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Abstract: This study deals with computational analysis of vibration isolators’ behavior, using the
fractional-order differential equations (FDE). Numerical investigations regarding the influences of
α-fractional derivatives have been mainly focused on the dissipative component within the differential
constitutive equation of rheological model. Two classical models were considered, Voigt-Kelvin
and Van der Pol, in order to develop analyses both on linear and nonlinear formulations. The aim
of this research is to evaluate the operational capability, provided by the α-fractional derivatives
within the viscous component of certain rheological model, to enable an accurate response regarding
the realistic behavior of elastomeric-based vibration isolators. The hysteretic response followed,
which has to be able to assure the symmetry of dynamic evolution under external loads, and at
the same time, properly providing dissipative and conservative characteristics in respect of the
results of experimental investigations. Computational analysis was performed for different values of
α-fractional order, also taking into account the integer value, in order to facilitate the comparison
between the responses. The results have shown the serviceable capability of the α-fractional damping
component to emulate, both a real dissipative behavior, and a virtual conservative characteristic, into
a unitary way, only by tuning the α-order. At the same time, the fractional derivative models are able
to preserve the symmetry of hysteretic behavior, comparatively, e.g., with rational-power nonlinear
models. Thereby, the proposed models are accurately able to simulate specific behavioral aspects of
rubber-like elastomers-based vibration isolators, to the experiments.

Keywords: α-fractional calculus; vibration isolation; fractional-order differential equation; rubber-like
elastomers; Riemann–Liouville/Caputo/Grünwald-Letnikov fractional derivative

1. Introduction

Fractional calculus (FC) studies the differentiation and integration of an arbitrary real or complex
order of the differential operator. The starting point of FC’s use was a discussion between Leibniz and
L’Hospital (1695) concerning the calculation and significance of the derivative of the power function,
which also became the name of FC. FC has been largely applied to pure mathematics and its application
in physics or engineering has remained extremely limited until, by association with the theory of chaos
or fractals, it has increased the interest in this branch of analysis. The reputation enjoyed by FC is still
exotic, and for many researchers, it is still unclear what its practical use is. Fractional derivatives take
into account the previous evolution of the variable, unlike the standard differential operator, which is
limited to taking into account local time history. This feature allows for a better description of system
dynamics [1].
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Taking the previous aspects into account, the next paragraphs contain a briefly survey of some
relevant works within the areas of both computational aspects, and some practical applications on
vibration isolation analysis, of FC. Thus, in article [1], there is presented a dynamic statistical analysis
of a system composed of a large number of masses. The conclusion of this article shows that, while
the individual dynamics of each material point has an integer-order behavior, global dynamics reveal
both the existence of the integer dynamics and the fractional dynamics. Babiarz and Legowski, in the
paper [2], developed a fractional model of the human arm, and is an approach representing an attempt
to consider the properties of damping in the simplest form.

Inside the editorial paper [3], Zhou et al. had proposed a selection of papers presenting many
applications of fractional dynamics in different research domains. Three areas are distinguishable:
Dynamical analysis (leading to fractional differential equations and systems), fractional-order control
theory, and applications considering models with fractional calculus.

The work [4] presents some ways to use Matlab software with the associated numerical methods
to simulate and compute the fractional derivatives. These methods are based on series technique
(Fourier and Taylor in our case). In addition, some numerical examples were presented. The fractional
calculus offers a number of axioms and methods to extend the derivative notions from integer n to
arbitrary order α, under favorable conditions [5]. In paper [5], the author has intended to solve a linear
homogeneous differential equation with constant coefficients by means of N-fractional calculus method,
and the results show that singular differential equations can be solved by means of the N-fractional
calculus method.

Koh and Kelly, in Reference [6], are studying a mechanical oscillator consisting of a concentrated
mass and a Kelvin-type element with fractional behavior, modeling an elastomeric bearing in
groundwork isolation systems. For a dynamic analysis of a fractional oscillator developed efficient
numerical multi-step schemes in the time domain, in good agreement with the Laplace and
Fourier solutions. The model with fractional derivative agrees, to a satisfactory extent, with the
experimental results.

