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Abstract: A The learning process of machine learning consists of finding values of unknown weights
in a cost function by minimizing the cost function based on learning data. However, since the cost
function is not convex, it is conundrum to find the minimum value of the cost function. The existing
methods used to find the minimum values usually use the first derivative of the cost function.
When even the local minimum (but not a global minimum) is reached, since the first derivative of
the cost function becomes zero, the methods give the local minimum values, so that the desired
global minimum cannot be found. To overcome this problem, in this paper we modified one of the
existing schemes—the adaptive momentum estimation scheme—by adding a new term, so that it
can prevent the new optimizer from staying at local minimum. The convergence condition for the
proposed scheme and the convergence value are also analyzed, and further explained through several
numerical experiments whose cost function is non-convex.

Keywords: Adam optimization; local minimum; non-convex; cost function; machine learning

1. Introduction

Deep learning is a part of a broader family of machine learning methods [1–10] based on learning
data representations, as opposed to task-specific algorithms. Machine learning is a field of computer
science that gives computer systems the ability to learn with data, without being explicitly programmed.
In machine learning, a machine will find appropriate weight values of data by introducing a cost
function. There are several optimization schemes [11–25] which can be used to find the weights by
minimizing the cost function, such as the Gradient Descent method (GD) [26]. Also, there are many
variations based on the GD method which can be used to improve the efficiency of the GD method.
In particular, the adaptive momentum estimation (Adam) scheme [27,28] is the most popular scheme
based on the GD. The Adam is constructed by computing individual adaptive learning rates for
different parameters from estimates of first and second moments of the gradients. The Adam method
has been widely used, and it is well-known that it is easy to implement, computationally efficient,
and works quite well in most cases.

In this paper, we improve the Adam-based methods of finding the global minimum value of the
non-convex cost function. In a typical Adam method, in order to find the minimum value of the cost
function, the method looks for a value at which the first derivative of the cost function is zero, since the
global minimum value is usually one of critical points. At a certain point, if the value falls to the local
minimum, the value is not changed because the first derivative of the cost function is zero at the local
minimum, and if the value of the cost function is greater than the expected value, then the value of
the parameter has to be changed. Therefore, an additional value corresponding to the value of the
cost function should be added to the part that changes the parameter. In other words, the existing
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Adam-based method makes use of only the first derivative of the cost function to make a parameter
change, and sometimes it throws out one value of the local minimums, but not the global minimum
value we want to find out.

Basically, the GD-based method, including Adam, has an assumption that the given cost function
is convex, so a local minimum of the convex function is the desired global minimum. However,
experiments and some facts have shown that many of cost functions are non-convex. Also, it is
well-known that as the size of learning data increases through various experiences, the deep structure
of the neural network becomes more difficult to learn. That is, the complexity of the neural network has
a tendency to make the non-convex function. Therefore, a modified optimization scheme is required to
find the global minimum for non-convex cost functions.

In this paper, for the non-convex cost functions, a new scheme proposes a modification of the
classical Adam scheme—one variation of GD—to make a parameter change even at a local minimum by
using the values of both the cost function and the first derivative of the cost function. Even though the
parameter falls into a local minimum and the first derivative of the cost function is zero, the proposed
method has a variation of the parameter depending on the value of the cost function. Therefore,
the proposed method can get rid of that part, even if the parameter falls to a local minimum. Moreover,
to show convergence of the proposed scheme, we prove that the proposed scheme satisfies the required
convergence condition, and also present the limit of the convergence. Throughout several numerical
tests, it is numerically shown that the proposed method is quite efficient compared to several existing
optimization methods.

This paper is organized as follows: Firstly, we briefly explain the cost function in Section 2
and introduce the proposed scheme and its convergence analysis in Section 3. Numerical results are
presented in Section 4 and we end up with the conclusion in Section 5.

