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Abstract: The quantitative structure–activity relationship (QSPR) model was formulated to quantify
values of the binding constant (lnK) of a series of ligands to beta–cyclodextrin (β-CD). For this purpose,
the multivariate adaptive regression splines (MARSplines) methodology was adopted with molecular
descriptors derived from the simplified molecular input line entry specification (SMILES) strings.
This approach allows discovery of regression equations consisting of new non-linear components
(basis functions) being combinations of molecular descriptors. The model was subjected to the
standard internal and external validation procedures, which indicated its high predictive power.
The appearance of polarity-related descriptors, such as XlogP, confirms the hydrophobic nature of
the cyclodextrin cavity. The model can be used for predicting the affinity of new ligands to β-CD.
However, a non-standard application was also proposed for classification into Biopharmaceutical
Classification System (BCS) drug types. It was found that a single parameter, which is the estimated
value of lnK, is sufficient to distinguish highly permeable drugs (BCS class I and II) from low
permeable ones (BCS class II and IV). In general, it was found that drugs of the former group exhibit
higher affinity to β-CD then the latter group (class III and IV).
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1. Introduction

Molecular complexes, such as inclusion adducts, clathrates, cocrystals and solvates, have been
widely used in many fields, including pharmacy [1–6], agriculture [7], the food industry [1,8,9]
and explosives [10,11]. In the past two decades, cyclodextrins (CDs) have been one of the
most extensively studied complexation agents, especially as pharmaceutical excipients [12–15].
The CDs’ adducts with active pharmaceutical ingredients (APIs) are mainly used for solubility
and bioavailability enhancement [12–17], stability improvement [13,18], stomach, skin and eye
irritation reduction [13,17,19], and prevention of unpleasant odor and bitter taste [13,20]. Probably
the most commonly used compounds in pharmaceutical formulations belonging to this class
are alpha- (α-CD), beta- (β-CD), gamma- (γ-CD) cyclodextrins and their analogues such as
(2-hydroxypropyl)-beta-cyclodextrin (HP-β-CD), sulfobutylether beta-cyclodextrin (SBE-β-CD) or
randomly methylated-β-cyclodextrins (RM-β-CDs) [21]. The main criterion used for distinguishing
different CDs (α-CD, β-CD and γ-CD) corresponds to six, seven and eight D-glucopyranose units,
respectively. These excipients have been used for all main types of drug delivery systems (oral, nasal,
rectal, dermal, ocular, parenteral) [13,21].
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Apart from pharmaceutical applications, cyclodextrins are widely used in personal care products
and perfumes manufacturing [20,22,23], which relies on their high stability, solubilizing abilities and
vapor pressure reduction (fragrances industry). The unique properties of cyclodextrins are related
to their specific structural features. These compounds are characterized by a symmetric toroidal
shape. Due to the relatively hydrophobic cavity, cyclodextrins play the role of hosts in molecular
inclusion complexes. On the other hand, they are hydrophilic on the outside surface, which results
in strong interactions with water molecules. This characteristic structure is somewhat similar to
biocatalysts [24–26]. An interesting example of the use of such cyclodextrin-based artificial enzymes
is asymmetric and stereospecific synthesis (halogenation, hydrohalogenation, oxidation, reduction,
photolysis, aldol reactions, hydrogenation, substitution and addition reaction) [25]. Noteworthy,
the stereoselectivity of CDs was utilized for separation of racemic mixtures [27,28].

Quantitative structure–activity relationship (QSPR) methodology has been extensively used for
evaluating the formation abilities of molecular complexes, and characterizing their properties [4,29–38].
Cyclodextrin binding constant modeling deserves special attention due to its practical importance.
In recent years, several interesting approaches have appeared, such as application of molecular
docking [38], conductor like screening model for real solvents (COSMO-RS) and quantum
chemical-based descriptors [31], and topological indices [32,34,39]. Most of these models are simple
regression equations. In general, better accuracy can be achieved when non-linear methods are applied.
In our previous work, a novel approach of combining the non-linear MARSplines (multivariate adaptive
regression splines) [40] methodology with common molecular descriptors calculated from simplified
molecular input line entry specification (SMILES) code was applied for solubility modeling [41,42].
The major advantage of this procedure is its good predictive power and relatively simple model, which
is a regression equation of new factors. The aim of this study was to apply a similar methodology for
β-CD stability binding modeling.