Freundlich, in paper [7], is studying the vibration of a simply supported beam with a viscoelastic
behavior of fractional order. The beam, considering the Bernoulli-Euler hypotheses, was excited
by the supports movement. In this model, the Riemann–Liouville fractional derivative (RLFD)
of order 0 < α ≤ 1 was used. Firstly, the steady-state vibrations were analyzed and therefore the
RLFD with lower terminal at -∞ was considered, in order to simplify solution of the FDE and to
enable direct computation of the amplitude-frequency characteristic. Final results showed that the
appropriate selection of both damping coefficients, and respectively, of fractional derivative order,
offers more accurate fitting of the dynamic characteristic comparatively with the model using the
integer order derivative.

The fractional equations of the mass-spring-damper system were considered by Gómez-Aguilar
et al. in Reference [8]. The results had shown viscoelastic behaviors of the mechanical components
(producing, at different scales, temporal fractality). This proves the material heterogeneities in the
mechanical components.

Use of the fractional order models in bioengineering applications is presented in paper [9], where
a method to obtain a numerical solution, considering the power series expansion was provided.
Fractional dynamic of such system leads to different equations and the applications are solved with
Matlab/Simulink software. The study offers several illustrative cases that can be used not only in
bioengineering, but so too in other disciplines, where it is possible to apply the fractional calculus. In
addition, with the previous mentioned paper [9], within chapter [10], Petráš had developed methods to
obtain the fractional derivative, fractional integral solution of a fractional differential equations using
Matlab. Illustrative examples, together the correspondent Matlab code sources, were also presented.

The researches of Rossikhin et al. dealt with dynamic behavior of mechanical oscillators (linear and
nonlinear)—in [11], respectively, with force-driven vibrations of nonlinear oscillators—in Reference [12],



Symmetry 2019, 11, 924 3 of 18

where the constitutive equations use fractional derivatives. The authors had concluded that using
fractional derivatives is possible to do an approximate analysis of the vibratory regimes of the oscillator.

The nonlinear response of a plate endowed loaded with a random force using fractional derivative
is presented in Reference [13] by Malara and Spanos. A statistical linearization is used to determine an
approximate solution of the governing equations of the plate vibration. Eigenvalues analysis offers a
time-dependent representation of the response. In this way, it is possible to obtain the set of nonlinear
fractional differential equation. The linearization is considered in a mean square sense.

Inside study [14], the stochastic response of a structural systems has been studied, with a
single-degree-of-freedom. The excitation was stationary and non-stationary. The damping is considered
with fractional behavior. The final equation of motion becomes a set of coupled differential linear
equations, involving more degrees of freedom. The number of the additional degrees of freedom
depends on the discretization of the fractional derivative operator. Using these methods, the stochastic
analysis becomes straightforward and simple. It is mentioned that, for the most current engineering
interest, it has been proven that the second-order statistics response can be obtained in a closed form,
in a simple manner.

In paper [15], Cajić et al. makes an analysis of a nanobeam free damped transverse vibration. The
method used is the non-local theory of Eringen and fractional derivative model for viscoelasticity. The
classic Euler–Bernoulli beam theory and constitutive equation using fractional order derivatives that
offer the form of the motion equation of a nanobeam. Different values of fractional order parameter are
used in order to obtain the time dependent behavior.

The actual literature also provides a suite of theoretical approaches related to fractional differential
equations. Hereby, Ma [16] proposed the Adomian decomposition method and a computational
technique for the study of the impulsive fractional differential equations. Continuing this research in
Reference [17], to obtain an exact solution for nonlinear fractional problems, the authors combined the
double Laplace transforms with the Adomian decomposition method. The new method is applied
to solve regular and singular conformable fractional coupled Burgers’ equations, and illustrated the
effectiveness of the proposed method with some examples.

