
symmetryS S

Article

Dynamic Partitioning Supporting Load Balancing for
Distributed RDF Graph Stores

Kyoungsoo Bok, Junwon Kim and Jaesoo Yoo *

School of Information and Communication Engineering, Chungbuk National University, Chungdae-ro 1,
Seowon-Gu, Cheongju, Chungbuk 28644, Korea
* Correspondence: yjs@chungbuk.ac.kr; Tel.: +82-43-261-3230

Received: 5 June 2019; Accepted: 12 July 2019; Published: 16 July 2019
����������
�������

Abstract: Various resource description framework (RDF) partitioning methods have been studied
for the efficient distributed processing of a large RDF graph. The RDF graph has symmetrical
characteristics because subject and object can be used interchangeably if predicate is changed.
This paper proposes a dynamic partitioning method of RDF graphs to support load balancing in
distributed environments where data insertion and change continue to occur. The proposed method
generates clusters and subclusters by considering the usage frequency of the RDF graph that are used
by queries as the criteria to perform graph partitioning. It creates a cluster by grouping RDF subgraphs
with higher usage frequency while creating a subcluster with lower usage frequency. These clusters
and subclusters conduct load balancing by using the mean frequency of queries for the distributed
server and conduct graph data partitioning by considering the size of the data stored in each
distributed server. It also minimizes the number of edge-cuts connected to clusters and subclusters
to minimize communication costs between servers. This solves the problem of data concentration
to specific servers due to ongoing data changes and additions and allows efficient load balancing
among servers. The performance results show that the proposed method significantly outperforms
the existing partitioning methods in terms of query performance time in a distributed server.

Keywords: RDF; dynamic partition; cluster; subcluster; usage frequency load balancing

1. Introduction

Web technology has continuously evolved, and a variety of information has become available on
the web with the increasing number of web users and amount of information on the web. The general
web service has provided information suitable for users’ search needs through hyperlinks among
information resources; however, it has been associated with difficulties in terms of accurate information
searches and the meaningful interpretation of information. In other words, a next-generation web
that can meet users’ various needs and support more accurate searches is now needed. The semantic
web is under the spotlight as an alternative to the next-generation web [1,2]. It can define meaningful
relationships among data and generate new knowledge through reasoning [3,4].

As metadata and ontology play a core role in the semantic web, the resource description framework
(RDF) was proposed by the World Wide Web Consortium (W3C) to describe web data formally [5–7].
The RDF is a language to specify metadata with the capability to express semantic relationships among
information resources and sentences with the subject, predicate, and object structure [8–10]. In other
words, when RDF documents with subjects, predicates, and objects are used, computers can identify
the relationships among information resources and process data more efficiently and accurately [11–13].

In an RDF graph that models RDF documents as graphs, subjects and objects are represented by
vertices and predicates are represented by edges. Subject and object can be changed if the meaning
of the predicate is changed. That is, the RDF graph has symmetrical characteristics because subject

Symmetry 2019, 11, 926; doi:10.3390/sym11070926 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-9926-9947
http://www.mdpi.com/2073-8994/11/7/926?type=check_update&version=1
http://dx.doi.org/10.3390/sym11070926
http://www.mdpi.com/journal/symmetry

Symmetry 2019, 11, 926 2 of 24

and object can be used interchangeably if predicate is changed. With the development of big data
technologies and the spread of the semantic web, the RDF graph is growing continuously [14,15].
When handling large RDF graphs on a single server, the performance and speed of processing storage
make it difficult to service many users [16–19]. Therefore, a RDF graph partitioning method is required
to store and manage data using multiple servers [20–22]. The existing RDF partitioning methods
focused on minimizing the number of edge-cuts generated by partitioning [23–26]. However, they can
concentrate data on a particular server because it partitions the entered data according to predetermined
criteria [27–30]. In addition, various query requests from users increase the cost of communication
between specific servers [31–33]. For example, partitioning RDF graph data on distributed servers and
joining queries on partitioned edges increases the cost of communication between servers and delays
response time for queries. To solve this problem, a study of dynamic partitioning methods has been
carried out [34–37].

The social portioning and replication (SPAR) performs data replication in the same server to
improve data locality and minimize network load [35,38]. Self evolving distributed graph management
environment (Sedge) repartitions graph to reduce the cost of communication between servers and
performs data replication to ensure load balancing among servers [37]. However, in environments
with ongoing graph data additions and changes, data become concentrated to certain servers due to
the ongoing data additions, and if users’ query requests become concentrated on the server with data
concentration, the performance as a parallel system decreases. In addition, when replicating data in
distributed servers, if the original data is modified, additional operations for the replicates are required.
In this paper, a dynamic environment is defined as an environment where ongoing additions and
changes occur. Accordingly, conventional methods are not suitable for dynamic environments in terms
of data storage, load balancing, and query processing. In the existing dynamic partitioning methods,
the communication cost between servers increases when join queries are processed.

We propose a basic partitioning strategy for RDF graph considering partition size in previous
work [39]. A concept of a cluster and a subcluster for partitioning a large RDF graph in a distributed
environment was proposed by [39]. In addition, the RDF graph is partitioned according to the partition
size using a cluster and a subcluster. However, [39] did not provide detailed partitioning strategies
and algorithms. Also, there is a lack of performance evaluation to prove the improvement of the
proposed method. This paper is an extended version of the method proposed in [39] and proposes
an RDF partitioning method to provide load balancing without data replication in distributed RDF
stores. To meet users’ constantly changing query needs, grouping is performed based on the subgraph
frequently used by queries, and a partitioning method to minimize the number of edge-cuts among
partitions is used. Partitioning considering the size of the generated partitions solves the problem
of data concentration to specific servers. In addition, load balancing is possible by partitioning the
partitions by calculating the average frequency of data usage on the distributed server. Through this
approach, the proposed method can maximize the strengths of the parallel processing system and
provide faster replies to queries than existing methods. In order to demonstrate the improvement
of the proposed method, we analyze the characteristics of the existing and proposed methods and
perform various performance evaluations. The contribution of the method proposed in this paper is as
follows. We propose a method to collect the information of the subgraph used in the query to perform
the partition using the RDF graph usage pattern.

• We propose a detailed algorithm for creating clusters and subclusters, and propose a partitioning
method using clusters and subclusters.

• We analyze existing and proposed methods according to various criteria such as partitioning
policy, replication policy, load discrimination, partition size, and partitioning condition.

• We demonstrate the improvement of the proposed method by comparing the performance of the
proposed method with that of the existing method as well as evaluating its own performance.

Symmetry 2019, 11, 926 3 of 24

This paper is organized as follows. Section 2 describes the existing graph partitioning methods.
Section 3 describes the RDF dynamic partitioning method proposed in this paper. Section 4 describes
the results of the performance evaluation to show the excellence of the proposed method. Finally,
Section 5 provides the conclusions of this paper and presents future directions.

2. Related Work

Hendrickson and Leland proposed a multilevel method for graph partitioning within acceptable
execution time [23]. The multilevel partitioning method generates a sequence of smaller graphs
approximating the original graph to find easily a good partition via coarsening procedure. In the
coarsening step, it merges two vertices connected to an edge and the new vertex retains edges to
the union of the neighbors of the merged vertices. The smallest graph is partitioned via a spectral
partitioner. The spectral partitioner needs one, two, or three eigenvectors of the Laplacian matrix to
partition a graph into two, four, or eight groups, respectively. The partitioning algorithm is able to
handle edge and vertex weights, even if the original graph is unweighted. The multilevel partitioning
method makes the sums of the vertex weights in each server as equal as possible and the sum of the
weights of edges crossing between servers is minimized.

Wang and Chiu proposed a RDF graph partitioning method to minimize the number of edges
on different servers [40]. This method first scans the RDF graph and stores subgraph with common
vertices into the same components. If the connected components of the graph are found, each connected
component is partitioned. After initial partition, each RDF subgraph is treated as an undirected and
weighted graph. This method weights the vertices with the number of triples of the same subjects,
and uses multi-constraint partitioning to achieve a balanced size of partitions.

Stanton and Kliot proposed a new stream partitioning method for balanced graph partitioning
in distributed environments [36]. As the vertices arrive in stream with the set of edges, a partitioner
decides to store the vertex on one of several servers. The 10 heuristics were provided for streaming
balanced graph partitioning. The first seven heuristics such as balanced, chunking, hashing, (weighted)
deterministic greedy, weighted randomized greedy, weighted triangles, and balance big do not use a
buffer, but the last three such as prefer big, avoid big, and greedy evocut all use a buffer. The linear
weighted variant of the greedy algorithm shows the best performance because it reduces computation
overhead and the number of edge-cuts.

Pujol et al. developed SPAR, which partitions online social graph through a joint partitioning and
replication to prevent query processing via multiple servers [35,38]. SPAR is a social portioning and
replication system that utilizes the social graph to achieve data locality while minimizing replication.
SPAR guarantees that data of all direct neighbors stored on a particular server is co-located on that same
server because most of the relevant data for a user in online social networks is one-hop way. When
a new server is added, SPAR forces a master replica from another server to a new one, immediately
balancing all servers or waiting for a new arrival to fill the server. When the server is removed,
it redistributes the master replicas to the other servers equally.

Yang et al. proposed Sedge, which is a distributed graph partition management for minimizing
inter-communication during query processing in distributed environments [37]. Sedge uses a two-level
partition architecture with complementary and on-demand partitioning. Supplemental partitioning
creates multiple partitions so that the partition boundaries do not overlap. On-demand partitioning
uses two partitioning methods: partition replication and dynamic partitioning to handle internal
hotspots and cross-partition hotspots. Partition replication shares the workload of these partitions by
replicating the same data across multiple servers. Dynamic partitioning reconfigures new partitions to
handle cross-partition queries locally. Sedge developed a new technique to profile graph queries to
perform dynamic partitioning efficiently.

Nicoara et al. proposed a lightweight repartitioner in Hermes for a distributed social graph [34].
The initial partition generated by Metis [24] is repartitioned by a lightweight repartitioner to improve an
initial partitioning by decreasing edge-cuts while maintaining almost balanced partitions. Each server

Symmetry 2019, 11, 926 4 of 24

maintains auxiliary data to perform repartitioning. The auxiliary data stores the list of accumulated
weight of vertices in each partition and the number of neighbors of each vertex in each partition.
The repartitioning process has two steps. In the first step, each server runs the repartitioner algorithm
using the auxiliary data to choose some vertices in its partition that should be migrated to other
partitions. These vertices are logically moved to the destination partition until no more vertices
are selected for migration. In the second step, physical data migration is performed. Vertices and
relationships that were marked for migration by the repartitioner are moved to the target partitions.

Troullinou et al. proposed a semantic partitioning method for the RDF store to reduce
communication costs and enhance query performance [41]. This method performs vertical partitions
utilizing both structural and semantic information to select the most important nodes and then to
assign the remaining nodes to the proper clusters. First, the most important nodes are identified to
select the centroid for each cluster. The dependence is used to eventually assign the remaining nodes
to the cluster maximizing the dependence with the corresponding centroid.

