

j=1 ω j = 1. For the alternative Ai ∈ A of the attribute C j ∈ C, the decision maker provides an attribute
value ϕi j

, which is a picture 2-tuple linguistic variable. Each attribute value ϕi j
constitutes the decision

matrix R =
(
ri j

)
m×n

=
〈(

si j,αi j
)
,
(
µi j, ηi j, νi j

)〉
m×n

.
Next, we apply the ATT-P2TLWMSM and ATT-P2TLGWMSM operators to solve MADM problems

in which the attribute values take the form of P2TLNs. The flowchart of the method is shown in Figure 2.
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Step 1. Aggregate all P2TLNs via the ATT-P2TLWMSM or ATT-P2TLGWMSM operator to derive the
aggregation results ϕi(i = 1, 2, . . . , m) of the alternatives A = {A1, A2 . . . , Am}.
Step 2. Calculate the scores S(ϕi)(i = 1, 2, . . . , m) of the P2TLNs ϕi(i = 1, 2, . . . , m) and rank the
alternatives A = {A1, A2 . . . , Am}. If S(ϕi) is equal to S

(
ϕ j

)
, the accuracy degrees H(ϕi) and H

(
ϕ j

)
must

be calculated. Then, rank the alternatives A = {A1, A2 . . . , Am} according to H(ϕi) and H
(
ϕ j

)
.

Step 3. Sort the alternatives A = {A1, A2 . . . , Am} and select the best choice with S(ϕi)(i = 1, 2, . . . , m).
Step 4. End.

6. Illustrative Example

6.1. Data and Backdrop

In this section, we adapt a practical example from Wei et al. [36] to illustrate the methods
proposed in this paper. A company plans to invest in an enterprise resource planning (ERP) system.
Five optional ERP systems Ai(i = 1, 2, . . . , 5) are available, and the company considers the following
four attributes when evaluating the alternatives: (1) C1 represents functionality and technology; (2) C2

represents strategic fitness; (3) C3 represents vendor’s ability; and (4) C4 represents vendor’s reputation.
Furthermore, the weight vector of the four attributes is ω = (0.2, 0.1, 0.3, 0.4), and the decision matrix
Φ =

(
ϕi j

)
5×4

is given in Table 1, where ϕi j ∈ S, S = (s0, s1, s2, s3, s4, s5, s6, s7, s8) = (extremely bad, very
poor, poor, slightly poor, fair, slightly good, good, very good, extremely good).

Table 1. Picture 2-tuple linguistic matrix.

Options\Attributes C1 C2 C3 C4

A1
〈
(s4, 0), (0.53, 0.33, 0.09)

〉 〈
(s2, 0), (0.89, 0.08, 0.03)

〉 〈
(s1, 0), (0.42, 0.35, 0.18)

〉 〈
(s3, 0), (0.08, 0.89, 0.02)

〉
A2

〈
(s1, 0), (0.73, 0.12, 0.08)

〉 〈
(s4, 0), (0.13, 0.64, 0.21)

〉 〈
(s2, 0), (0.03, 0.82, 0.13)

〉 〈
(s4, 0), (0.73, 0.15, 0.08)

〉
A3

〈
(s5, 0), (0.91, 0.03, 0.02)

〉 〈
(s1, 0), (0.07, 0.09, 0.05)

〉 〈
(s4, 0), (0.04, 0.85, 0.10)

〉 〈
(s2, 0), (0.68, 0.26, 0.06)

〉
A4

〈
(s5, 0), (0.85, 0.09, 0.05)

〉 〈
(s6, 0), (0.74, 0.16, 0.10)

〉 〈
(s7, 0), (0.02, 0.89, 0.05)

〉 〈
(s1, 0), (0.08, 0.84, 0.06)

〉
A5

〈
(s3, 0), (0.90, 0.05, 0.02)

〉 〈
(s1, 0), (0.68, 0.08, 0.21)

〉 〈
(s3, 0), (0.05, 0.87, 0.06)

〉 〈
(s1, 0), (0.13, 0.75, 0.09)

〉
6.2. Method Based on the ATT-P2TLWMSM and ATT-P2TLGWMSM Operators

In general, we set m = 2, according to Section 5. The procedures to address the MADM problem
are as follows.