Finally, in this section, and in addition to previously mentioned works, comprehensive information
regarding both theoretical and computational aspects of FC can be found within the texts [18–22]. These
works also contain some applications of FC on various important areas of engineering and physics.

Linear and nonlinear models regarding the elastomers-based vibration insulation devices can be
found in papers [23–25], where they had earnestly presented the influence of dissipative characteristic
on isolator dynamic behavior. In addition, the research trials, as well as the efforts of the author,
within the area of vibration isolation using the passive systems, was presented by the papers [26–30],
which contain both computational and experimental results, according with proposed linear and
nonlinear approaches.

Usually, numerical investigations have a sensible aspect related to the required computational
resources, optimal balancing between hardware performances, and computing time. Most of the
researchers made additional searches into computing time optimization, beyond that of the mainly
numerical procedures development [31]. Regarding this aspect and within the present study, the
authors noted that the computational cost required by evaluation of α-fractional derivative increase
the total simulation time to a certain measure, directly depending on both FC formulation and
solving the numerical approach had adopted within the computational model. Computational cost
optimization was not framed by the aim of this study, but nevertheless, some related-to investigations
done by the authors show a relatively small increasing of total simulation time for FC-based algorithm
comparatively with the linear case. Taking into account an average 6000 points single dimension grid
for each simulation, it has to be noted that the FC had required 1.12...1.23 s, in the same time with
0.88...0.93 s by the classical algorithm (hardware and numerical FC formulation were kept identical).

This paper was structured based on the next sections as follows: Theoretical basics of
α-fractional derivative calculus and classical models related on FDE’s within vibratory systems
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analysis, computational assessments regarding fractional-order dissipation, discussions, and final
concluding remarks.

2. Materials and Methods

The basic approach of fractional calculus consists by the Riemann–Liouville fractional integral
(RLFI) [4,9,10]

a Jαt f (t) =
1

Γ(α)

∫ t

a
(t− τ)α−1 f (τ)dτ, (1)

with α ∈ (0, 1] and t > a, where a is the initial value (usually a = 0). Associated derivative is able to
result through the Lagrange rule for differential operators. Evaluating the nth order derivative over
the (n − α) order integral, yields the α order derivative (related to RLFD) as follows

aDα
t f (t) = Dn

t a Jn−α
t f (t) =

1
Γ(n− α)

dn

dtn

[∫ t

a
(t− τ)n−α−1 f (τ)dτ

]
, (2)

with α ∈ (n− 1, n], α > 0, notation D denoting d/dt and Γ(•) means the Gamma function, defined as
follows

Γ(t) =
∫
∞

0
e−zzt−1dz. (3)

Taking into account the initial value a set to 0, that denotes the most common case, the RLFD,
Equation (2), becomes [2]

0Dα
t f (t) =

1
Γ(1− α)

d
dt

∫ t

o
(t− τ)−α f (τ)dτ, (4)

where in it was assumed the restriction of derivative order α ∈ (0, 1].
Following the RLFI previous expressions, a commonly compact definition, used for fractional

derivatives, is [6]

Dα f ≡ aDα
t [ f (t)] ≡

dα f (t)
[d(t− a)]α

≡


1

Γ(n−α)
dn

dtn

[∫ t
a (t− τ)n−α−1 f (τ)dτ

]
,

{
n > α ≥ 0
n integer

1
Γ(−α)

∫ t
a (t− τ)−α−1 f (τ)dτ, α < 0

dn

dtn f (t), a = 0, α = n, n integer

. (5)

Caputo, in 1990’s, supposed another way to define the fractional derivatives, actually known as
Caputo Fractional Derivative (CFD) [4,8]

aDα
t f (t) =

1
Γ(1− β)

∫ t

a
(t− τ)−β f (m+1)(τ)dτ, (6)

where α = β + m, β ∈ (0, 1] and m denotes the nearest integer less than α. The Caputo definition does
not require the fractional order initial conditions to define, and thus, it is often preferred in solving
differential equations.