Leng et al. proposed a balanced RDF graph partitioning (BRGP) for storing massive RDF data on
cloud [42]. BRGP use a modularity-based multi-level label propagation algorithm (MMLP) to partition
RDF graph roughly. In MMLP, LP algorithm is performed to find dense subgraphs, and each subgraph
forms a coarsened vertex of upper level. To generate a balanced k-way partitioning, a balanced
K-mediods clustering algorithm is used. BRGP not only minimizes the edge-cut but also keeps the
balance of vertex distribution.

Hayes and Gutiérrez proposed a model to represent a RDF graph as a bipartite graph [43].
The RDF graph can be represented by a simple ordered 3-uniform hypergraph. The proposed model is
intermediate model of RDF between the abstract triple syntax and data structures used by applications.
This model provides an approach to stratify an RDF graph into data and schema layers.

Tomaszuk et al. discussed classical graph partitioning methods and presented four ways
to transform an RDF graph to a classical graph representation [44]. This paper presented that a
directed labeled graph can be easily transformed into a RDF graph, but the reversed transformation
is cumbersome. The practical relevance of RDF graph partitioning is evaluated by using the
gpmetis algorithm.

Akhter et al. compared seven RDF graph partitioning methods in two different evaluation
setups [45]. The existing partitioning methods are evaluated in terms of partitioning time, partitioning
imbalance, and query processing time. Total communication volume (TCV)-Min leads to smallest query
runtimes followed by Property-Based, Horizontal, Recursive-Bisection, Subject-Based, Hierarchical,
and Min-Edgecut, respectively. In general, partitioning methods that minimize the total number of
selected sources proves to provide better runtime performances.

3. The Proposed Dynamic Partitioning Method

3.1. Architeucture

In a dynamic RDF environment, a large-scale RDF graph is continually added and changed.
The existing dynamic partitioning methods have the problem of performing unnecessary work due
to data concentration and replicate data. Therefore, dynamic partitioning methods are needed to
provide fast query responses in dynamic RDF graph environments. This paper proposes an RDF
dynamic partitioning method that take into consideration load balancing by analyzing the subgraph
frequently used by queries. The proposed method provides load balancing by grouping, taking into
account the frequency of use of the data used in user request queries. An RDF document consists of a
subject, a predicate, and an object. When modeling an RDF document as a graph, subject and object
are represented by vertices and predicates are represented by edges. Query frequency represents the
number of subgraphs used together by query when subject, predicate, and object are modeled as graphs.
It groups the RDF subgraphs with higher frequency of queries to create a cluster, and groups the RDF
subgraphs with relatively lower frequency of queries to create subclusters. The proposed method

Symmetry 2019, 11, 926 5 of 24

solves the problem of data concentration to specific servers by considering the size of the partitions to
which the graph data will be partitioned. It also minimizes the number of edge-cuts connected to the
partition, minimizing the cost of communication between servers during join processing.

Figure 1 shows the whole process of the proposed dynamic partitioning method. If the queries are
concentrated on a specific server and the communication cost between servers increase between servers
during query processing, the proposed method repartitions the RDF graph through the following three
steps. The first step is the cluster creation, in which RDF subgraphs that are frequently used in queries
are grouped to create clusters. The clusters are the criteria for data partitioning for load balancing and
are created with RDF graphs with high query frequency. The second step is the subcluster generation,
and the subgroups are generated with data with lower query frequency than the clusters. The last step
is the graph partitioning, and partitions are generated based on data size, query frequency, and the
number of edges.

Symmetry 2019, 11, x FOR PEER REVIEW 5 of 24

subclusters. The proposed method solves the problem of data concentration to specific servers by

considering the size of the partitions to which the graph data will be partitioned. It also minimizes

the number of edge-cuts connected to the partition, minimizing the cost of communication between

servers during join processing.

Figure 1 shows the whole process of the proposed dynamic partitioning method. If the queries

are concentrated on a specific server and the communication cost between servers increase between

servers during query processing, the proposed method repartitions the RDF graph through the

following three steps. The first step is the cluster creation, in which RDF subgraphs that are

frequently used in queries are grouped to create clusters. The clusters are the criteria for data

partitioning for load balancing and are created with RDF graphs with high query frequency. The

second step is the subcluster generation, and the subgroups are generated with data with lower

query frequency than the clusters. The last step is the graph partitioning, and partitions are

generated based on data size, query frequency, and the number of edges.

Figure 1. The whole process of the proposed resource description framework (RDF) dynamic

partitioning method.

Figure 2 shows RDF graphs partitioned with the proposed dynamic partitioning method.

Figure 2a shows the architecture of the distributed storage of graph data in the distributed server

environment with four servers from 1N to 4N . 1C ~ 5C represent clusters with high query

frequencies, and AS , BS , CS , and DS represent subclusters with lower query frequencies. As

shown in Figure 2a, when we process a query on cluster 1C , we process it by using subgraphs stored

in distributed servers 1N , 2N , and 3N . Similarly, queries on 2C and 4C are processed in two

distributed servers. Therefore, communication costs among distributed servers are required to

obtain query processing results. When the communication costs among servers for processing a

frequent query increase, the proposed method reduces the communication costs by redistributing

1C , 2C , and 4C to the distributed servers. A particular server increases loads when it has many

frequently used queries and subgraphs. The proposed method also redistributes subgraphs by

considering a partition size stored in a distributed server in order to reduce the server loads. Since

the loads of server 1N increase when 3C is stored along with 1C in server 1N , the proposed

method stores 3C in server 2N considering the partition size. Figure 2b shows the results of

repartitioning in the event of a high load due to query requests. In the proposed method, each

partitioning adds and redistributes subclusters properly based on clusters, which solves the problem

of data concentration to specific servers and performs efficient load balancing among servers.

Figure 1. The whole process of the proposed resource description framework (RDF) dynamic
partitioning method.

Figure 2 shows RDF graphs partitioned with the proposed dynamic partitioning method. Figure 2a
shows the architecture of the distributed storage of graph data in the distributed server environment
with four servers from N1 to N4. C1~C5 represent clusters with high query frequencies, and SA, SB,
SC, and SD represent subclusters with lower query frequencies. As shown in Figure 2a, when we
process a query on cluster C1, we process it by using subgraphs stored in distributed servers N1,
N2, and N3. Similarly, queries on C2 and C4 are processed in two distributed servers. Therefore,
communication costs among distributed servers are required to obtain query processing results. When
the communication costs among servers for processing a frequent query increase, the proposed method
reduces the communication costs by redistributing C1, C2, and C4 to the distributed servers. A particular
server increases loads when it has many frequently used queries and subgraphs. The proposed method
also redistributes subgraphs by considering a partition size stored in a distributed server in order to
reduce the server loads. Since the loads of server N1 increase when C3 is stored along with C1 in server
N1, the proposed method stores C3 in server N2 considering the partition size. Figure 2b shows the
results of repartitioning in the event of a high load due to query requests. In the proposed method,
each partitioning adds and redistributes subclusters properly based on clusters, which solves the
problem of data concentration to specific servers and performs efficient load balancing among servers.

Symmetry 2019, 11, 926 6 of 24

Symmetry 2019, 11, x FOR PEER REVIEW 6 of 24

(a)

(b)

Figure 2. Performance of the proposed dynamic partitioning method: (a) high load of queries; (b)
performance of the proposed method.

3.2. Statistical Data

To perform dynamic graph data partitioning, the information on past queries requested by
users must be managed as statistical data. For efficient graph partitioning in the dynamic RDF graph
environment, the proposed method manages statistical data on queries whenever a query is
requested by a user. The statistical data is used to group queries based on query frequency in the
cluster generation and subcluster generation stages to perform load balancing as well as meet users’
diverse query needs. In addition, they provide information for graph partitioning based on query
frequency and query size in the graph partitioning stage.

The proposed method is based on a master–slave architecture in order to collect statistical data
as shown in Figure 3. A slave is a distributed server that stores the partitioned RDF subgraphs and
processes a query. The RDF query processor can determine which subgraphs are used together in a
distributed server when performing query processing. Therefore, each slave collects the information
of the vertices and edges used in the query processing without any additional computation. Each
slave stores the query identifier and vertex and edge information used in the query. Whenever the
master performs a query, it generates a lot of updates if it creates statistical information by collecting
all vertices and edges used in the entire slave. Therefore, each slave periodically sends the
information of the vertices and edges used in the queries to the master, and the master creates
statistical information using the subgraph pattern used in the queries. However, since the statistical
information used in the proposed method collects the subgraph information used by the past
queries, it does not update the statistical information even if the graph is changed. That is, the
statistical information is updated only when the subgraph patterns used by queries are changed. For
example, when server 1N processes queries 1Q and 3Q , it stores query identifiers and the number
of vertices included in the query results. Master updates the query frequencies of 1Q and 3Q by
collecting their query information from server 1N . Since the RDF graph can be changed
continuously, the number of vertices included in the results of the same query can also be changed.
Therefore, master periodically updates the number of vertices included in the query result by using
the up-to-date query information.

Figure 2. Performance of the proposed dynamic partitioning method: (a) high load of queries;
(b) performance of the proposed method.

3.2. Statistical Data

To perform dynamic graph data partitioning, the information on past queries requested by users
must be managed as statistical data. For efficient graph partitioning in the dynamic RDF graph
environment, the proposed method manages statistical data on queries whenever a query is requested
by a user. The statistical data is used to group queries based on query frequency in the cluster
generation and subcluster generation stages to perform load balancing as well as meet users’ diverse
query needs. In addition, they provide information for graph partitioning based on query frequency
and query size in the graph partitioning stage.

The proposed method is based on a master–slave architecture in order to collect statistical data
as shown in Figure 3. A slave is a distributed server that stores the partitioned RDF subgraphs and
processes a query. The RDF query processor can determine which subgraphs are used together in a
distributed server when performing query processing. Therefore, each slave collects the information of
the vertices and edges used in the query processing without any additional computation. Each slave
stores the query identifier and vertex and edge information used in the query. Whenever the master
performs a query, it generates a lot of updates if it creates statistical information by collecting all
vertices and edges used in the entire slave. Therefore, each slave periodically sends the information of
the vertices and edges used in the queries to the master, and the master creates statistical information
using the subgraph pattern used in the queries. However, since the statistical information used in the
proposed method collects the subgraph information used by the past queries, it does not update the
statistical information even if the graph is changed. That is, the statistical information is updated only
when the subgraph patterns used by queries are changed. For example, when server N1 processes
queries Q1 and Q3, it stores query identifiers and the number of vertices included in the query results.
Master updates the query frequencies of Q1 and Q3 by collecting their query information from server
N1. Since the RDF graph can be changed continuously, the number of vertices included in the results
of the same query can also be changed. Therefore, master periodically updates the number of vertices
included in the query result by using the up-to-date query information.

Table 1 shows statistical data managed in a master server. Here, ID, server, query, frequency,
and size mean identifier, distributed server identifier, query identifier, the query frequency, the number
of vertices included in the query result, respectively. Server and query are used to classify the types
of queries requested by users. Frequency is used to group clusters and subclusters during dynamic
partitioning and to perform the load balancing of servers. Size is used to determine the size of a
partition stored in each distributed server as the number of vertices included in the query result.
In order to grasp the size of a subgraph frequently used in the query, only the number of vertices used
in the query is stored in Table 1. The information of the edges is needed in addition to the vertices in

Symmetry 2019, 11, 926 7 of 24

order to identify the subgraph information in the query. Information of vertices and edges in the query,
that is, subgraph information, is stored separately with IDs in the statistical data management table.Symmetry 2019, 11, x FOR PEER REVIEW 7 of 24

Figure 3. Process to collect statistical data.