2. Analysis of the Cost Function

In this section, we briefly review a cost function in machine learning. For this, we try to understand
the principle of forming the structure with one neuron. Let x be an input data and H(x) be a output
data, which is obtained by

H(x) = σ(wx + b), (1)

where w is weight, b is bias, and σ is a sigmoid function (universally called an activation function,
and various functions can be used). Therefore, the result of the function H is made to be a value
between 0 and 1, since H takes a continuous value. For machine learning, let LS be the set of learning
data, and let l > 2 be the number of the size of LS. In other words, when the first departure point of
learning data is 1, we can say that LS = {(x1, y1), (x2, y2), ..., (xl , yl)}, where xi is normalized during
preprocessing and yi ∈ {0, 1}. From LS, we can define a cost function as follows:

C(w, b) =
1
l

l

∑
s=1

(ys − H(xs))
2 . (2)

The machine learning is completed through w and b, which satisfy the minimum value of the cost
function. Unfortunately, there may be several local minimum values of the cost function, when the
cost function is not convex. Furthermore, if we extend the cost function with deep learning, the nature
of convex is even harder to understand [13,15]. Note∣∣∣∣ ∂C

∂w

∣∣∣∣ (3)
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is bounded by defining

M =
2
l

l

∑
s=1
|xs|, (4)

since

∂C
∂w

= −2
l

l

∑
s=1

xs (ys − H(xs)) H(xs) (1− H(xs)) (5)

∣∣∣∣ ∂C
∂w

∣∣∣∣ =
2
l

∣∣∣∣∣ l

∑
s=1

xs (ys − H(xs)) H(xs) (1− H(xs))

∣∣∣∣∣ (6)

≤ 2
l

l

∑
s=1
|xs| (7)

= M, (8)

where M is a positive real value.

2.1. Change of the Cost Function According to Learning Data

In this subsection, we show how the cost function is complicated according to learning data by
showing how the number of local minima is increased. Note that the local minimum value means the
lowest value in the neighborhood of a certain xs.

Theorem 1. In the cost function, when one learning data is received, the local minimum value can increase
by one.

Proof. In order to find the convex properties, we need to calculate the second derivative of the cost
function. The second derivative of the cost function is

∂2C
∂w2 =

2
l

l

∑
s=1

(
∂H
∂w

)2
− 2

l

l

∑
s=1

(ys − H(xs))
∂2H
∂w2 (9)

=
2
l

l

∑
s=1

x2
s

(
H2(w) (1− H(w))2 − (ys − H(w)) H(w) (1− H(w)) (1− 2H(w))

)
(10)

=
2
l

l

∑
s=1

x2
s gs(w), (11)

where gs = Hs(1− Hs) {Hs(1− Hs)− (ys − Hs)(1− 2Hs)} and Hs = H(xs). If ys = 0 for all s, then xs

is negative, so 0 < Hs < 0.5. Therefore, gs is positive in its domain (0 < Hs < 0.5) by the definition of
gs. The other case for ys = 1, for all s, has the same results. In both cases, where all ys has the same value,
gs is always positive, so that the cost function is convex. Hence, we just check the other case, in which
ys has different values for some s. For simplicity, we take l = 2, then ∑l

s=1 x2
s gs can be divided into two

parts according to the ys value. When y1 = 1, ĝ is H1(1− H1) {H1(1− H1)− (1− H1)(1− 2H1)} and
when y2 = 0, g̃ is H2(1− H2) {H2(1− H2)− (0− H2)(1− 2H2)}. The cost function can be rewritten,
such that

∂2C
∂w2 = x2

1 ĝ1 + x2
2 g̃2. (12)

Assuming that x1 > 0 and x2 < 0, w satisfying the minimum of the cost function is ∞.
The solutions of the equation g1 = 0 are σ−1(0)/x1 − b, σ−1(1/3)/x1 − b, and σ−1(1)/x1 − b.
In particularly, the second derivative of the cost function, ∂2C/∂w2 is negative on [σ−1(0)/x1 −
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b, σ−1(1/3)/x1− b]. Similarly, the solution of the equation g2 = 0 are σ−1(0)/x2− b, σ−1(2/3)/x2− b,
and σ−1(1)/x2 − b. The second derivative of the cost function, ∂2C/∂w2 is negative on [σ−1(1)/x2 −
b, σ−1(2/3)/x2 − b]. Thus, as the learning data grows, there is an increase in the interval where the
second derivative of the cost function becomes negative.