Step 1. Aggregate all P2TLNs by the ATT-P2TLWMSM or ATT-P2TLGWMSM operator to derive the
aggregation results ϕi(i = 1, 2, . . . , m) of the alternatives A = {A1, A2 . . . , Am}. The aggregation results
are listed in Table 2.

Table 2. The aggregation results of the ATT-P2TLWMSM and ATT-P2TLGWMSM operators.

Operators\Attributes ATT-P2TLWMSM ATT-P2TLGWMSM (p = 1, q = 2)

A1
〈
(s1,−0.2945), (0.1259, 0.8214, 0.5405)

〉 〈
(s1,−0.1703), (0.1318, 0.8083, 0.4791)

〉
A2

〈
(s1,−0.2271), (0.1368, 0.7807, 0.5978)

〉 〈
(s1, 0.0173), (0.1925, 0.7196, 0.5520)

〉
A3

〈
(s1,−0.0282), (0.1649, 0.7178, 0.5077)

〉 〈
(s1, 0.0342), (0.2093, 0.7010, 0.4786)

〉
A4

〈
(s2, 0.1086), (0.0981, 0.8565, 0.5212)

〉 〈
(s3,−0.0697), (0.0973, 0.8672, 0.4797)

〉
A5

〈
(s1, 0.4509), (0.1113, 0.8132, 0.5332)

〉 〈
(s1,−0.3932), (0.0991, 0.8249, 0.5025)

〉
Step 2. Based on the aggregation results displayed in Table 2, the score functions of the ERP systems
are given in Table 3.



Symmetry 2019, 11, 943 21 of 25

Table 3. The score functions of the enterprise resource planning (ERP) systems.

Operators\Attributes ATT-P2TLWMSM ATT-P2TLGWMSM (p = 1, q = 2)

A1 (s0, 0.2065) (s0, 0.2707)
A2 (s0, 0.2083) (s0, 0.3258)
A3 (s0, 0.3193) (s0, 0.3778)
A4 (s1,−0.3917) (s1,−0.0951)
A5 (s0, 0.1587) (s0, 0.1810)

Step 3. Rank all the alternatives A = {A1, A2 . . . , A5} based on the score functions in Table 3. The sorting
results are given in Table 4.

Table 4. The final sorting results.

Operator Parameter Ranking
m p1 p2

ATT − P2TLWMSM(m) 2 - - A4 > A3 > A2 > A1 > A5

ATT − P2TLGWMSM(m,p1,p2) 2 1 2 A4 > A3 > A2 > A1 > A5

The best choice is A4.

Step 4. End

6.3. Comparative Analysis and Discussion

First, we compare the methods proposed in this paper with the methods developed by Wei [36,41];
the comparison results are presented in Table 5. As shown in Tables 4 and 5, the rank results of the
methods proposed in this paper are the same as those of the methods in [36,41]; therefore, the approach
developed in this paper is accurate and effective.

The merits of the methods proposed in this paper for addressing MADM problems are as follows:

(1) The calculation object of the operators proposed in this paper is P2TLN, which not only includes
2-tuple linguistic information but also expresses the degree of positive membership, the degree of
neutral membership, the degree of negative membership and the degree of refusal membership of
an element in linguistic terms. These functions make the representation of linguistic information
more precise.

(2) The same ranking results as those in references [36,41] show that the methods proposed in this
paper are valid and effective for solving MADM problems in which the attribute values take the
form of picture 2-tuple linguistic information. Compared with the methods based on P2TLWA
and P2TLWGBM proposed by Wei [36,41], the operators developed in this paper can capture the
interrelationships among multiple input parameters. Therefore, the methods proposed in this
paper are valid and correct and can solve MADM problems better.

Table 5. Comparison of different methods.