A.K. Grünwald and A.V. Letnikov propose a new generalization of integer derivative by
approaching the integer difference of the fractional case [4]. Supposing the binomial coefficients as an
iterative formulation [10](

x
y

)
= c(x)y =

(
1−

1 + x
y

)
c(x)y−1, c(x)0 = 1, y = 0, 1, 2, . . . , k, (7)
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and considering the real valued binomial coefficients based on Gamma function [10,16] because that
allows a generalization to non-integer arguments(

x
y

)
=

Γ(x)
Γ(x− y) Γ(y)

, x, y ∈ <, (8)

the Grünwald-Letnikov Fractional Derivative (GLFD) is [4,9,10]

aDα
t f (t) = lim

h→ 0
k = (t− a)/h

h−α
[k]∑
j=0

(−1) j
(
α
j

)
f (t− jh), (9)

with the notation [•] meaning the integer part of the argument. Obviously, y(t) = 0 for t < 0 within
transient problems, thus

−∞
Dα

t y(t) becomes identical to 0Dα
t y(t), [6]. For analyses within the area

of vibration isolation, into the context of the viscoelasticity theory, the fractional order α, known as
memory parameter, was assumed to have a value varying from zero to one.

The fractional model, used within computational analyses, followed the conventional Voigt-Kelvin
rheological schematization. The constitutive equation, embedding fractional order formulation into
dissipative term, were assumed to have the following expression [30]

τ(t) = Go(1 + c Dα)γ(t), (10)

with damping constant c > 0, Go denoting the shear modulus, and τ, γ meaning the stress and the
shear strain, respectively. It has to be noted that the authors of the paper [6], using the less-square fit
procedure for a set of experimental data, showed that the fractional Voigt-Kelvin model fits the data
much better than the hysteretic, classical Kelvin and standard linear solid models.

Three practical applications of FDE for mechanical vibration analyses [30], embedding fractional
order terms, are briefly presented as follows. The first case is the fractional order Van der Pol oscillator,
having both inertial and dissipative α-fractional terms

D1+αx + δ
(
x2
− 1

)
Dαx + b x = f (t), (11)

or supposing only the fractional damping

..
x + δ

(
x2
− 1

)
Dαx + b x = f (t). (12)

Second case relates to the equations of fractional order Duffing-like systems, with a dissipative term

D1+αx + δDαx + b x + a x3 = f (t), (13)

or without damping
Dαx + b x + a x3 = f (t). (14)

The last exemplification case presents an interesting system with small fractional and delayed
damping, modeled by the following expression

..
x(t) + δ

[
β1

.
x(t) + β2Dαx(t) + β3

.
x(t− 1)

]
+ b x(t) + a x3(t) = f (t). (15)

In Equations (11)–(15), having mass normalized formulations, δ denotes damping coefficient, a > 0
is the control parameter of nonlinearity, b relates to squared pulsation of equivalent linear system,
and f (t) is the excitation term. The parameters βi are the control coefficients related to each damping
component. It has to be noted that extensive examples of FDE can be found in the works [11,12] and
within theirs bibliography.
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One challenge, especially for practical simulations, consists of settling the correct dimensionality
of the differential equations. In order to supply this, an additional parameter µ that must be included
within the fractional temporal operator was proposed in the work [8]

d
dt
→

1
µ1−α

dα

dtα
≡ 0Dα

t ,
d2

dt2 →
1

µ2(1−α)

d2α

dt2α ≡ 0D2α
t (16)

where parameter µ has a dimension of seconds. According to Reference [8], parameter µ relates to the
temporal components within the system (those components implying changes to the time constant of
system). Clearly, taking µ = 1 into Equation (16) yields ordinary integer temporal derivative operators.