2.2. Change of the Cost Function According to Row

This method can be extended to a multi-neuron network [29,30]. For simplicity, a value of each
neuron corresponds to a component of input data, so that the input data is represented as a vector.
Let X be an input vector and Yk be an output vector at the kth hidden layer. From this, we can obtain

Yk = Hk(x) = σ(WkYk+1 + bk),

where Wk and bk are a real matrix and real vector, respectively. Here, the calculation of the sigmoid
function is done through composing each element of a vector. A vector ζ with m elements is calculated
as follows:

σ(ζ) =


σ(ζ1)

σ(ζ2)
...

σ(ζm)

 .

If ∂C/∂ζi is non-convex, then ∂C/∂ζ is also non-convex.

3. Dynamic Adaptive Momentum Method

The main idea starts with a fixed-point iteration method [26] and the condition of the cost
function (0 ≤ C(w, b)). Since the cost function is lower-bounded and continuous on [0, 1], we can
find a minimizer (w∗, b∗), such that C(w∗, b∗) ≤ C(w, b) for all (w, b). Note that w and b are the initial
conditions which are randomly selected from the normal distribution.

3.1. Adam

Before describing the new scheme, we will briefly review the Adam scheme since the new scheme
is a modification of the Adam. The Adam is defined as follows:

wi+1 = wi − η
m̂i√

v̂i + ε
, (13)

where

mi = β1mi−1 + (1− β1)
∂C(wi)

∂w
, (14)

vi = β2vi−1 + (1− β2)

(
∂C(wi)

∂w

)2

, (15)

m̂i = mi/(1− β1), v̂i = vi/(1− β2). (16)

It is well-known that Adam works well for convex cost functions. Note that ∂C(wi)
∂w is usually zero

at the local and global minimum points. Hence, at even local minima, ∂C(wi)
∂w is close to zero, so that mi

and vi can be zero and wi can converge. To hurdle this drawback, the modification of Adam is required
for a non-convex cost function.
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3.2. Dynamic Adaptive Momentum Method

In this subsection, we show how the Adam scheme can be modified for a non-convex cost function.
The basic form of the new scheme is quite similar to that of the Adam. In the proposed scheme, the new
term λ tanh(C(wi)) is added to the Adam formula to prevent it from staying as local minima.

The proposed formula is defined as follows:

wi+1 = wi − η
m̂i√

v̂i + ε
+ λ tanh(C(wi)), (17)

where

λ = −
sign( ∂C(wi)

∂w )

M
(18)

mi = β1mi−1 + (1− β1)
∂C(wi)

∂w
, (19)

vi = β2vi−1 + (1− β2)

(
∂C(wi)

∂w

)2

, (20)

m̂i = mi/(1− β1), v̂i = vi/(1− β2). (21)

The Equation (18) can be changed as

mi = βi
1m0 + (1− β1)

i

∑
k=1

βk−1
1

∂C(wi−k+1)

∂w
(22)

= (1− β1)
i

∑
k=1

βk−1
1

∂C(wi−k+1)

∂w
(23)

vi = βi
2v0 + (1− β2)

i

∑
k=1

βk−1
2

(
∂C(wi−k+1)

∂w

)2

(24)

= (1− β2)
i

∑
k=1

βk−1
2

(
∂C(wi−k+1)

∂w

)2

, (25)

with assumptions m0 = 0 and v0 = 0. Therefore, the Equation (17) can be changed as

wi+1 = wi − η

√
1− β2

1− β1

(1− β1)∑i
k=1 βk−1

1
∂C(wi−k+1)

∂w√
(1− β2)∑i

k=1 βk−1
2

(
∂C(wi−k+1)

∂w

)2
+ ε

+ λ tanh(C(wi))

= wi − η
∑i

k=1 βk−1
1

∂C(wi−k+1)
∂w√

∑i
k=1 βk−1

2

(
∂C(wi−k+1)

∂w

)2
+ ε

+ λ tanh(C(wi))

= wi − η
Si√

SSi + ε
+ λ tanh(C(wi)) (26)

= g(w), (27)

where

Si =
i

∑
k=1

βk−1
1

∂C(wi−k)

∂w
, SSi =

i

∑
k=1

βk−1
2

(
∂C(wi−k)