Table 1 shows statistical data managed in a master server. Here, ID, server, query, frequency,
and size mean identifier, distributed server identifier, query identifier, the query frequency, the
number of vertices included in the query result, respectively. Server and query are used to classify
the types of queries requested by users. Frequency is used to group clusters and subclusters during
dynamic partitioning and to perform the load balancing of servers. Size is used to determine the size
of a partition stored in each distributed server as the number of vertices included in the query result.
In order to grasp the size of a subgraph frequently used in the query, only the number of vertices
used in the query is stored in Table 1. The information of the edges is needed in addition to the
vertices in order to identify the subgraph information in the query. Information of vertices and edges
in the query, that is, subgraph information, is stored separately with IDs in the statistical data
management table.

Table 1. Statistical data management table.

ID Query Server Frequency Size
I1 Q1 N1, N2, N3 47 2000 K
I2 Q2 N2, N3 50 1800 K
I3 Q3 N1 25 1200 K
I4 Q4 N2, N4 57 2000 K
I5 Q5 N2 22 1000 K
I6 Q6 N1 13 800 K
I7 Q7 N2 7 500 K
I8 Q8 N2, N4 3 500 K
I9 Q9 N2 10 800 K

3.3. Cluster Creation

To process a user-requested query efficiently in a dynamic distributed environment, it is
required to minimize join processing between servers and communication cost. The proposed
method expects that subgraph that has been frequently requested by users in the past will be stored
on the same server and requested again in the future. Therefore, the frequently requested data is
grouped into clusters. The cluster consists of RDF subgraphs that have been frequently requested by
users. To meet the diverse needs of constantly changing users, we create clusters based on queries
that users have frequently used.

Figure 3. Process to collect statistical data.

Table 1. Statistical data management table.

ID Query Server Frequency Size

I1 Q1 N1, N2, N3 47 2000 K

I2 Q2 N2, N3 50 1800 K

I3 Q3 N1 25 1200 K

I4 Q4 N2, N4 57 2000 K

I5 Q5 N2 22 1000 K

I6 Q6 N1 13 800 K

I7 Q7 N2 7 500 K

I8 Q8 N2, N4 3 500 K

I9 Q9 N2 10 800 K

3.3. Cluster Creation

To process a user-requested query efficiently in a dynamic distributed environment, it is required
to minimize join processing between servers and communication cost. The proposed method expects
that subgraph that has been frequently requested by users in the past will be stored on the same
server and requested again in the future. Therefore, the frequently requested data is grouped into
clusters. The cluster consists of RDF subgraphs that have been frequently requested by users. To meet
the diverse needs of constantly changing users, we create clusters based on queries that users have
frequently used.

As for clusters, groupings are performed in such a way that the frequency of the subgraph is
close to the average value of the cluster frequency based on statistical data. Clusters are also used
as reference points in each server to perform the same load balancing between servers, and as many
clusters are created as there are servers. By grouping subgraph stored on multiple different servers
into the same server, the proposed method can minimize the communication costs that occur during
query processing and provide quick query responses.

Equation (1) calculates the mean cluster frequency AvgCF that is the criterion used to create a
cluster in each server, where SumO f HighQF is the sum of the high frequency values when frequency
in Table 1 was sorted in descending order. Numo f Server is the number of servers in the distributed

Symmetry 2019, 11, 926 8 of 24

environment. In the cluster creation step, the proposed method groups the data with query frequencies
higher than AvgCF into clusters. It also groups the data with query frequencies lower than AvgCF
into subclusters.

AvgCF =
Sumo f HighQF
Numo f Server

(1)

Figure 4 shows the process of cluster generation. The queries that have been frequently requested
by users are generated into the number of clusters equal to the number of servers (C1, C2, C4, C6).
In the case of Table 1, the number of clusters generated is close to the value of Equation (1) based on
the queries with high frequency. Here, AvgCF = 50.25. As many clusters are generated as there are
distributed servers. Although C3 and C5 are originally subclusters, they are grouped together into a
cluster to balance the frequency of C3 with C5.

Symmetry 2019, 11, x FOR PEER REVIEW 8 of 24

As for clusters, groupings are performed in such a way that the frequency of the subgraph is
close to the average value of the cluster frequency based on statistical data. Clusters are also used as
reference points in each server to perform the same load balancing between servers, and as many
clusters are created as there are servers. By grouping subgraph stored on multiple different servers
into the same server, the proposed method can minimize the communication costs that occur during
query processing and provide quick query responses.

Equation (1) calculates the mean cluster frequency AvgCF that is the criterion used to create a
cluster in each server, where FSumOfHighQ is the sum of the high frequency values when frequency
in Table 1 was sorted in descending order. rNumofServe is the number of servers in the distributed
environment. In the cluster creation step, the proposed method groups the data with query
frequencies higher than AvgCF into clusters. It also groups the data with query frequencies lower
than AvgCF into subclusters.

rNumofServe
FSumofHighQAvgCF = (1)

Figure 4 shows the process of cluster generation. The queries that have been frequently
requested by users are generated into the number of clusters equal to the number of servers (1C , 2C ,

4C , 6C). In the case of Table 1, the number of clusters generated is close to the value of Equation (1)
based on the queries with high frequency. Here, AvgCF = 50.25. As many clusters are generated as
there are distributed servers. Although 3C and 5C are originally subclusters, they are grouped
together into a cluster to balance the frequency of 3C with 5C .

Figure 4. Cluster generation.

Algorithm 1 shows the algorithm used to generate clusters. The input parameters are
l_dataStatistica . CntServer is the number of servers in the distributed server, ataCntQuery_d is the

number of the subgraph with high query frequency in descending order in line 2, QDNQuery_data is
subgraph based on the order value of QDN in ataCntQuery_d , _dataQDNFreq_Query is the current
subgraph frequency based on the order value of QDN , and AvgCF denotes the mean cluster
frequency. Line 2 sorts user-requested queries in descending order based on frequency to generate
clusters based on subgraph with high query frequencies. Lines 3~7 generate as many clusters as the
mean cluster frequency based on subgraph frequency.

Algorithm 1 Generating Clusters
1: procedure Creating_Cluster (Statistical_data)
2: sort Query_data in data frequency based on descending order

Figure 4. Cluster generation.

Algorithm 1 shows the algorithm used to generate clusters. The input parameters are
Statistical_data. CntServer is the number of servers in the distributed server, CntQuery_data is the
number of the subgraph with high query frequency in descending order in line 2, Query_dataQDN
is subgraph based on the order value of QDN in CntQuery_data, Freq_Query_dataQDN is the current
subgraph frequency based on the order value of QDN, and AvgCF denotes the mean cluster frequency.
Line 2 sorts user-requested queries in descending order based on frequency to generate clusters based
on subgraph with high query frequencies. Lines 3~7 generate as many clusters as the mean cluster
frequency based on subgraph frequency.

Algorithm 1 Generating Clusters

1: procedure Creating_Cluster (Statistical_data)
2: sort Query_data in data frequency based on descending order
3: for CN ∈ CntServer do
4: new ClusterCN
5: for QDN ∈ CntQuery_data do
6: add Query_dataQDN in ClusterCN
7: if Freq_Query_dataQDN ≤ AvgCF then exit
8: add ClusterCN in Clusters
9: return Clusters

Symmetry 2019, 11, 926 9 of 24

3.4. Subcluster Creation

The proposed method uses the query frequency based on the average query frequency of the
distributed server to perform the same load balancing between servers. The average query frequency
for a distributed server is the average query frequency value by which the same load balancing is
performed during data partitioning. It is computed based on the frequency of queries from statistical
data. Specifically, each server uses a cluster, and a subgroup with a query frequency lower than the
cluster frequency performs load balancing on the distributed server by adding the average query
frequency of the cluster to the subgroup. In other words, the subcluster creation step creates subclusters
by grouping data that is less frequently queried, with the exception of clusters created in the cluster
creation phase.

Subclusters refer to subgroups that are grouped based on subgraph as in a cluster but are less
frequently queried than in a cluster. They are used to perform the same load balancing between servers,
and the subcluster is distributed across clusters of each server to achieve efficient load balancing.
That is, subgroups are used to improve the efficiency of load balancing. A subcluster also calculates
distance hops using connection edges based on clusters created during the cluster creation step and
distributes based on the threshold range that you set. Furthermore, in order to minimize inter-server
communication costs, the grouping does not include data that users never request. This avoids the
collapse of previously partitioned graph data structures and reduces the cost of additional redistribution
through distribution based on the predictive range of queries that users can request in the future.

Figure 5 shows the subcluster generation process. It is performed after the clusters are formed in
the cluster generation stage and the subclusters (S1, S2, S3, S4) are generated based on the remaining
subgraph excluding the generated clusters (C1, C2, C3, C4, C5). The grouping is performed based on
the subgraph of which frequencies excluding clusters are 1 or larger, using statistical data.

Symmetry 2019, 11, x FOR PEER REVIEW 9 of 24

3: for CN ∈ CntServer do
4: new ClusterCN
5: for QDN ∈ CntQuery_data do
6: add Query_dataQDN in ClusterCN
7: if Freq_Query_dataQDN ≤ AvgCF then exit
8: add ClusterCN in Clusters
9: return Clusters

3.4. Subcluster Creation

The proposed method uses the query frequency based on the average query frequency of the
distributed server to perform the same load balancing between servers. The average query
frequency for a distributed server is the average query frequency value by which the same load
balancing is performed during data partitioning. It is computed based on the frequency of queries
from statistical data. Specifically, each server uses a cluster, and a subgroup with a query frequency
lower than the cluster frequency performs load balancing on the distributed server by adding the
average query frequency of the cluster to the subgroup. In other words, the subcluster creation step
creates subclusters by grouping data that is less frequently queried, with the exception of clusters
created in the cluster creation phase.

Subclusters refer to subgroups that are grouped based on subgraph as in a cluster but are less
frequently queried than in a cluster. They are used to perform the same load balancing between
servers, and the subcluster is distributed across clusters of each server to achieve efficient load
balancing. That is, subgroups are used to improve the efficiency of load balancing. A subcluster also
calculates distance hops using connection edges based on clusters created during the cluster creation
step and distributes based on the threshold range that you set. Furthermore, in order to minimize
inter-server communication costs, the grouping does not include data that users never request.
This avoids the collapse of previously partitioned graph data structures and reduces the cost of
additional redistribution through distribution based on the predictive range of queries that users can
request in the future.

Figure 5 shows the subcluster generation process. It is performed after the clusters are formed
in the cluster generation stage and the subclusters (1S , 2S , 3S , 4S) are generated based on the
remaining subgraph excluding the generated clusters (1C , 2C , 3C , 4C , 5C). The grouping is
performed based on the subgraph of which frequencies excluding clusters are 1 or larger, using
statistical data.

Figure 5. Subcluster generation. Figure 5. Subcluster generation.