According to Reference [8], µ can be estimated by following expressions

α =
√

k/mµ, (17)

for a mass—spring ensemble,

α =
k
c
µ, (18)

for a damper—spring ensemble, and

α =

√
k
m
−

c2

4m2µ, (19)

for a complete mass—spring—damper ensemble, with k, m denoting the rigidity and mass, respectively,
and c meaning the damping coefficient.

In the view of this papers goal and taking into account the previous assertions regardingα-fractional
derivatives, a α-fractional derivative SDoF system based on Voigt-Kelvin linear schematization, can be
modeled with the expression [30]

1
µ2(1−α) 0D2α

t x(t) +
δ

µ1−α 0Dα
t x(t) + b x(t) = f (t), (20)

where the parameters have aforementioned significations.
Following the aim of this study, to characterize the hysteretic behavior of vibration isolator

based on α-fractional derivative approaches, the authors consider a differential formulation related to
Equation (20), but ignore the inertial term. This hypothesis were justified by the assertions in paper [11],
and was also mentioned and detailed by the analyses in paper [30], where an extended investigation
regarding the implications of α-fractional derivative within the classic linear was developed, Duffing
and Van der Pol oscillators, respectively. Different values for the main parameters were adopted and
the responses, in terms of time, spectral, and hysteretic characteristics were discussed.

Into this paper, the symmetrical trends in evolution of a vibration isolator subjected to harmonic
excitation were studied. The capability of this α-fractional derivative approach to simulate both
dissipative and conservative character of an isolator through a singular term was investigated,
involving only the damping, but α-fractional-typed. The analyses were focused on evaluation
of the equivalence between α-fractional-derivative and pseudo-linear systems, but underlined the
maintaining of symmetry of hysteretic behavior. This last aspect is very important because of the
practical observations (including instrumental investigations), which highlight the symmetry in
hysteresis loops independently by dynamic excitation type or material characteristics. In this view,
the α-fractional approach comes with the advantage of a unitary expression that intrinsically embeds
damping and stiffness parameters, but keeping the realistic behavior (in term of hysteresis symmetry).
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3. Results

As was previously mentioned, a simple dissipative oscillator was adopted, according to classical
Voigt-Kelvin schematization, Equation (20), with α-fractional derivative in damping term

(
c · 0Dα

t x(t)
)

and null stiffness. The inertial term was ignored, the excitation was supposed to be kinematical, in
terms of harmonic displacement x(t) with 1 Hz frequency, and the damping coefficient was unitary
valued (c = 1). Computational investigations were conducted for order α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and
in addition, the ordinary case (α = 1) was considered. Fractional derivatives were evaluated using a
GLFD-based algorithm.

Timed evolution and spectral composition of the response function were, respectively, presented
in Figures 1 and 2. The results related to the regular derivative case (α = 1) were differently marked
onto the graphs in order to facilitate comparative analysis. For spectral distribution, both magnitude
and phase components because some changes in frequency evolution were considered and have more
visibility into the phase diagram than the magnitude.
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Diagram in Figure 3 presents the response function in respect of the excitation displacement. The
presence of the hysteretic loop can be observed, which acquires changes as a function of fractional
order. In order to evaluate the linear-like evolution of the system, a Poincare map, with a snapshot
increment identical to the time period of excitation signal, was overlapped on diagrams in Figure 3.
Null scattering of dots related to Poincare maps highlight the correlated evolution of the system with
the excitation frequency. It has to be mentioned that, for the investigations presented into this paper,
the evaluation of Poincare maps is justified by the fact that the response function is identical with the
system velocity, because the model only incorporates the unitary gained dissipative term (in fact, the
response function in respect to the displacement is similar with the phase plane diagram).
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The changes in slope of each hysteresis in Figure 3 indicate that, in the same time with increasing
of α order, the system provide both dissipative and conservative characteristics, which quantitatively
depend on the effective α value. This fact leads to the necessity of the pseudo-linear equivalent
system evaluation, in terms of stiffness and damping of Voigt-Kelvin schematization. Taking into
account the proportionality between the dissipated energy and the hysteresis loop area, it results in
the equivalent-damping coefficient. In order to evaluate the stiffness, the hysteresis axis between the
extreme horizontal coordinates was considered. For the loops in Figure 3, the correspondent axes
were depicted in Figure 4. Analyzing the slopes of axes in Figure 4 clearly result in that α-fractional
derivatives provide an additionally elastic component within system behavior. In the same time, the
symmetry of the hysteresis loops through both the equality of the extremely values, and the common
point of all axes on origin (0, 0) is evident.
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An additional analysis was conducted for largest number of α order values. The results, presented
in Figure 5, in terms of timed evolution, hysteresis loops (included Poincare maps dots-based
representations) and hysteresis axis, highlight the previously mentioned observations.
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At this point, it is evident that the α-fractional-based dissipative model is able to provide a
behavior equivalent to a linear Voigt-Kelvin model, and vice-versa (see Figure 6). In fact, the fractional
dissipative model is able to emulate a linear visco-elastic model, with direct linkage between α order
and the pair of viscous and elastic parameters, respectively.
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Figure 6. Schematic diagram related to the equivalence between α-fractional dissipative model and
emulated linear Voigt-Kelvin model.