2. Materials and Methods

The experimental values used for model development and validation were obtained from the
datasets published by Suzuki et al. [43] and Mirrahimi et al. [38]. This collection comprises binding
constants of 1:1 β-CD complexes with different organic compounds. In case of experimental values of
the same compounds from different sources the mean value was taken into account. The list of all data
is provided in the Supplementary Materials (Table S1).

2.1. Molecular Descriptors

Currently, a variety of molecular parameters are freely available for potential applications,
which ensures that formulated models can be readily applied for predictions of compounds’ properties.
Here two online tools were used for collecting the set of descriptors, namely ChemDes [44] and the
BioCCl module of the BioTriangle platform [45]. The former provides a direct and integrated way of
retrieving the sets of descriptors catalogued as Chemopy Descriptors (1135), CDK Descriptors (275),
RDKit Descriptors (196), Pybel Descriptors (24), BlueDesc Descriptors (174) and PaDEL Descriptors
1875). The number of potential parameters is provided in parenthesis. All these indices can be calculated
on-line [46]. The second source also offers a limited number of descriptors but offers sets suited for
intermolecular interactions, which is the key advantage of this software. This is available using the
BioTriangle webserver [47]. Since the BioTriangle allows for different geometrical transformations of
descriptors calculated for pairs of molecules, the β-CD-ligand pairs descriptors were included.

2.2. Data Pre-Treatment

After completing the datasets of all descriptors, the standard pre-treatment procedure was
implemented. It comprised elimination of descriptors not computable for the whole set of ligands
and the remaining content across the whole population. Then, highly correlated and low-variance
descriptors were also removed. Data curating was undertaken by taking advantage of the Data
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PreTreatment 1.2 module relying on the variable reduction Wootton, Sergent and Phan-Tan-Luu’s
(V-WSP) algorithm [48,49]. Then, the dataset was divided into training and test sets using the activity
division approach implemented in the Dataset Division 1.2 tool [50,51]. Both programs are written in
Java and are freely available [52].

2.3. Model Development Using MARSplines

In this work, a MARSplines [40] methodology was applied as implemented in STATISTICA 12 [53].
This methodology leads to the following general regression formula, where Fi is the regression factor
and ai are the regression parameters:

ln
(
Kest

bCDB

)
= a0 +

n∑
i=1

ai·Fi (1)

The left-hand side of this equation stand for the response variable, which is confronted with
experimental values. Here it is defined by the value of the natural logarithm of a binding constant
quantifying affinity of a ligand toward β–CD determined experimentally. The MARSplines method is
the procedure designated for finding the analytical formula based on descriptors and so-called knots.
Such relationships are termed basis functions. The values represent splitting of the set of values into
sub-regions treated with alternative mathematical formula. The number of basis functions and factors
in the model is controlled at an arbitrary level for balancing between accuracy and complexity of the
model. To avoid model overfitting, the final model undergoes inspection of the regression coefficients
by removing such factors for which statistical significance is not reached (p > 0.05). Additionally,
the contribution to the model of each factor is inferred from the values of standardized regression
coefficients (βi). Only such factors are included in the final model for which

∣∣∣βi
∣∣∣ > 0.09. Furthermore,

the model was refined, internally validated and characterized in terms of fitting criteria using QSARINS
software [54–56]. As a result of this procedure, the model was simplified by selecting the most
important variables using a genetic algorithm (GA).