Algorithm 2 shows the algorithm used to generate subclusters. The input parameters include
Statistical_data and Clusters generated in the cluster generation stage. CntClusters is the number of
clusters, and Cnt_QD_2HCSN is the number of subgraphs within a 2-hop distance of the clusters
according to the order value of SN. Lines 2~7 generate subclusters based on subgraph. Subgraphs that
contain connected edges within two hops based on each cluster and appear more than once in the
query are included in the subcluster. This allows distribution based on the prediction of the range of
queries that can be requested by users in the future, which can reduce additional repartitioning cost.

Symmetry 2019, 11, 926 10 of 24

Algorithm 2 Generating Subclusters

1: procedure Creating_Subcluster (Statistical_data, Clusters)
2: for SN ∈ CntClusters do
3: new Sub_clusters
4: for QDN ∈ Cnt_QD_2HCSN do
5: if Freq_Query_dataQDN ≥ 1
6: add Query_dataQDN in Sub_clusters
7: add Sub_clusterSN in Sub_clusters
8: return Sub_clusters

3.5. Graph Partitioning

The proposed method performs graph partitioning by considering the size of the partitions to
alleviate the problem of data concentration to specific servers due to a dynamic RDF graph environment.
In order to address the problem of load balancing in the existing dynamic partitioning methods,
it calculates the average query frequency of the distributed server. Finally, in order to minimize
inter-sever communication costs, it uses a technique to minimize the number of edge-cuts that
are employed.

The edge-cut minimization technique performs a cut based on an edge connected between a
cluster and a subcluster rather than on an edge connected between the vertices of the RDF graph.
The subcluster that has a small number of edges connected to subclusters in the same server and a
large number of edges connected to subclusters in another server is selected as a candidate to move
to another server for edge cutting. Edge-cut minimization is performed by relocating the selected
candidates. By relocating the selected candidates to the servers with many connections, the number of
edge cuts can be minimized.

Graph data partitioning is performed based on query frequency and size in statistical data.
Each server performs grouping into PK =

{
Ci,S j, S j+1, . . . , S j+k

}
based on the subclusters connected

with the edges around one cluster using the edge-cut minimization method. The proposed method
takes into consideration the size of the partitions to address the problem of data concentration to specific
servers. Therefore, it provides the minimum partition size and the maximum partition size. We define
the partition size as the number of vertices in a RDF subgraph to be stored in each server. Equation (2)
represents the minimum partition size PSizemin to be stored in each server, and Equation (3) represents
the maximum partition size PSizemax to be stored in each server. Here, Nodecnt is the number of servers
in the distributed environment, Size f ull is the total size of the data that can be stored in the distributed
server. α and β are parameters for adjusting the minimum partition size and the maximum partition
size to be stored in each distributed server, respectively. A partition represents a RDF subgraph. α
and β are determined by Equation (4), where α is a value in the range [0–1]. Since α determines the
minimum size of the partition to be stored in the distributed server, if α is small, the minimum size of
the partition is small and β is increased so that the size difference between the partitions stored in the
distributed server is small. This increases the likelihood of splitting the graph by edge-cut ratio rather
than the size of partitions stored in the distributed server during graph partitioning. In contrast, if α is
large, the minimum size of the partition is increased, and β is reduced accordingly. As such, there is
a large difference in the size of the partitions to be stored in the distributed server. Therefore, even
if edge-cut ratio increases during graph partitioning, the size of partitions stored in the distributed
server can be made similar.

PSizemin =
Size f ull

Nodecnt
× α (2)

PSizemax =
Size f ull

Nodecnt
× β (3)

α+ β = 2 (4)

Symmetry 2019, 11, 926 11 of 24

To perform effective load balancing of the distributed server, the mean query frequency of the
distributed server is considered using Equation (5), where Nodecnt is the number of servers in the
distributed server system, and QueryFreqsum is the sum of the query frequencies in statistical data.
If the query frequency of the partitioned graph is smaller than the mean query frequency AvgSF, it is
not generated into a partition.

AvgSF =
QueryFreqsum

Nodecnt
(5)

Figure 6 shows the process of graph partitioning. It is assumed that 10 million vertices are stored
in four servers, and α = 0.5 in Equation (2) and β = 1.5 in Equation (3). In addition, PSizemin = 1,250,000
in Equation (2), and PSizemax = 3,750,000 in Equation (3). In Equation (5), AvgSF = 58.5. In other
words, as for PSizemin and PSizemax, the number of vertices that can be stored in each server has the
range of 1,250,000~3,750,000, and the sum of the frequencies of partitions for each server is restricted
by the mean query frequency of 58.5. C2 had 1,800,000 data, and S4 had 800,000 data. Graph data
partitioning is performed by grouping C2 with S4, among subclusters connected with edges, in the
same server. Although S3 is the subcluster connected with S4 through edge, it is not included in the
grouping, because it exceeds the allowed range of Equation (2) and Equation (3), and it would lead to
the problem of query concentration to server N3 based on Equation (4).

Symmetry 2019, 11, x FOR PEER REVIEW 11 of 24

distributed server during graph partitioning. In contrast, if α is large, the minimum size of the
partition is increased, and β is reduced accordingly. As such, there is a large difference in the size
of the partitions to be stored in the distributed server. Therefore, even if edge-cut ratio increases
during graph partitioning, the size of partitions stored in the distributed server can be made similar.

α×=
cnt

full
Node
Size

PSizemin (2)

β×=
cnt

full
Node
Size

PSizemax (3)

2=+ βα (4)

To perform effective load balancing of the distributed server, the mean query frequency of the
distributed server is considered using Equation (5), where Nodecnt is the number of servers in the
distributed server system, and QueryFreqsum is the sum of the query frequencies in statistical data.
If the query frequency of the partitioned graph is smaller than the mean query frequency AvgSF , it
is not generated into a partition.

cnt
sum

Node
QueryFreqAvgSF = (5)

Figure 6 shows the process of graph partitioning. It is assumed that 10 million vertices are
stored in four servers, and α = 0.5 in Equation (2) and β = 1.5 in Equation (3). In addition, minPSize
= 1,250,000 in Equation (2), and maxPSize = 3,750,000 in Equation (3). In Equation (5), AvgSF = 58.5.
In other words, as for minPSize and maxPSize , the number of vertices that can be stored in each
server has the range of 1,250,000~3,750,000, and the sum of the frequencies of partitions for each
server is restricted by the mean query frequency of 58.5. 2C had 1,800,000 data, and 4S had
800,000 data. Graph data partitioning is performed by grouping 2C with 4S , among subclusters
connected with edges, in the same server. Although 3S is the subcluster connected with 4S
through edge, it is not included in the grouping, because it exceeds the allowed range of Equation (2)
and Equation (3), and it would lead to the problem of query concentration to server 3N based on
Equation (4).

(a)

(b)

Figure 6. Graph partitioning process. (a) Cluster and subcluster; (b) partitioning of Server N3.

Algorithm 3 shows the algorithm used in the graph partitioning stage. Input parameters
include Clusters and rsSub_cluste generated in the cluster and subcluster generation stage.

stersPCSNCntSub_clu is the number of subclusters based on PSCN order values, tionPCSNSize_Parti

Figure 6. Graph partitioning process. (a) Cluster and subcluster; (b) partitioning of Server N3.

Algorithm 3 shows the algorithm used in the graph partitioning stage. Input parameters include
Clusters and Sub_clusters generated in the cluster and subcluster generation stage. CntSub_clustersPCSN
is the number of subclusters based on PSCN order values, Size_PartitionPCSN is the size of the partition
currently being generated, and Freq_PartitionPCSN is the frequency of the partition currently being
generated. Lines 2~8 generate partitions by appropriately distributing subclusters related to each
cluster. If Freq_PartitionPCSN is within the maximum and minimum size of the partition calculated by
Equations (2) and (3) and is less than AvgSF calculated by Equation (5), the subcluster is included in
PartitionPCSN.

Algorithm 3 Partitioning Graphs

1: procedure Partitioning_Graph (Clusters, Sub_clusters)
2: for PCSN ∈ CntClusters do
3: new PartitionPCSN
4: add ClustersPCSN in PartitionPCSN
5: for SN ∈ CntSub_clustersPCSN do
6: if PSizemin < Size_PartitionPCSN < PSizemax and Freq_PartitionPCSN ≤ AvgSF
7: add Sub_clustersPCSN_SN in PartitionPCSN
8: add PartitionPCSN in Partitions
9: return Partitions

Symmetry 2019, 11, 926 12 of 24

4. Performance Evaluation

4.1. Analysis

With the development of various web services, as uses on semantic web have increased, many
studies for efficiently storing and managing RDF graphs have been done. Recently, a variety of
partitioning methods have been proposed for storing a large scale of RDF graphs in distributed
servers. RDF partitioning methods are classified according to various criteria such as partitioning
policy, replication policy, load discrimination, partition size, and partitioning conditions. Table 2
shows the analysis results of the existing methods and the proposed method based on such criteria.
The partitioning policy is discriminated into the static, partial dynamic, and dynamic, depending on
the repartitioning of a partition. The static means the static partitioning method and generates the
specific number of partitions by using vertices and edges in the initial RDF graph. The dynamic means
the dynamic partitioning method and repartitions the partitioned graph by considering the data size
and the queries to adjust the loads of servers. The partial dynamic readjusts partitions stored in the
distributed servers due to the addition and deletion of servers and the update of a RDF graph, but
it does not consider the loads of servers. The replication policy represents whether a partitioning
method supports replication or not. If a partitioning method supports replication, we denote it by ‘#’.
Otherwise, we denote it by ‘×’. The load discrimination represents whether a partitioning method
discriminates the loads of servers when a partition is repartitioned or not. If it discriminates the loads
of servers, we denote load discrimination criteria. Otherwise, we denote it by ‘×’. The partition size
represents whether a partitioning method considers the size of a partition or not when it partitions a
RDF graph statically or dynamically. Here, SS means that the sizes of partitioned partitions are almost
similar, DS means a default partition size that represents a partition with a fixed size, and ‘×’ means
that a partitioning method does not consider the partition size. The partitioning conditions means
criteria that a partitioning method considers when it partitions the RDF graph.

Table 2. Analysis of the partitioning methods according to various criteria.

Methods Partitioning
Policy Replication Load

Discrimination Partition Size Partitioning
Condition

MAPG [23] Static × × SS Vertex weight,
Edge-cut ratio

GPA [40] Static × × SS Edge-cut ratio

SPAR [35,38] Partial Dynamic # × × Replica

SGP [36] Partial Dynamic × Partition Size SS Partition size

Sedge [37] Dynamic #
Communication

cost,
Hotspot

DS Cross partition query

Hermes [34] Dynamic × Read frequency Vertex weight Edge-cut ratio

Proposed Dynamic × Query frequency PSizemin~PSizemax

Cluster/subcluster,
Edge-cut ratio,
Partition size

Multilevel algorithm for partitioning graph (MAPG) [23] and graph partitioning approach
(GPA) [40] that are static partitioning methods generate partitions by considering the edge-cut ratio of
a whole graph set. They generate partitions with the similar size. MAPG divides a partition with a
specific size within tolerable time. It keeps the numbers of vertices in partitions similarly and decreases
the edge-cut ratios among distributed servers. GPA minimizes the edge-cut ratios among distributed
servers in order to decrease the communication costs among them when it processes a query. It groups
subgraphs connected to the same vertex by scanning the RDF graph. The static partitioning methods
are useful for partitioning an initial whole graph set but are impossible to adjust loads due to graph
data updates.