∂w

)2

, (28)

and g(w) = w + λ tanh(C(w))− η
Si√

SSi + ε
. (29)
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Here, we look for the convergence condition of the proposed iteration scheme. The iteration
scheme is simply represented by

wi+1 = g(wi). (30)

Since i > τ (τ is a sufficiently large integer), we have

|wi+1 − wi| = |g(wi)− g(wi−1)| ≤
∣∣∣∣∂g(ζ)

∂w

∣∣∣∣ |wi − wi−1| , (31)

where ζ is between wi−1 and wi. By letting ν = ∂g/∂w, we can eventually have

|wi+1 − wi| ≤ νi−τ |wτ+1 − wτ |. (32)

As the iteration continues, the value of νi−τ converges to zero if |∂g/∂w| < 1. Therefore,
after a sufficiently large number (greater than τ), wi+1 and wi are equal. Assuming that |∂g(w)/∂w| =
ν < 1, the sequence {wi} is a cauchy sequence, so that it can be convergent [31]. Therefore, we need to
check that the proposed method satisfies the convergence condition |∂g(w)/∂w| < 1.

Theorem 2. The proposed method satisfies the convergence condition |∂g(w)/∂w| < 1.

Proof. In order to satisfy the convergence condition, we should compute the equation:

∂g
∂w

= 1 + λ
∂ tanh(C)

∂w
− η

∂2C
∂w2

 β2SSi−1 − β1Si−1
∂C
∂w((

∂C
∂w

)2
+ β2SSi−1

)3/2

+
∂λ

∂w
tanh(C) (33)

= 1 + λ
(

1− (tanh(C))2
) ∂C

∂w
− η

∂2C
∂w2

 β2 − β1
Si−1

SSi−1
∂C
∂w((

1
SSi−1

∂C
∂w

)2
+ β2

)3/2

 1

SS1/2
i−1

, (34)

because ∂λ/∂w is 0 almost everywhere.
Since β2 ≈ 1, η is a sufficiently small number and i > τ (τ is a sufficiently large integer), we have

η
∂2C
∂w2

 β2 − β1
Si−1

SSi−1
∂C
∂w((

1
SSi−1

∂C
∂w

)2
+ β2

)3/2

 1

SS1/2
i−1

≈ 0, (35)

and

∂g
∂w

= 1 + λ
(

1− (tanh(C))2
) ∂C

∂w
= 1−

(
1− (tanh(C))2

) ∣∣∣ ∂C
∂w

∣∣∣
M

. (36)

Therefore, |∂g(w)/∂w| < 1.

Since the sequence defined in the proposed scheme converges, the limit of the convergence can be
represented as follows:
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Theorem 3. The limit of the parameter, w∗, in the proposed method satisfies

C(w∗) ≈ tanh−1

(
η max

{
∂C(w)

∂w

}
(1− β2)

1/2

1− β1

)
.

Proof. After a sufficiently large number (greater than τ), we have w∗ = g(w∗). After computing

λ tanh(C(w∗)) − η
S∗√

SS∗ + ε
= 0 (37)

and

S∗ ≈
∂C(w∗)

∂w
1

1− β1
, SS∗ ≈

(
∂C(w∗)

∂w

)2 1
1− β2

, (38)

one can have the following equations,

λ tanh(C(w∗)) − ηsign
(

∂C
∂w

)
(1− β2)

1/2

1− β1
≈ 0 (39)

tanh(C(w∗)) ≈ ηM

(
(1− β2)

1/2

1− β1

)
(40)

C(w∗) ≈ tanh−1

(
ηM

(1− β2)
1/2

1− β1

)
. (41)

4. Numerical Tests

In this section, several numerical experiments are presented to show the superiority of the
proposed method by comparing numerical results obtained from the proposed scheme with results
from other existing schemes, such as GD, Adam, and AdaMax for a non-convex function. Note that
AdaMax [27] is one of the variants of Adam optimization schemes based on the infinity norm, where it
is known that it is more suitable for sparsely updated parameters.