Method Operator Ranking

Method in [36] P2TLWA(m) (m = 2) A4 > A3 > A2 > A1 > A5
Method in [41] P2TLWGBM(m,p1,p2) (p1 = p2 = 1) A4 > A3 > A2 > A1 > A5

Proposed methods in this paper ATT − P2TLWMSM(m) (m = 2) A4 > A3 > A2 > A1 > A5
Proposed methods in this paper ATT − P2TLGWMSM(m,p1,p2) (p1 = p2 = 1) A4 > A3 > A2 > A1 > A5

In the following, we use Table 6 to illustrate the influence of parameters on the sorting results.
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Table 6. Comparison results for different parameter values.

Operator m p1 p2 p3 Ranking

ATT − P2TLWMSM(m)

1 - - - A4 > A3 > A2 > A1 > A5
2 - - - A4 > A3 > A2 > A1 > A5
3 - - - A4 > A3 > A1 > A2 > A5
4 - - - A4 > A3 > A1 > A2 > A5

ATT − P2TLGWMSM(m,p1,p2) 2

0 1 - A4 > A2 > A3 > A1 > A5
1 0 - A4 > A3 > A5 > A1 > A2
1 1 - A4 > A3 > A2 > A1 > A5
1 2 - A4 > A3 > A2 > A1 > A5
1 3 - A4 > A3 > A2 > A1 > A5
2 1 - A4 > A3 > A5 > A1 > A2
2 2 - A4 > A3 > A2 > A1 > A5
2 3 - A4 > A3 > A2 > A1 > A5
3 1 - A4 > A3 > A5 > A1 > A2
3 2 - A4 > A3 > A1 > A2 > A5
3 3 - A4 > A3 > A2 > A1 > A5

ATT − P2TLGWMSM(m,p1,p2,p3) 3

1 0 0 A4 > A3 > A1 > A5 > A2
0 1 0 A4 > A3 > A5 > A2 > A1
0 0 1 A4 > A2 > A3 > A1 > A5
1 1 1 A4 > A3 > A1 > A5 > A2
1 1 2 A4 > A3 > A2 > A1 > A5
1 1 3 A4 > A2 > A3 > A1 > A5
1 1 4 A4 > A2 > A3 > A1 > A5
1 2 1 A4 > A3 > A5 > A2 > A1
1 3 1 A4 > A3 > A5 > A2 > A1
1 4 1 A4 > A3 > A5 > A2 > A1
2 1 1 A4 > A3 > A1 > A5 > A2
3 1 1 A4 > A3 > A1 > A5 > A2
4 1 1 A4 > A3 > A1 > A5 > A2

As shown in Table 6, the best choice is A4, and the worst choices are A5 or A2. When we select the
ATT-P2TLWMSM operator to solve the MADM problem and m is given different values, although the
optimal and worst choices remain the same, the ranking changes. The MSM operator captures the
interrelationship among input parameters, and the value of m determines the relationships between
how many input parameters must be considered. When the value of m is too large to be close to the
number of attributes, ranking results have some small errors.

When we select the ATT-P2TLGWMSM operator to solve the MADM problem and m = 2, as
shown in Table 6, the best option is still A4. Furthermore, if p1 or p2 is equal to 0, the final sorting result
has no practical meaning. Therefore, the arguments must be real numbers. In addition, when p1 is less
than or equal to p2, the same ranking results are obtained.

Furthermore, there is a comparison for ATT-P2TLGWMSM with different values of p1, p2 and p3

when m = 3. The ranking results are the same when two of the three parameters have the same value
and the other is different. For example, when p1 is equal to 2, 3, or 4 and p2 is equal to p3 (both equal
1), the ranking results are all A4 > A3 > A1 > A5 > A2. The data in Table 6, indicate that if one of the
arguments far exceeds the others, the sorting results may be disordered. Moreover, the content in
Table 6 indicates that when m = 3, alternatives A1, A2 and A5 are easily impacted.

In conclusion, the parameter values directly affect the final sorting results. Therefore, companies
must choose suitable parameters to address MADM problems. In addition, the methods proposed in
this paper are shown to be flexible and valid through the comparison and analysis of the above results.