A computational application was developed for identification and evaluation of the proper values
of the pseudo-linear system parameters. Different values for α-order between zero and one were
considered, and both fractional and equivalent systems responses have been compared. The results
indicate that the estimated relative error tends to zero, obviously depending by the computation
precision. The diagrams in Figure 7 present two cases related to α-order valued to 0.4 and 0.7,
respectively. It can be observed that both plots perfectly overlapped.
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Figure 7. Comparative hysteresis of initial α-fractional dissipative and emulated linear Voigt-Kelvin
models respectively, for α-order valued to 0.4 (a) and 0.7 (b). The identified values of virtual linear
system were mentioned on each graph.

Taking into account aforementioned observation, it has to identify the correlation between α-order
and the parameters of equivalent linear system. This analysis was performed by considering the
equivalent stiffness and damping, respectively, and the results were depicted in Figure 8. In addition,
the losses coefficient, as the ratio between dissipative and conservative parameters, was evaluated.
The evolution of losses coefficient in respect to α-order was presented in Figure 9, where semi-log
representation was adopted taking into account the relative large domain of function variability. It is
evident that the losses coefficient g→ +∞ for α = 1 and g = 0 for α = 0.
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An extended analysis was developed by taking into account the classical Van der Pol (VdP)
expression for dissipative component, obviously supposing the α-fractional order derivative. The
effects of fractional derivative in model behavior was followed, related to the observations and
acquired for the previous simplest pseudo-linear model. This analysis was adopted based on the
previous work evaluations [30], where it was considered for both Duffing and VdP non-linear models.
The dissipative term within Duffing-type model enables only linear dependence in respect to the
displacement derivative

c0

µ1−α 0Dα
t x(t) + k0

[
x(t) + k3x3(t)

]
= f (t), (21)

thus that the dynamic behavior cannot be differently influenced by the fractional derivative than the
Voigt-Kelvin-based model. Hereby, in the frame of this study and taking into account the nonlinear
damping expression, becomes interesting to analyze a VdP-type model, embedding fractional order
derivative, related to its capability that emulate a classical VdP model.