The simplest factor generated by the MARSplines procedure has a form identical to the classical
QSPR approach and is expressed simply as multiplication of descriptor values by a coefficient, whose
value is optimized for maximizing correlations between computed and estimated response values.
The main improvement, however, comes from accounting for non-linearity by direct inclusion of more
complex basis functions combined into factors. Hence, an advantage of the QSPR model formulation
using the MARSplines procedure is the benefit of formally being in the multiple linear regression
(MLR) format by including non-linear properties of considered datasets. Hence, the golden standard
QSPR model development and validation procedures can be directly applied [41,42,57].

3. Results and Discussion

There are two main reasons that justify the efforts of the obtained model building. The first is
obviously of substantive nature for deriving a model that is as accurate as possible and characterized
by a low cost of applications. Hence, the screening of new potential ligands, or comparing a leading
compound of an API and derivatives suggested by a drug design procedure, represent the immediate
value of the obtained model. There is also a methodological reason for exploring the landscape of
potential application in the chemistry domain of the MARSplines procedure. This is not explored
deeply enough bearing in mind its high potential, effectiveness and ease of use.

3.1. Findings

Based on the MARSplines algorithm, the following descriptors were included in the model (Table 1):
XLogP and Wlambda2.unity (source: BlueDesc); carbonTypes.8 (source: CDK), MLFER_A, AATS6m,
AATS4i and PNSA-3 (source: PADEL); the tensor product of PEOEVSA9 descriptor vectors denoted as
PEOEVSA9*PEOEVSA9; and, the vector sum of Chiv1 parameter denoted as Chiv1plusChiv1 (source:
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BioTriangle). Taking into account the relatively large training set population (n = 187), the number
of variables seems to be reasonable fulfilling the general rules of acceptable QSPR model complexity,
as documented in Table 1 and Figure 1. Internal validation, fitting criteria and external validation
parameters, including R2 (determination coefficient), Radj

2 (adjustment determination coefficient),
F (Fisher ratio), SD (standard deviation), MAE (mean absolute error), MAPE (mean absolute percentage
error), RMSE (root-mean-square error), PRESS (predicted residual error sum of squares) and Kxx

(descriptors’ global correlation measure) [58,59], suggest that the model is well fitted to the training
set and, most importantly, the external test set examples were well predicted. The results of external
validation are presented in Figure 1. As one can see, the proposed model is characterized by high
determination coefficients. Interestingly, R2, MAE and MAPE values are even slightly better for the
external test set (0.936, 0.44, 9.3%, respectively) than for the training set (0.907, 0.49, 15.4%, respectively).
This suggests that the model complexity is optimal. It is worth mentioning that the over-fitting
problem should be taken into account when analyzing the quality of QSPR models, especially those
that are non-linear. In the case of overly complex models, the training set data are exceptionally well
fitted, but the test set prediction quality is far inferior. It is worth mentioning that the MARSplines
protocol implemented in the STATISTICA software prevents overfitting by taking advantage from of
the generalized cross validation (GCV) algorithm, which reduces the model to be as simple as possible.

Table 1. Multivariate adaptive regression splines (MARSplines) model parameters along with the
validation results.

Factor βi ai Basis Functions

F0 5.4277
F1 −0.3991 −1.2679 max(0; 28.1940-Chiv1plusChiv1)
F2 0.5652 1.1090 max(0; XLogP+0.1340)
F3 0.3772 1.3356 max(0; carbonTypes.8)
F4 −0.1559 −1.4658 max(0; 0.5620-MLFER_A)
F5 −0.1613 −1.3482 max(0; Wlambda2.unity-1.2400)
F6 −0.1391 −0.3182 max(0; 1.2400-Wlambda2.unity)
F7 −0.2130 −2.5385 max(0; XLogP+0.1340)·max(0;-15.8078-PNSA-3)
F8 −0.1372 −0.0120 max(0; 66.0412- AATS6m)·max(0; MLFER_A -0.5620)
F9 −0.0977 −0.0003 max(0; PEOEVSA9*PEOEVSA9-988.3780)·max(0; XLogP +0.1340)