7. Conclusions

In this paper, we solve MADM problems with picture 2-tuple linguistic information via novel
aggregation operators—The ATT-P2TLMSM operator and the ATT-P2TLGMSM operator. Moreover,
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we discuss a few desired properties and series of specific cases of the proposed operators in detail.
Considering that the input parameters have varying importance, the ATT-P2TLMSM operator and the
ATT-P2TLGMSM operator are introduced. Finally, a method for MADM with picture 2-tuple linguistic
information based on the proposed operators is developed, and an illustrative example is given to
confirm the proposed operators. The method can not only capture the relationship of input parameters,
but also take the ATT operational laws whose operations are closed into account. In addition, P2TLNs
are suitable to describe decision makers’ confidence that the final decision results would be effective
and flexible.

In the future, we will study a series of novel operators based on P2TLNs that can accurately express
uncertain information. In view of the fact that the ATT operation rules are not easy to understand,
we will search for more easy-to-understand and simplified calculation rules without compromising
accuracy. In addition, we will address more MADM problems, such as environmental evaluation,
bank investment, and stock forecasting. Moreover, we will extend the MSM operators to handle
MADM problems.

Author Contributions: Conceptualization, M.F. and Y.G.; methodology, M.F.; software, M.F.; validation, M.F.
and Y.G.; formal analysis, Y.G.; investigation, M.F.; resources, Y.G.; data curation, M.F.; writing—original
draft preparation, M.F.; writing—review and editing, Y.G.; visualization, M.F.; supervision, Y.G.; project
administration, Y.G.

Funding: This research was funded by the National Key Research and Development Program of China,
grant number 2017YFA0700600.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
3. Zadeh, L.A. The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Inf. Sci.

1974, 8, 199–249. [CrossRef]
4. Bordogna, G.; Fedrizzi, M.; Pasi, G. A linguistic modeling of consensus in group decision making based on

OWA operators. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 1997, 27, 126–133. [CrossRef]
5. Merigó, J.M.; Casanovas, M.; Palacios-Marqués, D. Linguistic group decision making with induced

aggregation operators and probabilistic information. Appl. Soft Comput. J. 2014, 24, 669–678. [CrossRef]
6. Herrera, F.; Herrera-Viedma, E. Linguistic decision analysis: Steps for solving decision problems under

linguistic information. Fuzzy Sets Syst. 2000, 115, 67–82. [CrossRef]
7. Deveci, M.; Özcan, E.; John, R.; Öner, S.C. Interval type-2 hesitant fuzzy set method for improving the service

quality of domestic airlines in Turkey. J. Air Transp. Manag. 2018, 69, 83–98. [CrossRef]
8. Herrera, F.; Martínez, L. A 2-tuple fuzzy linguistic representation model for computing with words. Fuzzy Syst.

2000, 8, 746–752.
9. Xu, Y.; Wang, H. Approaches based on 2-tuple linguistic power aggregation operators for multiple attribute

group decision making under linguistic environment. Appl. Soft Comput. J. 2011, 11, 3988–3997. [CrossRef]
10. Wei, G.; Zhao, X. Some dependent aggregation operators with 2-tuple linguistic information and their

application to multiple attribute group decision making. Expert Syst. Appl. 2012, 39, 5881–5886. [CrossRef]
11. Jiang, X.P.; Wei, G.W. Some Bonferroni mean operators with 2-tuple linguistic information and their

application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 2153–2162.
12. Merigó, J.M.; Gil-Lafuente, A.M. Induced 2-tuple linguistic generalized aggregation operators and their

application in decision-making. Inf. Sci. 2013, 236, 1–16. [CrossRef]
13. Wang, J.Q.; Wang, D.D.; Zhang, H.Y.; Chen, X.H. Multi-criteria group decision making method based on

interval 2-tuple linguistic information and Choquet integral aggregation operators. Soft Comput. A Fusion
Found. Methodol. Appl. 2015, 19, 389–405. [CrossRef]

14. Qin, J.; Liu, X. 2-tuple linguistic Muirhead mean operators for multiple attribute group decision making and
its application to supplier selection. Kybernetes 2016, 45, 2–29. [CrossRef]