Symmetry 2019, 11, 926 13 of 24

SPAR [35,38] and streaming graph partitioning (SGP) [36] that are partial dynamic methods
redistribute partitions due to the addition and deletion of servers and the update of a RDF graph.
SPAR performs partitioning and replication based on the graph data of social networks in distributed
server environments. It supports a replication policy in order to improve locality when it processes a
query. SCP performs partitioning by considering a partition size when data is inserted continuously.
It partitions the dynamically generated stream RDF graph uniformly by using various heuristics.
However, SPAR and SCP do not provide repartitioning strategies considering the query frequency.
They also increase communication costs among distributed servers since they do not consider the
edge-cut ratio.

Sedge [37] and Hermes [34] perform repartitioning by considering the loads of servers in a similar
way as the proposed method. Sedge provides complementary partitioning and on-demand partitioning
to improve data locality and to reduce the communication costs among servers. This minimizes the
edge-cut ratio by discriminating hot spot data and communication costs as server loads. It also reduces
cross partition queries that are processed by multiple servers when repartitioning. Hermes provides
lightweight repartitioning for minimizing the edge-cut ratios in order to reduce communication costs
among servers. It considers the weight of a vertex as the number of read requests to that vertex
and performs repartitioning for evenly distributing the read requests to a particular vertex. Since it
replicates the hot spot data, it increases synchronization costs among replicates when a subgraph is
changed. Sedge and Hermes minimize the edge-cut ratios in order to reduce server loads. However,
they do not consider server loads according to a partition size and the query processing loads. They
also do not provide repartitioning criteria considering subgraph patterns used by a query.

The proposed method provides repartitioning in dynamic environments that subgraphs are
continuously changed. It does not keep replicates to remove synchronization costs among them and
replicates management costs in dynamic environments. It discriminates the query frequency and the
sizes of subgraphs in a query as server loads and stores the subgraphs commonly used in several
queries in the same server. In order to improve the efficiency of query processing, the proposed method
considers edge-cut ratio and partition size between clusters and subclusters. As a result, the proposed
method can adjust the loads among servers and reduce the query processing time.

4.2. Evaluation Results

In order to show the excellence of the proposed method, we have conducted various performance
evaluations by comparing it with Sedge [37] and Hermes [34], which showed high performance among
recently studied methods. We constructed eight PCs as a cluster system for the performance evaluation
of the distributed environment and performed the performance evaluation. The specifications of each
PC are shown in Table 3. In the evaluation, eight queries were generated, and response time and load
distribution were evaluated for each query. Table 4 shows datasets used in the performance evaluation.

Table 3. Evaluation environments.

Feature Value

of servers 8

Central processing unit (CPU) Intel® Core™ i3 CPU 540 processor

Random access memory (RAM) 4G

Size of hard disk 1TB

Read speed of hard disk 535MB/sec

Write speed of hard disk 153MB/sec

Symmetry 2019, 11, 926 14 of 24

Table 4. Dataset.

Classification Twitter DBLP

of vertices 11.3 million 317 thousand

of edges 85.3 million 1 million

In order to evaluate the query processing performance, we compared the proposed method
with the existing method in terms of query processing time after we create various query types on
Twitter and database and logic programming (DBLP) based on query types in SPARQL performance
benchmark (SP2Bench) [46]. SP2Bench provides 12 types of queries for DBLP datasets. The purpose of
this paper is to propose a partitioning method to solve the load imbalance in a distributed environment.
Therefore, in order to perform performance evaluation for this purpose, we analyzed the query types
provided by SP2Bench and created query types that perform at least three join operations. Table 5
shows query types used in this experiment. We compare average response times of the partitioning
methods that four SPARQL queries on each data set are processed 40 times since a query complexity
affects query processing performance. Q1~Q4 are queries on DBLP dataset. Here, Q2 is the most
complex and Q1 is the simplest. Q5~Q8 are queries on Twitter data set. Here, Q5 is the most complex
and Q8 is the simplest. In order to prove the improvement of the proposed method in the dynamic
environment, we measured the average performance of 40 times per time unit of each query.

Table 5. Query types.

Type Query

Q1

SELECT ?journal ?year
WHERE {
?journal rdf:type swrc:InProceedings.
?journal dc:type <http://purl.org/dc/dcmitype/Text>.
?journal dcterms:issued ?year
}

Q2

SELECT ?inproc ?author ?booktitle ?title ?ee ?page ?url ?yr
WHERE {
?inproc rdf:type swrc:Inproceedings.
?inproc dc:creator ?author.
?inproc swrc:booktitle ?booktitle.
?inproc dc:title ?title.
?inproc rdfs:seeAlso ?ee.
?inproc swrc:pages ?page.
?inproc foaf:homepage ?url.
Inproc dcterms:issued ?yr
} ORDER BY ?yr

Q3

SELECT ?article
WHERE {
?article rdf:type ontology:article.
?article dc:type dcmitype:Text.
?article ?property ?value
FILTER (?property=swrc:pages)
}

http://purl.org/dc/dcmitype/Text

Symmetry 2019, 11, 926 15 of 24

Table 5. Cont.

Type Query

Q4

SELECT DISTINCT ?name1 ?name2
WHERE {
?article1 rdf:type swrc:article.
?article2 rdf:type swrc:article.
?article1 dc:creator ?author1.
?author1 foaf:name ?name1.
?article2 dc:creator ?author2.
?author2 foaf:name ?name2
}

Q5

SELECT DISTINCT ?person8
WHERE {
twr:MattKeith foaf:knows ?person2.
?person2 foaf:knows ?person3.
?person3 foaf:knows twr:damn.
twr:damn foaf:knows ?person4.
?person4 foaf:knows ?person5.
?person5 foaf:knows twr:paul.
twr:paul foaf:knows ?person6.
?person6 foaf:knows ?person7.
?person7 foaf:knows person8
}

Q6

SELECT ?name1 ?postid1
WHERE {
twr:Roberts foaf:knows ?person2.
?person2 foaf:name ?name1.
?post1 sioc:has_creator ?name1.
twr:paul foaf:knows ?person3.
?person3 foaf:name ?name2.
?post2 sioc:has_creator ?name2.
FILTER(?name1=?name2)
}

Q7

SELECT ?person2 ?person3
WHERE {
?post1 sioc:has_creator twr:paul.
?post1 sioc:has_creator ?person2.
?post2 sioc:has_creator ?person2.
?post2 sioc:has_creator ?person3.
}

Q8

SELECT ?person1 ?post
WHERE {
twr:damn foaf:knows ?person.
?post foaf:has_creator ?person.
?post sioc:post ?postid
}

The proposed method adjusts the minimum partition size and maximum partition size stored
in a distributed server. In order to perform performance comparison according to partition size, we
measure the ratios of distributed storage stored in distributed servers and query response time as we
change parameters α and β in Equations (2) and (3). Since the performance evaluation according to the
size of partitions performs the performance comparison according to α and β shown in Equations (2)
and (3) in the dynamic environment, the initial partitioning environment has no significant effect on
performance. In the experimental evaluation, the initial graph partition is performed by Metis [24],
which is a representative method for performing static graph partitioning on a given graph. Metis
performs edge-cut partitioning that minimizes the number of edge-cuts to minimize communication

Symmetry 2019, 11, 926 16 of 24

costs between the partitioned subgraphs. Figures 7 and 8 show the ratios of distributed storage stored
in distributed servers according to the change of parameters α and β. The storage ratio is calculated
from Equation (6). Here, SRi represents the storage ratio of the server i, TRi represents the total storage
size of the server i, and SSi represents the size of the RDF graph stored in the server i. The minimum
and maximum sizes of partitions stored in the distributed server are determined by Equations (2) and
(3). As shown in Equation (4), since it is α+ β = 2, β has a relatively large value when α is too small.
That is, the smaller α is, the bigger β is, so the difference between the minimum partition size and
the maximum partition size to be stored in the distributed server is large. Conversely, the larger α
is, the smaller β becomes relatively small, and the size of partitions stored in the distributed server
is likely to be similar. Therefore, the size of partitions stored in the distributed server shows a lot of
difference. It is shown through experiments that a partition size stored in a server is very big when the
values of parameter α are 0.1 and 0.3 and the difference of the ratios of distributed storage stored in
distributed servers decreases relatively when the value of parameter α is 0.5 or more.

SRi =
SSi
TSi

(6)

Symmetry 2019, 11, x FOR PEER REVIEW 16 of 24

?post2 sioc:has_creator ?person3.

}

Q8

SELECT ?person1 ?post

WHERE {

twr:damn foaf:knows ?person.

?post foaf:has_creator ?person.

?post sioc:post ?postid

}

The proposed method adjusts the minimum partition size and maximum partition size stored

in a distributed server. In order to perform performance comparison according to partition size, we

measure the ratios of distributed storage stored in distributed servers and query response time as we

change parameters  and  in Equations (2) and (3). Since the performance evaluation according

to the size of partitions performs the performance comparison according to α and β shown in

Equations (2) and (3) in the dynamic environment, the initial partitioning environment has no

significant effect on performance. In the experimental evaluation, the initial graph partition is

performed by Metis [24], which is a representative method for performing static graph partitioning

on a given graph. Metis performs edge-cut partitioning that minimizes the number of edge-cuts to

minimize communication costs between the partitioned subgraphs. Figures 7 and 8 show the ratios

of distributed storage stored in distributed servers according to the change of parameters  and

 . The storage ratio is calculated from Equation (6). Here, iSR represents the storage ratio of the

server i , iTR represents the total storage size of the server i , and iSS represents the size of the

RDF graph stored in the server i . The minimum and maximum sizes of partitions stored in the

distributed server are determined by Equations (2) and (3). As shown in Equation (4), since it is

2=+  ,  has a relatively large value when  is too small. That is, the smaller  is, the bigger

 is, so the difference between the minimum partition size and the maximum partition size to be

stored in the distributed server is large. Conversely, the larger  is, the smaller  becomes

relatively small, and the size of partitions stored in the distributed server is likely to be similar.

Therefore, the size of partitions stored in the distributed server shows a lot of difference. It is shown

through experiments that a partition size stored in a server is very big when the values of parameter

 are 0.1 and 0.3 and the difference of the ratios of distributed storage stored in distributed servers

decreases relatively when the value of parameter  is 0.5 or more.

Figure 7. Ratio of distributed storage according to the change of parameters α and β on DBLP

dataset.

Figure 7. Ratio of distributed storage according to the change of parameters α and β on DBLP dataset.Symmetry 2019, 11, x FOR PEER REVIEW 17 of 24

Figure 8. Ratio of distributed storage according to the change of parameters α and β on Twitter

dataset.

i

i
i

TS

SS
SR = (6)

Figures 9 and 10 show query response times according to the change of parameters α and β.