F10 −0.1258 −0.0002 max(0; 988.378- PEOEVSA9*PEOEVSA9)·max(0; XLogP +0.1340)
F11 0.0910 0.0257 max(0; Wlambda2.unity -1.2400)·max(0; AATS4i-154.1756)
F12 0.0944 0.2092 max(0; Wlambda2.unity -1.2400)·max(0; 154.1756- AATS4i)

Model statistics: internal validation (MAECV = 0.51, RMSECV = 0.65, Q2
LOO = 0.90, Q2

LMO = 0.90, PRESSCV = 99.00),
fitting criteria (N = 187, R2 = 0.91, Radj

2 = 0.91, MAEtr = 0.61, RMSEtr = 0.48, F = 189.45, SD = 0.63, Kxx = 0.35) and
external validation (training set: MAE = 0.49, MAPE = 15.4%, test set: MAE = 0.44, MAPE = 9.3%).

Some of the parameters used in the model, such as like XLogP and MLFER_A, are quite intuitive
and their physical meaning can be easily explained. The appearance of the hydrophilicity measure,
namely the group contribution logP parameter (XlogP), confirms the role of the hydrophobic nature
of the cyclodextrin cavity, while MLFER_A is the Abraham solubility parameter expressing the
acidity. The role of polarity in β–CD molecular complexes formation was emphasized by PNSA-3
(charged partial surface area index [60]) and BioTriangle interaction descriptor PEOEVSA9*PEOEVSA9.
This latter feature was calculated based on the MOE-type parameter involving the contributions of
surface area and partial charge [61]. Another feature calculated using the BioTriangle platform, namely
Chiv1plusChiv1, is associated with the Chiv1 descriptor belonging to the atomic valence connectivity
indices class [62,63]. Of note, these descriptors were widely used in solving quite similar QSAR
problems associated with target-ligand binding [64–68]. In the MARSplines model, there was also
one topological descriptor characterizing carbon type (carbonTypes.8) [69] and the appearance of two
autocorrelation indices, AATS6m and AATS4i [69]. Autocorrelation descriptors are probably one of
the most extensively used quantitative structure–activity relationship/quantitative structure property
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relationship (QSAR/QSPR) descriptors Although the physical meaning of these parameters is not
straightforward, our previous studies showed that this broad class of descriptors was found to be
useful in the modelling of the affinity of compounds in the solid state [29,57].
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Figure 1. The relationship between experimental and calculated values of binding constants.

3.2. Comparison to Existing Models

Comparison of the determination coefficient calculated for the obtained model with two regression
models reported in recent years is presented in Table 2. Although these models were generated
using similar datasets, it should be taken into account that depending on the validation procedure,
different results can be obtained. Nevertheless, the correlation coefficients are lower or approximately
equal to the MARSplines model. This suggests that the proposed approach is a good alternative for
β-CD calculation. The major advantage of calculating molecular descriptors from the SMILES code is
low computational cost. However, the proposed QSPR model has some limitations associated with
ignoring the geometrical features of molecular complexes, such as conformation and solvation effects.
These effects can be included using optimized 3D structures. Furthermore, it should be taken into
account that in some cases, the stoichiometry of β-CD complexes is not 1:1 [70–72]. In such cases,
molecular modelling methods such as molecular-dynamics docking or quantum-chemical binding
constant calculations are more appropriate than the proposed approach.

Table 2. Comparison of determination coefficients of beta-cyclodextrin (β-CD) binding constants.

Model Description R2
Source

Training Set Test Set

MARSplines 0.91 0.94 This work
Molecular docking-based descriptors 0.83 0.83 [37]

Monte Carlo optimised topological descriptors 0.92 0.93 [38]
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3.3. Exemplary Model Applications

The obvious application of the model provided by Equation (1) and Table 1 relates to its predictive
power. Hence, it is possible to anticipate, before actual measurement, the probable affinity of the
considered API toward β-CD. There is, of course, a limitation due to the applicability domain.
For example, there are no organic and metalo-organic salts in the model. Hence, it is very unlikely
that the model helps in situations where drugs are prepared in such forms. However, many drugs are,
in principle, treatable by the model and at least the rational selection of the candidates for experimental
measurements can be advised.