4.1. Classification

As the first example, we test a classification problem to distinguish a positive value and
a negative value. That is, if the input value is positive, then the output is 1; and if the input
is negative, the output is 0. For the experiment, the learning data set (LS) is simply given as
LS = {(5, 1), (−2, 0), (50, 1), (−0.2, 1)}.

To examine a convergence property of the proposed optimization scheme in terms of the number
of layers, we test the proposed method by varying the number of layers (three and five layers).
Note that the initial weights are randomly provided. For the three layers case, the initial values are
randomly selected b1 = b2 = b3 = 0, w1 = 0.19771976, w2 = 0.15725612, and w3 = −0.28434913
and the number of iteration is 100. The GD only uses 1000 iterations due to slow learning speed.
For the five layers case, the initial value is fixed to b1 = b2 = b3 = b4 = b5 = 0, w1 = 0.34004834,
w2 = 1.09908653, w3 = −0.38793867, w4 = −1.48041442, and w5 = −0.74076256, and the number of
iteration is 100. Other parameters are provided in Table 1.
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Table 1. Initial parameters.

Method Learning Rate Parameters

GD 0.8
Adam 0.5 β1 = 0.9, β2 = 0.999, ε = 10−8

AdaMax 0.5 β1 = 0.9, β2 = 0.999
Proposed 0.5 β1 = 0.9, β2 = 0.999, M = 10

Based on the initial parameters, the numerical results for the three- and five-layer cases are plotted
in Figure 1a,b, respectively.

Figure 1a,b present the convergence behavior of the proposed and existing schemes (GD, Adam,
AdaMax) according to iterations. As seen in the Figures, the errors of the proposed scheme decrease
much faster than others for both the three- and five-layer cases. Note that GD is not even close to zero.

(a) (b)

Figure 1. Comparing proposed scheme with others for (a) three and (b) five layers.

4.2. One Variable Non-Convex Function Test

For the second example, we investigate behaviors of the proposed optimization for a non-convex
cost function. A cost function in this experiment is assumed to be a non-convex function,

C(w) =
(w + 5)(w + 3)(w− 1)(w− 10)

800
+ 3. (42)

Note that the global minimum of the given cost function is located at w = 7.1047. The starting
point is w = −9 and the iteration number is 100. Note that the blue line in the numerical results
(Figure 2) represents a graph of the cost function C(w) according to the change of w. Ohter initial
conditions of the proposed and other existing schemes are given in Table 2.

Table 2. Initial parameters.

Method Learning Rate Parameters

GD 0.2
Adam 0.2 β1 = 0.9, β2 = 0.999, ε = 10−8

AdaMax 0.2 β1 = 0.9, β2 = 0.999
Proposed 0.2 β1 = 0.9, β2 = 0.999, M = 100

Based on the given initial conditions, we plot the solution behaviors of the proposed scheme with
respect to the value of w, and plot those of the other existing schemes for comparisons in Figure 2.
Notice that the given cost function has two local minimum points and one of these is the global
minimum point, which is a final value from this experiment.
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Figure 2d shows the numerical results obtained from the proposed scheme, and one can see that
this scheme can find the global minimum points after 100 iteration times. However, other results seen in
Figure 2a–c shows that solution behaviors of GD, Adam, AdaMax just stop at a local minimum, but not
the global minimum point. Notice that even more iterations cannot help to find the global minimum.

(a) (b)

(c) (d)

Figure 2. Solution behaviors of (a) GD, (b) Adam, (c) AdaMax, and (d) proposed scheme.

4.3. One Variable Non-Convex Function Test: Local Minimums Exist in Three Places

For further investigation of the solution behaviors, we test a more complicated case, which has
three local minimum points. The cost function in this experiment is set to

C(w) =
(w + 8)(w + 6)(w + 1)(w− 2)(w− 5)(w− 12)

50000
+ 5.2. (43)

The starting point is −9, and the iteration number is 100. Also, the global minimum is located at
w = 10.1. Similar to the above, the blue line in the results represents the cost function C(w) according
to the change of w. Table 3 provides the initial parameters required in the proposed scheme, as well as
the other existing schemes.

Table 3. Initial parameters.