Similar to Figures 7 and 8, the smaller  is, the larger  is, indicating a large difference in the size

of partitions stored in the distributed server. Also, the smaller  is, the more  is increased and

the partition is likely to be partitioned by edge-cutting. As shown in the figure, the smaller a

becomes, the lower the relative response time is. When the value of parameter  is big, each server

should store a particular size of partition. Therefore, the edge-cut ratios of clusters and subclusters

used in a query increase. It is shown through experiments that the query response time of the

proposed method increases when the value of parameter  is 0.7 or more. Based on these

experiment results, we perform performance evaluations by setting the values of parameters  and

 to 0.5 and 1.5.

Figure 9. Query response time according to the change of parameters α and β on DBLP dataset.

Figure 8. Ratio of distributed storage according to the change of parameters α and β on Twitter dataset.

Symmetry 2019, 11, 926 17 of 24

Figures 9 and 10 show query response times according to the change of parameters α and β.
Similar to Figures 7 and 8, the smaller α is, the larger β is, indicating a large difference in the size
of partitions stored in the distributed server. Also, the smaller α is, the more β is increased and the
partition is likely to be partitioned by edge-cutting. As shown in the figure, the smaller a becomes,
the lower the relative response time is. When the value of parameter α is big, each server should
store a particular size of partition. Therefore, the edge-cut ratios of clusters and subclusters used in a
query increase. It is shown through experiments that the query response time of the proposed method
increases when the value of parameter α is 0.7 or more. Based on these experiment results, we perform
performance evaluations by setting the values of parameters α and β to 0.5 and 1.5.

Symmetry 2019, 11, x FOR PEER REVIEW 17 of 24

Figure 8. Ratio of distributed storage according to the change of parameters α and β on Twitter

dataset.

i

i
i

TS

SS
SR = (6)

Figures 9 and 10 show query response times according to the change of parameters α and β.

Similar to Figures 7 and 8, the smaller  is, the larger  is, indicating a large difference in the size

of partitions stored in the distributed server. Also, the smaller  is, the more  is increased and

the partition is likely to be partitioned by edge-cutting. As shown in the figure, the smaller a

becomes, the lower the relative response time is. When the value of parameter  is big, each server

should store a particular size of partition. Therefore, the edge-cut ratios of clusters and subclusters

used in a query increase. It is shown through experiments that the query response time of the

proposed method increases when the value of parameter  is 0.7 or more. Based on these

experiment results, we perform performance evaluations by setting the values of parameters  and

 to 0.5 and 1.5.

Figure 9. Query response time according to the change of parameters α and β on DBLP dataset.
Figure 9. Query response time according to the change of parameters α and β on DBLP dataset.

Symmetry 2019, 11, x FOR PEER REVIEW 18 of 24

Figure 10. Query response time according to the change of parameters α and β on Twitter dataset.

The proposed method performs graph data partitioning by minimizing the number of

edge-cuts to minimize communication cost. To demonstrate the effective minimization of the

number of edge-cuts, edge-cut ratios are evaluated in comparison with existing graph data

partitioning methods. Figure 11 shows the results of the comparison of edge-cut ratios among

methods when performing RDF graph data partitioning. The results showed the improvement of

Hermes in terms of edge-cut ratios. Hermes focuses on minimizing edge-cut ratio in order to reduce

communication costs among distributed servers. However, the proposed method performs

partitioning by considering various criteria such as a query frequency, a partition size, and the

number of connected edges between a cluster and a subcluster. Therefore, although Hermes reduces

the edge-cut ratio over the proposed method, the proposed method outperforms Hermes even in

terms of the communication cost. The proposed method also outperforms the existing methods in

terms of ratio of distributed storage, query response time, and standard deviation of response time

since it considers a query frequency, a partition size, and the number of connected edges between a

cluster and a subcluster.

Figure 11. Edge-cut ratios.

In terms of data storage in the dynamic RDF graph environment, to solve the data concentration

problem, the proposed method considered the size of the partitions when performing graph data

partitioning. To demonstrate the improvement of the proposed method, an experiment on the data

size ratio of the data stored across distributed servers was conducted during RDF graph data

partitioning in the comparison between existing methods and the proposed method. To prove the

improvement of the proposed method, we measured the average storage ratio of 40 times for each

Figure 10. Query response time according to the change of parameters α and β on Twitter dataset.

The proposed method performs graph data partitioning by minimizing the number of edge-cuts to
minimize communication cost. To demonstrate the effective minimization of the number of edge-cuts,
edge-cut ratios are evaluated in comparison with existing graph data partitioning methods. Figure 11
shows the results of the comparison of edge-cut ratios among methods when performing RDF graph
data partitioning. The results showed the improvement of Hermes in terms of edge-cut ratios. Hermes
focuses on minimizing edge-cut ratio in order to reduce communication costs among distributed
servers. However, the proposed method performs partitioning by considering various criteria such
as a query frequency, a partition size, and the number of connected edges between a cluster and
a subcluster. Therefore, although Hermes reduces the edge-cut ratio over the proposed method,
the proposed method outperforms Hermes even in terms of the communication cost. The proposed

Symmetry 2019, 11, 926 18 of 24

method also outperforms the existing methods in terms of ratio of distributed storage, query response
time, and standard deviation of response time since it considers a query frequency, a partition size,
and the number of connected edges between a cluster and a subcluster.

Symmetry 2019, 11, x FOR PEER REVIEW 18 of 24

Figure 10. Query response time according to the change of parameters α and β on Twitter dataset.

The proposed method performs graph data partitioning by minimizing the number of

edge-cuts to minimize communication cost. To demonstrate the effective minimization of the

number of edge-cuts, edge-cut ratios are evaluated in comparison with existing graph data

partitioning methods. Figure 11 shows the results of the comparison of edge-cut ratios among

methods when performing RDF graph data partitioning. The results showed the improvement of

Hermes in terms of edge-cut ratios. Hermes focuses on minimizing edge-cut ratio in order to reduce

communication costs among distributed servers. However, the proposed method performs

partitioning by considering various criteria such as a query frequency, a partition size, and the

number of connected edges between a cluster and a subcluster. Therefore, although Hermes reduces

the edge-cut ratio over the proposed method, the proposed method outperforms Hermes even in

terms of the communication cost. The proposed method also outperforms the existing methods in

terms of ratio of distributed storage, query response time, and standard deviation of response time

since it considers a query frequency, a partition size, and the number of connected edges between a

cluster and a subcluster.

Figure 11. Edge-cut ratios.

In terms of data storage in the dynamic RDF graph environment, to solve the data concentration

problem, the proposed method considered the size of the partitions when performing graph data

partitioning. To demonstrate the improvement of the proposed method, an experiment on the data

size ratio of the data stored across distributed servers was conducted during RDF graph data

partitioning in the comparison between existing methods and the proposed method. To prove the

improvement of the proposed method, we measured the average storage ratio of 40 times for each

Figure 11. Edge-cut ratios.

In terms of data storage in the dynamic RDF graph environment, to solve the data concentration
problem, the proposed method considered the size of the partitions when performing graph data
partitioning. To demonstrate the improvement of the proposed method, an experiment on the data size
ratio of the data stored across distributed servers was conducted during RDF graph data partitioning
in the comparison between existing methods and the proposed method. To prove the improvement of
the proposed method, we measured the average storage ratio of 40 times for each query. Figures 12
and 13 show the storage ratio of data stored across distributed servers when RDF graph partitioning
is performed with DBLP and Twitter datasets. In the experiment, standard deviations of the size
of the data stored in the servers were obtained for evaluation. Evaluation results showed that the
proposed method outperformed Sedge and Hermes in terms of reduced data concentration to specific
servers and equal storage distribution across servers. In the experiment, data concentration was found
in server 4 in Sedge and server 5 in Hermes. Sedge and Hermes try to minimize the edge-cut ratio
in order to reduce the communication costs among servers when they process a query. Therefore,
they can store a large number of subgraphs in a specific server. However, in the proposed method,
the storage ratios of distributed servers are almost similar because both a cluster size and the edge-cut
ratios between clusters and subclusters are considered.

Symmetry 2019, 11, x FOR PEER REVIEW 19 of 24

query. Figures 12 and 13 show the storage ratio of data stored across distributed servers when RDF

graph partitioning is performed with DBLP and Twitter datasets. In the experiment, standard

deviations of the size of the data stored in the servers were obtained for evaluation. Evaluation

results showed that the proposed method outperformed Sedge and Hermes in terms of reduced data

concentration to specific servers and equal storage distribution across servers. In the experiment,

data concentration was found in server 4 in Sedge and server 5 in Hermes. Sedge and Hermes try to

minimize the edge-cut ratio in order to reduce the communication costs among servers when they

process a query. Therefore, they can store a large number of subgraphs in a specific server.

However, in the proposed method, the storage ratios of distributed servers are almost similar

because both a cluster size and the edge-cut ratios between clusters and subclusters are considered.

Figure 12. Ratio of distributed storage of DBLP dataset.

Figure 13. Ratio of distributed storage of Twitter dataset.

The proposed method is designed to provide fast query response while meeting users’ diverse

needs. To show the improvement of the proposed method in this aspect, an experiment on query

response time for various queries was conducted in comparison between the existing methods and

the proposed method. Figures 14 and 15 show the results of comparison in query response time of

Sedge, Hermes, and the proposed method using eight different queries for the DBLP and Twitter

Figure 12. Ratio of distributed storage of DBLP dataset.

Symmetry 2019, 11, 926 19 of 24

Symmetry 2019, 11, x FOR PEER REVIEW 19 of 24

query. Figures 12 and 13 show the storage ratio of data stored across distributed servers when RDF

graph partitioning is performed with DBLP and Twitter datasets. In the experiment, standard

deviations of the size of the data stored in the servers were obtained for evaluation. Evaluation

results showed that the proposed method outperformed Sedge and Hermes in terms of reduced data

concentration to specific servers and equal storage distribution across servers. In the experiment,

data concentration was found in server 4 in Sedge and server 5 in Hermes. Sedge and Hermes try to

minimize the edge-cut ratio in order to reduce the communication costs among servers when they

process a query. Therefore, they can store a large number of subgraphs in a specific server.

However, in the proposed method, the storage ratios of distributed servers are almost similar

because both a cluster size and the edge-cut ratios between clusters and subclusters are considered.

Figure 12. Ratio of distributed storage of DBLP dataset.

Figure 13. Ratio of distributed storage of Twitter dataset.

The proposed method is designed to provide fast query response while meeting users’ diverse

needs. To show the improvement of the proposed method in this aspect, an experiment on query

response time for various queries was conducted in comparison between the existing methods and

the proposed method. Figures 14 and 15 show the results of comparison in query response time of

Sedge, Hermes, and the proposed method using eight different queries for the DBLP and Twitter

Figure 13. Ratio of distributed storage of Twitter dataset.

The proposed method is designed to provide fast query response while meeting users’ diverse
needs. To show the improvement of the proposed method in this aspect, an experiment on query
response time for various queries was conducted in comparison between the existing methods and the
proposed method. Figures 14 and 15 show the results of comparison in query response time of Sedge,
Hermes, and the proposed method using eight different queries for the DBLP and Twitter dataset.
Sedge and Hermes reduce communication costs among distributed servers since they repartition a
partition by minimizing an edge-cut ratio. Hermes outperforms Sedge since it considers read request
frequency for repartitioning. However, since Sedge and Hermes do not consider the frequently used
subgraphs for processing a query when they perform repartitioning, they can store subgraphs related
to the query in several servers. As a result, when they process a query, they increase a query response
time due to the communication costs of the distributed servers. On the other hand, the proposed
method performs grouping based on the subgraph with high data use frequency, and was designed
to create partitions in the size within the range of threshold values that users set. In other words,
the proposed method employs the different graph data partitioning process than those of existing
methods, and provides fast query response by managing frequently requested subgraph in the same
server. Performance evaluation results with the DBLP data showed the query response time of the
proposed method was improved by about10% over Sedge, and about 3% over Hermes. In addition,
the results with the Twitter data, the proposed group improved by approximately 7% than Sedge,
and approximately 4% than Hermes.