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1109/3468.553232
http://dx.doi.org/10.1016/j.asoc.2014.08.035
http://dx.doi.org/10.1016/S0165-0114(99)00024-X
http://dx.doi.org/10.1016/j.jairtraman.2018.01.008
http://dx.doi.org/10.1016/j.asoc.2011.02.027
http://dx.doi.org/10.1016/j.eswa.2011.11.120
http://dx.doi.org/10.1016/j.ins.2013.02.039
http://dx.doi.org/10.1007/s00500-014-1259-z
http://dx.doi.org/10.1108/K-11-2014-0271


Symmetry 2019, 11, 943 24 of 25

15. Cuong, B.C. Picture fuzzy sets-first results (part 1). In Seminar on Neuro-Fuzzy Systems with Applications;
Institute of Mathematics: Hanoi, Vietnam, March 2013.

16. Singh, P. Correlation coefficients for picture fuzzy sets. J. Intell. Fuzzy Syst. 2015, 2, 591–604.
17. Yang, Y.; Liang, C.; Ji, S.; Liu, T. Adjustable soft discernibility matrix based on picture fuzzy soft sets and its

applications in decision making. J. Intell. Fuzzy Syst. 2015, 4, 1711–1722. [CrossRef]
18. Le, H.S. Generalized picture distance measure and applications to picture fuzzy clustering. Appl. Soft Comput.

2016, 46, 284–295.
19. Wei, G. Picture fuzzy cross-entropy for multiple attribute decision making problems. J. Bus. Econ. Manag.

2016, 17, 491–502. [CrossRef]
20. Thong, N.T. HIFCF: An effective hybrid model between picture fuzzy clustering and intuitionistic fuzzy

recommender systems for medical diagnosis. Expert Syst. Appl. 2015, 42, 3682–3701. [CrossRef]
21. Beliakov, G.; Bustince, H.; Goswami, D.P.; Mukherjee, U.K.; Pal, N.R. On averaging operators for Atanassov

intuitionistic fuzzy sets. Inf. Sci. Int. J. 2011, 181, 1116–1124.
22. Liu, P. The Aggregation Operators Based on Archimedean t-Conorm and t-Norm for Single-Valued

Neutrosophic Numbers and their Application to Decision Making. Int. J. Fuzzy Syst. 2016, 18, 849–863.
[CrossRef]

23. Liu, P.; Zhang, X. A Novel Picture Fuzzy Linguistic Aggregation Operator and Its Application to Group
Decision-making. Cogn. Comput. 2018, 10, 242–259. [CrossRef]

24. Yager, R.R. The power average operator. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2001, 31, 724–731.
[CrossRef]

25. Tan, C.; Chen, X. Induced Choquet ordered averaging operator and its application to group decision making.
Int. J. Intell. Syst. 2010, 25, 59–82. [CrossRef]

26. Bonferroni, C. Sulle medie multiple di potenze. Boll. Mater. Italiana 1950, 5, 267–270.
27. Liu, P.; Chen, Y.; Chu, Y. Intuitionistic uncertain linguistic weighted bonferroni owa operator and Its

application to multiple attribute decision making. Sci. World J. 2014, 45, 418–438. [CrossRef]
28. Liu, P. Some Heronian mean operators with 2-tuple linguistic information and their application to multiple

attribute group decision making. Technol. Econ. Dev. Econ. 2015, 21, 797–814.
29. Maclaurin, C. A second letter to Martin Folkes, Esq.: Concerning the roots of equations, with the demonstration

of other rules of algebra. Philos. Trans. R. Soc. Lond. Ser. A 1729, 36, 59–96.
30. Qin, J.; Liu, X.; Pedrycz, W. Hesitant Fuzzy Maclaurin Symmetric Mean Operators and Its Application to

Multiple-Attribute Decision Making. Int. J. Fuzzy Syst. 2015, 17, 509–520. [CrossRef]
31. Wang, J.Q.; Yang, Y.; Li, L. Multi-criteria decision-making method based on single-valued neutrosophic

linguistic Maclaurin symmetric mean operators. Neural Comput. Appl. 2016, 4, 1529–1547. [CrossRef]
32. Wei, G.; Mao, L. Pythagorean Fuzzy Maclaurin Symmetric Mean Operators in Multiple Attribute Decision