Method Learning Rate Parameters

GD 0.2
Adam 0.2 β1 = 0.9, β2 = 0.999, ε = 10−8

AdaMax 0.2 β1 = 0.9, β2 = 0.999
Proposed 0.2 β1 = 0.9, β2 = 0.999, M = 100
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Based on the given initial conditions, the solution behaviors of the proposed scheme were plotted
and compared with those of the other existing schemes in Figure 3. In this experiment, the given cost
function has three local minimum points, and the final local point is the global minimum point.

(a) (b)

(c) (d)

Figure 3. Solution behaviors of (a) GD, (b) Adam, (c) AdaMax, and (d) proposed scheme.

From the Figure 3a–d, one can see that the proposed scheme can find the global minimum points
after 100 iteration times, whereas the solution behaviors of GD, Adam, and AdaMax just stay at a local
minimum, but not the global minimum point. Also, Figure 3a–c show that the other schemes cannot
pass the first local minimum once they meet the first local minimum. Hence, one can conclude that the
proposed scheme is able to distinguish between the global minimum and non-global local minima,
which is a main contribution of this work.

4.4. Two-Dimensional Non-Convex BEALE Function

In the fourth experiment, we examined the solution behavior of the proposed optimization scheme
for a two-dimensional case. The cost function in this experiment is defined as

C(w1, w2) = (1.5− w1 + w1w2)
2 + (2.25− w1 + w1w2

2)
2 + (2.625− w1 + w1w3

2)
2, (44)

and has the global minimum at (w1, w2) = (3, 0.5). An initial point starts at (2, 2) and the iteration
number is 300. Similar to the above, the initial parameters for the proposed scheme and other existing
schemes are shown in Table 4.
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Table 4. Initial parameters.

Method Learning Rate Parameters

GD 10−4

Adam 10−1 β1 = 0.9, β2 = 0.999, ε = 10−8

AdaMax 10−1 β1 = 0.9, β2 = 0.999
Proposed 10−1 β1 = 0.9, β2 = 0.999, M = 100

Based on these initial conditions, the numerical results are plotted in Figure 4. Note that the initial
point (2, 2) is quite close to the desired point, (3, 0.5).

Figure 4. Solution behaviors for a one-dimensional case with starting point (2, 2).

Figure 4 shows that all methods converge well because the given cost function is convex around
the given starting point.

In order to investigate the effect of the initial points, we tested the same cost function with
a different starting point (w1, w2) = (−4, 4), and the iteration number was set to 50,000 with the same
initial parameters defined in Table 4. However, unlike the previous case, the starting point is far from
the global minimum point in the given cost function, and a region between the starting point and the
global minimum contains non-convex parts of the cost function.

Figure 5 presents the numerical results. Note that the given cost function is non-convex around
the starting point (−4, 4). The numerical result in Figure 5 shows that GD, Adam, and AdaMax fall
into a local minimum and stop there, whereas the proposed scheme reaches the global minimum.

Figure 5. Solution behaviors for the one-dimensional case with starting point (−4, 4).



Symmetry 2019, 11, 942 12 of 17

4.5. Two Variables Non-Convex Stybliski-Tang Function

In this next experiment we tested a more complicated case, where the cost function is defined as

C(w1, w2) = ((w4
1 − 16w2

1 + 5w1) + (w4
2 − 16w2

2 + 5w2))/2 + 80. (45)

The global minimum is located at (w1, w2) = (−2.903534,−2.903534). For the test, a starting
point (w1, w2) = (6, 0) was set to be far from the global minimum, and the iteration number was set to
300. The other initial parameters were set as seen in Table 5.

Table 5. Initial parameters.

Method Learning Rate Parameters

GD 10−4

Adam 10−1 β1 = 0.9, β2 = 0.999, ε = 10−8

AdaMax 10−1 β1 = 0.9, β2 = 0.999
Proposed 10−1 β1 = 0.9, β2 = 0.999, M = 2000

Based on the initial parameters, we checked the solution behavior of the proposed scheme and
other existing ones for comparison in Figure 6.

Figure 6. Comparing proposed scheme with others for three layers.

Figure 6 shows that the proposed scheme can only converge to the desired point, whereas other
schemes cannot converge. Note that the given cost function is non-convex near the starting point (6, 0).