Symmetry 2019, 11, x FOR PEER REVIEW 20 of 24

dataset. Sedge and Hermes reduce communication costs among distributed servers since they

repartition a partition by minimizing an edge-cut ratio. Hermes outperforms Sedge since it considers

read request frequency for repartitioning. However, since Sedge and Hermes do not consider the

frequently used subgraphs for processing a query when they perform repartitioning, they can store

subgraphs related to the query in several servers. As a result, when they process a query, they

increase a query response time due to the communication costs of the distributed servers. On the

other hand, the proposed method performs grouping based on the subgraph with high data use

frequency, and was designed to create partitions in the size within the range of threshold values that

users set. In other words, the proposed method employs the different graph data partitioning

process than those of existing methods, and provides fast query response by managing frequently

requested subgraph in the same server. Performance evaluation results with the DBLP data showed

the query response time of the proposed method was improved by about10% over Sedge, and about

3% over Hermes. In addition, the results with the Twitter data, the proposed group improved by

approximately 7% than Sedge, and approximately 4% than Hermes.

Figure 14. Query response time with DBLP dataset.

Figure 15. Query response time with Twitter dataset.

The proposed method performs efficient load balancing based on statistical data without

performing data replication. To demonstrate the improvement of the proposed method in load

balancing, standard deviations of query response time according to the number of query requests

were obtained to provide a comparison between existing methods and the proposed method.

Figures 16 and 17 show the standard deviations of the response time across the servers when four

queries were requested for DBLP and Twitter dataset. In Sedge and Hermes where four queries were

Figure 14. Query response time with DBLP dataset.

Symmetry 2019, 11, 926 20 of 24

Symmetry 2019, 11, x FOR PEER REVIEW 20 of 24

dataset. Sedge and Hermes reduce communication costs among distributed servers since they

repartition a partition by minimizing an edge-cut ratio. Hermes outperforms Sedge since it considers

read request frequency for repartitioning. However, since Sedge and Hermes do not consider the

frequently used subgraphs for processing a query when they perform repartitioning, they can store

subgraphs related to the query in several servers. As a result, when they process a query, they

increase a query response time due to the communication costs of the distributed servers. On the

other hand, the proposed method performs grouping based on the subgraph with high data use

frequency, and was designed to create partitions in the size within the range of threshold values that

users set. In other words, the proposed method employs the different graph data partitioning

process than those of existing methods, and provides fast query response by managing frequently

requested subgraph in the same server. Performance evaluation results with the DBLP data showed

the query response time of the proposed method was improved by about10% over Sedge, and about

3% over Hermes. In addition, the results with the Twitter data, the proposed group improved by

approximately 7% than Sedge, and approximately 4% than Hermes.

Figure 14. Query response time with DBLP dataset.

Figure 15. Query response time with Twitter dataset.

The proposed method performs efficient load balancing based on statistical data without

performing data replication. To demonstrate the improvement of the proposed method in load

balancing, standard deviations of query response time according to the number of query requests

were obtained to provide a comparison between existing methods and the proposed method.

Figures 16 and 17 show the standard deviations of the response time across the servers when four

queries were requested for DBLP and Twitter dataset. In Sedge and Hermes where four queries were

Figure 15. Query response time with Twitter dataset.

The proposed method performs efficient load balancing based on statistical data without
performing data replication. To demonstrate the improvement of the proposed method in load
balancing, standard deviations of query response time according to the number of query requests were
obtained to provide a comparison between existing methods and the proposed method. Figures 16
and 17 show the standard deviations of the response time across the servers when four queries were
requested for DBLP and Twitter dataset. In Sedge and Hermes where four queries were performed
many times simultaneously, servers experienced high loading with the increased number of query
requests, and overall response time increased accordingly. Sedge and Hermes store subgraphs related
to a query in several servers and do not consider the frequently used subgraphs for processing a query
when they perform repartitioning, they can store subgraphs related to the query in several servers. As a
result, when they process a query, they increase a query response time due to the communication costs
among the distributed servers. On the other hand, the proposed method performs grouping based
on the subgraph with high data use frequency. It was designed to create partitions in the size within
the range of threshold values that users set. The proposed method also showed an increase in overall
query response time when the number of query requests increased. However, the proposed method
demonstrated improvement in response time by performing efficient load balancing based on the mean
query frequency of the distributed server when performing graph data partitioning. According to
the performance evaluation results, with DBLP data, the proposed method showed an approximately
23% improvement compared to Sedge and an approximately 10% improvement compared to Hermes.
With Twitter data, the proposed method showed an approximately 55% improvement compared to
Sedge and an approximately 17% improvement compared.

Symmetry 2019, 11, x FOR PEER REVIEW 21 of 24

performed many times simultaneously, servers experienced high loading with the increased number

of query requests, and overall response time increased accordingly. Sedge and Hermes store

subgraphs related to a query in several servers and do not consider the frequently used subgraphs

for processing a query when they perform repartitioning, they can store subgraphs related to the

query in several servers. As a result, when they process a query, they increase a query response time

due to the communication costs among the distributed servers. On the other hand, the proposed

method performs grouping based on the subgraph with high data use frequency. It was designed to

create partitions in the size within the range of threshold values that users set. The proposed method

also showed an increase in overall query response time when the number of query requests

increased. However, the proposed method demonstrated improvement in response time by

performing efficient load balancing based on the mean query frequency of the distributed server

when performing graph data partitioning. According to the performance evaluation results, with

DBLP data, the proposed method showed an approximately 23% improvement compared to Sedge

and an approximately 10% improvement compared to Hermes. With Twitter data, the proposed

method showed an approximately 55% improvement compared to Sedge and an approximately 17%

improvement compared

Figure 16. Standard deviation of response time with DBLP dataset.

Figure 17. Standard deviation of response time with Twitter dataset.

5. Conclusions

In this paper, we proposed a new RDF partitioning method to address the load imbalance of

RDF graphs stored in a distributed store in a dynamic environment. The proposed method aims to

Figure 16. Standard deviation of response time with DBLP dataset.

Symmetry 2019, 11, 926 21 of 24

Symmetry 2019, 11, x FOR PEER REVIEW 21 of 24

performed many times simultaneously, servers experienced high loading with the increased number

of query requests, and overall response time increased accordingly. Sedge and Hermes store

subgraphs related to a query in several servers and do not consider the frequently used subgraphs

for processing a query when they perform repartitioning, they can store subgraphs related to the

query in several servers. As a result, when they process a query, they increase a query response time

due to the communication costs among the distributed servers. On the other hand, the proposed

method performs grouping based on the subgraph with high data use frequency. It was designed to

create partitions in the size within the range of threshold values that users set. The proposed method

also showed an increase in overall query response time when the number of query requests

increased. However, the proposed method demonstrated improvement in response time by

performing efficient load balancing based on the mean query frequency of the distributed server

when performing graph data partitioning. According to the performance evaluation results, with

DBLP data, the proposed method showed an approximately 23% improvement compared to Sedge

and an approximately 10% improvement compared to Hermes. With Twitter data, the proposed

method showed an approximately 55% improvement compared to Sedge and an approximately 17%

improvement compared

Figure 16. Standard deviation of response time with DBLP dataset.

Figure 17. Standard deviation of response time with Twitter dataset.

5. Conclusions

In this paper, we proposed a new RDF partitioning method to address the load imbalance of

RDF graphs stored in a distributed store in a dynamic environment. The proposed method aims to

Figure 17. Standard deviation of response time with Twitter dataset.

5. Conclusions

In this paper, we proposed a new RDF partitioning method to address the load imbalance of RDF
graphs stored in a distributed store in a dynamic environment. The proposed method aims to balance
the storage ratio and response time of the distributed store. The proposed method solved RDF graph
concentration to specific servers by performing grouping based on a frequently used subgraph and
assigning data to the distributed server properly by considering data size. It also performed graph
data partitioning by minimizing the number of edge-cuts to reduce inter-server communication costs.
These allowed the proposed method to outperform existing methods by maximizing the advantages
of distributed processing and providing quick query responses. It was shown through performance
evaluation that Hermes reduces the edge-cut ratios over the proposed method since Hermes focuses
on minimizing the edge-cut ratio in order to reduce communication costs among distributed servers.
However, although Hermes reduces the edge-cut ratio over the proposed method, the proposed method
outperforms Hermes even in terms of the communication cost. The proposed method also outperforms
the existing methods in terms of ratio of distributed storage, query response time, and standard
deviation of response time since it considers a query frequency, a partition size, and the number of
connected edges between a cluster and a subcluster. It does not improve query processing performance
significantly compared to the existing methods, but makes sense in that it improves the storage ratio.
Future research will be conducted to increase the number of servers in various system environments to
ensure the scalability of the proposed method.

Author Contributions: Conceptualization, K.B., C.K. and J.Y.; methodology, K.B., C.K. and J.Y.; validation, K.B.,
C.K.; formal analysis, K.B. and C.K.; writing—original draft preparation, K.B. and C.K.; writing—review and
editing, J.Y.

Funding: This research was supported by Basic Science Research Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Education(No. NRF-2019R1I1A1A01062289), and by
Next-Generation Information Computing Development Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Science, ICT (No. NRF-2017M3C4A7069432), and by the National Research
Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1H1A2079843).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Decker, S.; Melnik, S.; Harmelen, F.; Fensel, D.; Klein, M.C.A.; Broekstra, J.; Erdmann, M.; Horrocks, I.
The Semantic Web: The Roles of XML and RDF. IEEE Internet Comput. 2000, 4, 63–73. [CrossRef]

2. Gomez-Perez, A.; Corcho, O. Ontology Languages for the Semantic Web. IEEE Intell. Syst. 2002, 17, 54–60.
[CrossRef]

http://dx.doi.org/10.1109/4236.877487
http://dx.doi.org/10.1109/5254.988453

Symmetry 2019, 11, 926 22 of 24

3. Arenas, M.; Pérez, J. Querying Semantic Web Data with SPARQL. In Proceedings of the ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Athens, Greece, 12–16 June 2011;
pp. 305–316.

4. Huang, J.; Abadi, D.J.; Ren, K. Scalable SPARQL Querying of Large RDF Graphs. Proc. VLDB Endow. 2011, 4,
1123–1134.

5. Kim, K.; Moon, B.; Kim, H. R3F: RDF triple filtering method for efficient SPARQL query processing.
World Wide Web 2015, 18, 317–357. [CrossRef]

6. Neumann, T.; Weikum, G. The RDF-3X engine for scalable management of RDF data. VLDB J. 2010, 19,
91–133. [CrossRef]

7. Frey, J.; Müller, K.; Hellmann, S.; Rahm, E.; Vidal, E. Evaluation of metadata representations in RDF stores.
Semant. Web 2019, 10, 205–229. [CrossRef]

8. Bae, M.; Kihm, J.; Kang, S.; Oh, S. Indexing and querying algorithm based on structure indexing for managing
massive-scale RDF data. J. Intell. Fuzzy Syst. 2014, 27, 575–587.