Making: Pythagorean fuzzy maclaurin symmetric mean operators. Int. J. Intell. Syst. 2018, 33, 1043–1070.
[CrossRef]

33. Liu, P.; Zhang, X. Some Maclaurin Symmetric Mean Operators for Single-Valued Trapezoidal Neutrosophic
Numbers and Their Applications to Group Decision Making. Int. J. Fuzzy Syst. 2018, 20, 45–61. [CrossRef]

34. Herrera, F.; Herrera-Viedma, E. A model of consensus in group decision making under linguistic assessments.
Fuzzy Sets Syst. 1996, 78, 73–87. [CrossRef]

35. Herreraab, F. Managing non-homogeneous information in group decision making. Eur. J. Oper. Res. 2005,
166, 115–132. [CrossRef]

36. Wei, G. Picture 2-Tuple Linguistic Bonferroni Mean Operators and Their Application to Multiple Attribute
Decision Making. Int. J. Fuzzy Syst. 2017, 19, 997–1010. [CrossRef]

37. Schweizer, B.; Sklar, A. Associative functions and abstract semi-groups. Publ. Math. 1964, 10, 69–81.
38. Simon, D. Fuzzy Sets; Fuzzy Logic: Theory and Applications. Control Eng. Pract. 1996, 4, 1332–1333.

[CrossRef]
39. Tao, Z.; Chen, H.; Zhou, L.; Liu, J. On new operational laws of 2-tuple linguistic information using

Archimedean t-norm and s-norm. Knowl.-Based Syst. 2014, 66, 156–165. [CrossRef]

http://dx.doi.org/10.3233/IFS-151648
http://dx.doi.org/10.3846/16111699.2016.1197147
http://dx.doi.org/10.1016/j.eswa.2014.12.042
http://dx.doi.org/10.1007/s40815-016-0195-8
http://dx.doi.org/10.1007/s12559-017-9523-z
http://dx.doi.org/10.1109/3468.983429
http://dx.doi.org/10.1002/int.20388
http://dx.doi.org/10.1080/01969722.2014.929348
http://dx.doi.org/10.1007/s40815-015-0049-9
http://dx.doi.org/10.1007/s00521-016-2747-0
http://dx.doi.org/10.1002/int.21911
http://dx.doi.org/10.1007/s40815-017-0335-9
http://dx.doi.org/10.1016/0165-0114(95)00107-7
http://dx.doi.org/10.1016/j.ejor.2003.11.031
http://dx.doi.org/10.1007/s40815-016-0266-x
http://dx.doi.org/10.1016/0967-0661(96)81492-4
http://dx.doi.org/10.1016/j.knosys.2014.04.037


Symmetry 2019, 11, 943 25 of 25

40. Ling, C.H. Representation of associative functions. Publ. Math. Debrecent 1965, 12, 189–212.
41. Wei, G.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Picture2-tuple linguistic aggregation operators in multiple

attribute decision making. Soft Comput. 2018, 22, 989–1002. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00500-016-2403-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries 
	2-Tuple Linguistic Term Sets 
	Picture Fuzzy Set 
	Archimedean T-Norm and T-Conorm 
	MSM Operators 

	Picture 2-Tuple Linguistic Sets and a New Operation 
	Picture 2-Tuple Linguistic Sets 
	New Operations for Picture 2-Tuple Linguistic Sets Based on ATT 

	Picture 2-Tuple Linguistic MSM Operators Based on ATT 
	The ATT-P2TLMSM and ATT-P2TLGMSM Operators 
	The ATT-P2TLWMSM and ATT-P2TLWGMSM Operators 

	MADM Based on the ATT-P2TLMSM Operator 
	Illustrative Example 
	Data and Backdrop 
	Method Based on the ATT-P2TLWMSM and ATT-P2TLGWMSM Operators 
	Comparative Analysis and Discussion 

	Conclusions 
	References