4.6. Two-Dimensional Non-Convex Function Having Saddle Point

Basically, the optimization schemes find the global minimum of a given cost function, and the
global minimum point is usually the lowest of the critical points. However, we cannot guarantee that
all global minimums are one of the critical points. The typical two-dimensional example is a function
which has saddle points.

Hence, to examine the convergence behavior of the optimization scheme in this case, we set up

the cost function as C(w1, w2) = w2
2 −w2

1 + 2 whose hessian matrix is

(
−2 0
0 2

)
, so the function has

a saddle point for every point in its own domain. The function is plotted in Figure 7.
For the test, we set up the starting point at (0, 0.01) and the iteration number was 100.

Other parameters are shown in Table 6.
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Table 6. Initial parameters.

Method Learning Rate Parameters

GD 10−3

Adam 10−1 β1 = 0.9, β2 = 0.999, ε = 10−8

AdaMax 10−1 β1 = 0.9, β2 = 0.999
Proposed 10−1 β1 = 0.95, β2 = 0.999, M = 100

Similarly to the above, based on these initial parameters, we tested the proposed scheme and
other existing schemes. Note that the cost function in this test has a saddle point, so we expected to
find the smallest value of the whole domain.

Results are shown in Figure 8.

(a) (b)

Figure 7. Cost function in (a) 3D and (b) 2D.

Figure 8. Solution behavior on the cost function, which has saddle points.

The numerical result plotted in Figure 8 shows that only the proposed scheme can converge to
the desired point, whereas the other existing schemes cannot.

4.7. Fuzzy Model: Probability of Precipitation

As mentioned, the proposed scheme can also be applied to the fuzzy model system, so we tried to
apply the scheme to predict the probability of rain based on the given data.

Figure 9 represents given data for the current precipitation. Light-green dots represent zero
probability of rain at the region, and dark-green dots represent data points where it is currently raining.

The cost function is defined by
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C(w, b) =
1
l

l

∑
s=1

(ys − H(xs))
2, (46)

where H(xs) = σ(wxs + b), σ is a sigmoidal function and xs is a point in xy-plane. The initial values of
parameters used in this test are presented in Table 7.

The numerical results induced from the proposed optimization scheme is plotted in Figure 10
and compared with results obtained from the existing schemes—GD, Adam, and AdaMax.

One can see that a result from the proposed algorithm gives more reasonable phenomena for
the probability of precipitation, whereas the other existing schemes generate very ambiguous results,
especially those from GD and AdaMax.

Figure 9. Current precipitations: light-green dot represents a point where it is not raining,
and dark-green dots represent places where it is raining.

(a) (b)

(c) (d)

Figure 10. Numerical results generated from (a) GD, (b) Adam, (c) AdaMax, and (d) the
proposed scheme.
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Table 7. Initial parameters.

Method Learning Rate Parameters

GD 10−2

Adam 10−2 β1 = 0.9, β2 = 0.999, ε = 10−8

AdaMax 10−2 β1 = 0.9, β2 = 0.999
Proposed 10−2 β1 = 0.95, β2 = 0.999, M = 100

5. Conclusions

In this paper, we introduced an enhanced optimization scheme based on the popular optimization
scheme, Adam, for non-convex problems induced from the machine learning process. Most existing
optimizers may stay at a local minimum for non-convex problems when they meet the local minimum
before meeting a global minimum. Even they have some difficulty in finding the global minimum
within a complicated non-convex system. To prevent such phenomena, the classical Adam formula
was modified by adding a new term with a non-negligible value at the local minimums, making it
become zero at the global minimum. Hence, the modified optimizer never converges at local minimum
points, and it can only converge at the global minimum.

Additionally, a convergence condition required in the proposed scheme was explained, and the
limit of convergence was also provided. Throughout several numerical experiments, one could see
that other existing methods did not converge to the desired point for critical initial conditions, whereas
the proposed scheme could reach the global minimum point. Therefore, one can conclude that the
proposed scheme performs very well compared with other existing schemes, such as GD, Adam,
and AdaMax. Currently, we are investigating the generalization of the proposed scheme for deep-layer
and multi-variable cases, which are the limitations of the current work. The preliminary results are
quite promising, and we plan to report these soon.
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