The following expression of VdP nonlinear model including α-fractional derivative was proposed
for computational investigations [30]

−
c0

µ1−α

[
1− x2(t)

]
0Dα

t x(t) + k0 x(t) = f (t). (22)

where f (t) denotes the response of the system, x(t) is the instantaneously displacement, and c0, k0

denote damping and stiffness coefficients, respectively.
In respect of the hypothesis within previous case analysis, the parameters c0, k0 were identically

valued as follows: c0 = 1, k0 = 0. Taking into account the nonlinear term in parenthesis within the left
side hand of Equation (22), the analysis has to be conducted related to displacement magnitude. In
this study, random values for magnitude were taken. The results presented correspond to the 3.3, 1.0,
and 0.3 valued displacement magnitudes. The monitored parameters, for each case, were similarly
adopted than the previous linear case: Timed evolution, spectral composition, hysteretic loops with
Poincare maps overlapped, and hysteresis axis according to the pseudo-elastic component provided by
the model. The results for the three cases were presented in Figures 10–12, respectively (details were
mentioned within the figure captions).
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Figure 10. The response of α-order fractional damping VdP-based model, with respect to 1 Hz and 3.3
magnitude harmonic displacement excitation, in terms of timed evolution (a), magnitude and phase
spectral composition (b), hysteresis loops with Poincare map (c), and pseudo-elastic component (d).
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Figure 11. The response of α-order fractional damping VdP-based model, with respect to 1 Hz and
unitary magnitude harmonic displacement excitation, in terms of timed evolution (a), magnitude
and phase spectral composition (b), hysteresis loops with Poincare map (c), and pseudo-elastic
component (d).
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magnitude harmonic displacement excitation, in terms of timed evolution (a), magnitude and phase
spectral composition (b), hysteresis loops with Poincare map (c), and pseudo-elastic component (d).

A comparative analysis between this group of results highlight the fact that the VdP model
embedding the fractional derivative is also able to emulate a pseudo-conservative behavior, depending
on the α-order. This aspect is dependent to the excitation magnitude and appears for any of its values
except the unitary ones—see Figure 11c,d.

As was performed for the previous linear case, the authors developed a computational application
in order to identify the proper formulation of the equivalent VdP visco-elastic model and to evaluate
the parameters values of equivalent models. Identification procedure was imposed by the nonlinear
formulation of the dissipative term in VdP model and by the fact that this expression has propagated
to the conservative term for the equivalent model. In this view, the authors supposed two forms of the
equivalent model. The first case was in respect of the classical VdP expression as follows

− c01
[
1− x2(t)

] .
x(t) + k01 x(t), (23)
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in the same time that the second case supposes a specific nonlinear terms for equivalent rigidity
as follows

− c02
[
1− x2(t)

] .
x(t) + k02

[
1− x2(t)

]
x(t). (24)

The analyses were performed for different values of the α-fractional order and displacement
magnitudes, respectively. For presentation, the 1.8, 1.0, and 0.8 valued displacement magnitudes were
adopted, maintaining α = 0.7. The results were depicted as pair diagrams of the first and second
equivalent model, for each displacement magnitude, in Figures 13–15, respectively.

Comparative analysis of this last group of results (depicted in Figures 10–12) show that
identification of the right equivalent model formulation is easily done, taking into account the
differences between the loops evolutions in diagrams. Even if the first equivalent model (emulated
VdP-based model with linear rigidity) is able to provide the same energy dissipation for a proper
damping coefficient and supplies certain pseudo-stiffness, the hysteretic evolution is clearly different.
This fact can produce certain difficulties on the tuning process between theoretical behavior and the
experimental investigations.

In the same time, the second approach (emulated VdP-based model with propagated nonlinear
rigidity term) provides the best approximation with the α-fractional derivative model. Obviously,
similar to the case of the linear model, the estimated relative error tends to zero, only and directly
depending by the computation precision.
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Figure 13. Responses hysteresis provided by the initial α-fractional dissipative and the emulated
VdP-based models, respectively. The simulations were performed for displacement magnitude gained
to 1.8, and in respect to emulated VdP model according to Equation (23) (a), and respectively, to
Equation (24) (b). The α-order was valued to 0.7.
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gained to 1.8, and in respect to emulated VdP model according to Equation (23) (a), and respectively, 
to Equation (24) (b). The α-order was valued to 0.7. 