9. Hammoud, M.; Rabbou, D.A.; Nouri, R.; Beheshti, S.; Sakr, S. DREAM: Distributed RDF Engine with
Adaptive Query Planner and Minimal Communication. Proc. VLDB Endow. 2015, 8, 654–665. [CrossRef]

10. Fernández, J.D.; Umbrich, J.; Polleres, A.; Knuth, M. Evaluating query and storage strategies for RDF archives.
Semant. Web 2019, 10, 247–291. [CrossRef]

11. Wylot, M.; Hauswirth, M.; Cudré-Mauroux, P.; Sakr, S. RDF Data Storage and Query Processing Schemes:
A Survey. ACM Comput. Surv. 2018, 51, 84. [CrossRef]

12. Pan, Z.; Zhu, T.; Liu, H.; Ning, H. A survey of RDF management technologies and benchmark datasets.
J. Ambient Intell. Hum. Comput. 2018, 9, 1693–1704. [CrossRef]

13. Özsu, M.T. A survey of RDF data management systems. Front. Comput. Sci. 2016, 10, 418–432. [CrossRef]
14. Ouksili, H.; Kedad, Z.; Lopes, S.; Nugier, S. Pattern oriented RDF graphs exploration. Data Knowl. Eng.

2018, 113, 171–183. [CrossRef]
15. Zou, L.; Özsu, M.T. Graph-Based RDF Data Management. Data Sci. Eng. 2017, 2, 56–70. [CrossRef]
16. Galarraga, L.; Hose, K.; Schenkel, R. Partout: A Distributed Engine for Efficient RDF Processing.

In Proceedings of the International World Wide Web Conference, Seoul, Korea, 7–11 April 2014; pp. 267–268.
17. Janke, D.; Staab, S.; Thimm, M. Impact analysis of data placement strategies on query efforts in distributed

RDF stores. J. Web Semant. 2018, 50, 21–48. [CrossRef]
18. Guo, X.; Gao, H.; Zou, Z. Leon: A Distributed RDF Engine for Multi-query Processing. In Proceedings of the

International Conference on Database Systems for Advanced Applications, Chiang Mai, Thailand, 22–25
April 2019; pp. 742–759.

19. Hassan, M.; Bansal, S.K. RDF Data Storage Techniques for Efficient SPARQL Query Processing Using
Distributed Computation Engines. In Proceedings of the International Conference on Information Reuse and
Integration, Salt Lake City, UT, USA, 6–9 July 2018; pp. 323–330.

20. Abdelaziz, I.; Harbi, R.; Khayyat, Z.; Kalnis, P. A Survey and Experimental Comparison of Distributed
SPARQL Engines for Very Large RDF Data. Proc. VLDB Endow. 2017, 10, 2049–2060. [CrossRef]

21. Leng, Y.; Chen, Z.; Wang, H.; Zhong, F. A Partitioning and Index Algorithm for RDF Data of Cloud-Based
Robotic Systems. IEEE Access 2018, 6, 29836–29845. [CrossRef]

22. Peng, P.; Zou, L.; Chen, L.; Zhao, D. Adaptive Distributed RDF Graph Fragmentation and Allocation based
on Query Workload. IEEE Trans. Knowl. Data Eng. 2019, 31, 670–685. [CrossRef]

23. Hendrickson, B.; Leland, R. A multilevel algorithm for partitioning graphs. In Proceedings of the ACM/IEEE
conference on Supercomputing, San Diego, CA, USA, 4–8 December 1995; pp. 1–14.

24. Karypis, G.; Kumar, V. METIS-Unstructured Graph Partitioning and Sparse Matrix Ordering System Version 2.0;
Technical Report; Department of Computer Science, University of Minnesota: Minneapolis, MN, USA, 1995.

25. Malewicz, G.; Austern, M.H.; Bik, A.J.C.; Dehnert, J.C.; Horn, I.; Leiser, N.; Czajkowski, G. Pregel: A
System for Large-Scale Graph Processing. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Indianapolis, IN, USA, 6–10 June 2010; pp. 135–146.

26. Chawla, T.; Singh, G.; Pilli, E.S. HyPSo: Hybrid Partitioning for Big RDF Storage and Query Processing.
In Proceedings of the ACM India Joint International Conference on Data Science and Management of Data,
Kolkata, India, 3–5 January 2019; pp. 188–194.

http://dx.doi.org/10.1007/s11280-013-0253-1
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.3233/SW-180307
http://dx.doi.org/10.14778/2735703.2735705
http://dx.doi.org/10.3233/SW-180309
http://dx.doi.org/10.1145/3177850
http://dx.doi.org/10.1007/s12652-018-0876-2
http://dx.doi.org/10.1007/s11704-016-5554-y
http://dx.doi.org/10.1016/j.datak.2017.06.003
http://dx.doi.org/10.1007/s41019-016-0029-6
http://dx.doi.org/10.1016/j.websem.2018.02.002
http://dx.doi.org/10.14778/3151106.3151109
http://dx.doi.org/10.1109/ACCESS.2018.2833480
http://dx.doi.org/10.1109/TKDE.2018.2841389

Symmetry 2019, 11, 926 23 of 24

27. Xu, Q.; Wang, X.; Xin, Y.; Feng, Z.; Chen, R. PDSM: Pregel-Based Distributed Subgraph Matching on Large
Scale RDF Graphs. In Proceedings of the Companion Proceedings of the Web Conference, Lyon, France,
23–27 April 2018; pp. 17–18.

28. Liu, J.; Chen, J.; Rao, Z.; Sun, Z.; Yang, H.; Xu, R. A massive RDF storage approach based on graph database.
In Proceedings of the International Conference on Geoinformatics and Data Analysis, Prague, Czech Republic,
20–22 April 2018; pp. 169–173.

29. Xu, Q.; Wang, X.; Wang, J.; Yang, Y.; Feng, Z. Semantic-Aware Partitioning on RDF Graphs. In Proceedings of
the International Joint Conference APWeb-WAIM, Beijing, China, 7–9 July 2017; pp. 149–157.

30. Al-Ghezi, A.I.A.; Wiese, L. Adaptive Workload-Based Partitioning and Replication for RDF Graphs.
In Proceedings of the International Conference on Database and Expert Systems Applications, Regensburg,
Germany, 3–6 September 2018; pp. 250–258.

31. Potter, A.; Motik, B.; Nenov, Y.; Horrocks, I. Distributed RDF Query Answering with Dynamic Data Exchange.
In Proceedings of the International Semantic Web Conference, Kobe, Japan, 17–21 October 2016; pp. 480–497.

32. Potter, A.; Motik, B.; Nenov, Y.; Horrocks, I. Dynamic Data Exchange in Distributed RDF Stores. IEEE Trans.
Knowl. Data Eng. 2018, 30, 2312–2325. [CrossRef]

33. Peng, P.; Zou, L.; Özsu, M.T.; Chen, L.; Zhao, D. Processing SPARQL queries over distributed RDF graphs.
VLDB J. 2016, 25, 243–268. [CrossRef]

34. Nicoara, D.; Kamali, S.; Daudjee, K.; Chen, L. Hermes: Dynamic Partitioning for Distributed Social Network
Graph Databases. In Proceedings of the International Conference on Extending Database Technology,
Brussels, Belgium, 23–27 March 2015; pp. 25–36.

35. Pujol, J.M.; Erramilli, V.; Siganos, G.; Yang, X.; Laoutaris, N.; Chhabra, P.; Rodriguez, P. The little engine
(s) that could: Scaling online social networks. In Proceedings of the ACM SIGCOMM 2010 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications, New Delhi, India,
30 August–3 September 2010; pp. 375–386.

36. Stanton, I.; Kliot, G. Streaming graph partitioning for large distributed graphs. In Proceedings of the
International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012;
pp. 1222–1230.

37. Yang, S.; Yan, X.; Zong, B.; Khan, A. Towards effective partition management for large graphs. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, Scottsdale, AZ, USA, 20–24 May
2012; pp. 517–528.

38. Pujol, J.M.; Erramilli, V.; Siganos, G.; Yang, X.; Laoutaris, N.; Chhabra, P.; Rodriguez, P. The Little Engine (s)
That Could: Scaling Online Social Networks. IEEE/ACM Trans. Netw. 2012, 20, 1162–1175. [CrossRef]

39. Bok, K.; Kim, C.; Jeong, J.; Lim, J.; Yoo, J. Dynamic Partitioning of Large Scale RDF Graph in Dynamic
Environments. In Proceedings of the International Conference on Emerging Databases, Busan, Korea, 7–9
August 2017; pp. 43–49.

40. Wang, R.; Chiu, K. A Graph Partitioning Approach to Distributed RDF Stores. In Proceedings of the
International Conference on Parallel Processing, Leganes, Madrid, Spain, 10–13 July 2012; pp. 411–418.

41. Troullinou, G.; Kondylakis, H.; Plexousakis, D. Semantic Partitioning for RDF Datasets. In Proceedings of the
11th International Workshop on Information Search, Integration, and Personalization (ISIP), Lyon, France,
1–4 November 2016; Volume 760, pp. 99–115.

42. Leng, Y.; Chen, Z.; Zhong, F.; Li, X.; Hu, Y.; Yang, C. BRGP: A balanced RDF graph partitioning algorithm for
cloud storage. Concurr. Comput. Pract. Exp. 2017, 29, e3896. [CrossRef]

43. Hayes, J.; Gutiérrez, C. Bipartite Graphs as Intermediate Model for RDF. In Proceedings of the International
Semantic Web Conference, Hiroshima, Japan, 7–11 November 2004; pp. 47–61.

44. Tomaszuk, D.; Skonieczny, L.; Wood, D. RDF Graph Partitions: A Brief Survey. In Proceedings of the
International Conference on Beyond Databases, Architectures and Structures, Ustroń, Poland, 26–29 May
2015; pp. 256–264.

45. Akhter, A.; Ngomo, A.N.; Saleem, M. An Empirical Evaluation of RDF Graph Partitioning Techniques.
In Proceedings of the International Conference on Knowledge Engineering and Knowledge Management,
Nancy, France, 12–16 November 2018; pp. 3–18.

http://dx.doi.org/10.1109/TKDE.2018.2818696
http://dx.doi.org/10.1007/s00778-015-0415-0
http://dx.doi.org/10.1109/TNET.2012.2188815
http://dx.doi.org/10.1002/cpe.3896

Symmetry 2019, 11, 926 24 of 24

46. Schmidt, M.; Hornung, T.; Lausen, G.; Pinkel, C. SP2Bench: A SPARQL Performance Benchmark.
In Proceedings of the International Conference on Data Engineering, Shanghai, China, 29 March–2 April
2009; pp. 222–233.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Proposed Dynamic Partitioning Method
	Architeucture
	Statistical Data
	Cluster Creation
	Subcluster Creation
	Graph Partitioning

	Performance Evaluation
	Analysis
	Evaluation Results

	Conclusions
	References