 
(a) 

 
(b) 

Figure 14. Responses hysteresis provided by the initial α-fractional dissipative and the emulated
VdP-based models, respectively. The simulations were performed for displacement magnitude unitary
gained, and in respect to emulated VdP model according to Equation (23) (a), and respectively, to
Equation (24) (b). The α-order was valued to 0.7.
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4. Discussion

Each case of analysis was briefly discussed on the same time with its presentation. Besides this,
the main findings within this study has to be detailed, in a general view, taking into account the
intrinsic availability of α-fractional derivatives that virtually modify the behavioral characteristics of
linear/nonlinear vibration isolators models. The results in Figure 8, in terms of equivalent damping and
stiffness, respectively, are relevant into this way. From the diagram of damping evolution in respect of
the α-order results, the fractional derivative model is able to provide a full scale of dissipation, from
weak to strong, related to the full range of α. In the same time, from the diagram of pseudo-elastic
component results that also provided a relative very large scale for rigidity, from stiff, by very stiff
(more of doubled initial value), to zero stiffness. These two observations are very useful, e.g., for
investigations of elastomers-based vibration isolators, which provide strong nonlinear evolutions
under the external dynamic loads and involve many parameters within computational (experimentally
augmented) models.

Taking into account the comparative analysis of diagrams in Figure 8, it has to be mentioned
that the evolutions of the two components are strongly correlated. In this sense, for small α orders,
the FDE-based model enables only weak-dissipation with stiff to very stiff behavior. For medium
to 0.9 values of α, the FDE-based model still enables a stiff behavior with damping transition from
medium to strong. Finally, for 0.9...1.0 valued α, the model provides only a soft to zero stiffness, but
very damping, behavior. These last observations have restricted the area of practical using for the
FDE-based dynamic models. Nevertheless, these theoretical models are able to provide enough of a
range of dynamic characteristics, in respect of a single parameter, and was thus suitable for inclusion
into the computational approaches of vibration isolator dynamics.

In addition, the availability of the α-fractional derivatives has to be underlined, embedded to
the differential constitutive equations, which do not change the hysteretic evolution of a dynamic
system with symmetrical evolution in respect to its static state equilibrium point. This is a very
useful observation, because the investigations done by the authors highlights that the insertion of
fractional-order derivatives into the classical differential formulations of dynamic systems actually
provides the preservation of the symmetry of the hysteretic behavior.

For the simple, rubber-like, composites without any augmentations related to differentiation of
their reversible evolution under dynamic loads, the previously mentioned fact focuses on the interest to
these computational approaches, because of theirs accurate capability to simulate the realistic behavior,
experimentally acquired, in the same time with keeping the nonlinear characteristics identified to the
microstructural and phenomenological analyses.

For the sake of comparison in the view of previous paragraph remarks, the diagrams in Figure 16
show the evolution of a rational-power simulated system, with quite identical material parameters to
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those used within this study. It was adopted in the force to displacement graphs, considering both the
conservative and dissipative force components, in order to highlight the unsymmetrical hysteresis of
such computational models. The conservative component of the model was supposed to have linear
expression to displacement, with a constant value of rigidity.
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5. Conclusions

The computational investigations within this study highlight a very interesting aspect of the
α-fractional derivatives embedded in classical linear or nonlinear oscillators. This aspect consists by
the capability of emulating a pseudo-conservative characteristic for a computational implementation
of the only dissipative component. In the view of practical using these models for the evaluation of
vibration isolators dynamic behavior, this capability is very useful because it provides a single tuning
parameter (in term of the α-order) instead of two (for linear case) or more parameters (for nonlinear
case), for classical rheological dynamic models. Moreover, these FDE-based approaches are able to
maintain the hysteresis symmetry, specific to the real systems, within its dynamic behavior under
external loads.

Two cases of classical rheological models were analyzed in this work, fractional-derivative
augmented. The future investigations will be focused on enlarging the area of fractional calculus
applicability within other basic rheological models, and the potential useful results will be discussed
into forthcoming works.
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