It is also possible to suggest alternative, less obvious applications of the formulated MARSplines
model. For example, in the Biopharmaceutical Classification System (BCS) it is assumed that two
measures such as solubility and permeability can be used for grouping drugs in respect of their
bioavailability. In Table 3 this classification is shown [73]. Of note, cyclodextrins and their solubilizing
abilities have been discussed in the context of BCS classification [74,75].

Table 3. Biopharmaceutical Classification System (BCS) [73] using solubility and permeability as
qualitative criterions.

High Solubility Low Solubility

High permeability
Class I

This class comprise compounds
characterized by good absorption profiles.

Class II
The bioavailability is directly

related to the dissolution behavior.

Low permeability

Class III
The active pharmaceutical ingredient (API)

is soluble, however absorption profile is
dependent on limited permeation behavior.

Class IV
The API is characterized by very

low bioavailability.

Hence, for proper bioavailability assessment, both water solubility and permeability must be
known. It is interesting to see if there is any correlation between the BCS class of a given drug and
its estimated affinity toward β-CD. For this purpose, information about the BCS classification was
collected for 300+ drugs [76]. Those that are found to be outside of the applicability domain were
excluded from the analysis. For the remaining drugs, the values of the molecular descriptors were
collected. This, in turn, allowed for application of the MARSplines model and prediction of lnK values.
The obtained results are presented in Figure 2 and Table S2. As can be seen from Figure 2, those APIs
exhibiting good permeability (Class I and II) are characterized by higher affinity to cyclodextrin.
This is understandable since the cyclodextrin cavity is rather hydrophobic, like for lipid biological
barriers. The most important message coming from Figure 2 is that Class I and II have very similar
distributions to each other and, at the same time, are distinct from Class III and IV. Indeed, application
of a statistical non-parametrical test revealed that the medians are statistically the same (p = 0.27) for
Class I and II but either combination with remaining classes reached statistical significance (p < 0.001).
Similarly, the analysis of Classes III and IV versus the other two classes consistently confirms that
low permeability can be distinguished from high values by predicted drug affinity to β-CD. In order
to turn this qualitative conclusion into a practically useful formula, a second MARSplines model
was formulated. However, the target of the modeling this time was the classification into low and
high permeability cases. Hence, only one quantitative parameter was used for classification model
formulation, namely, computed values of lnK. As a dependent value, the binary flag for permeability
was declared. The obtained formulae are provided below:

ClassA = 0.1655 + 0.2510×max(0; LnK− 4.8148) + 0.0734×max(0; 4.8148− LnK)

− 0.2455×max(0; LnK− 8.0157)
(2)

ClassB = 0.8345 − 0.2510×max(0; LnK− 4.8148) − 0.0734×max(0; 4.8148− LnK)

+ 0.2455×max(0; LnK− 8.0157)
(3)
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If the value of the first equation for dependent variable ClassA is higher compared to the value
provided by the second equation, then high permeability is predicted. This means that the analyzed
drug belongs to Class I or II of the BCS. On the contrary situation, when ClassA < ClassB, then low
permeability is predicted by the model and, consequently, the given drug should belong to Class III or
IV of the BCS. It is interesting to note that such a simple model has quite an acceptable predictive power.
Proper qualification of high permeability occurred in 88% of cases, with only 12% of misclassified
drugs. The low permeability was classified with slightly lower precision of 73%, with 27% of failure.
These observations indicate the potential applicability of binding constants for evaluating permeability.

4. Conclusions

Compounds exhibiting high symmetry, such as fullerenes or nanotubes, have been used in
various branches of medicine and pharmacy, including drug delivery [77–79]. This also applies to
cyclodextrins, which due to their specific shape features, have been widely used to increase API
solubility. In this work, the QSPR model of the binding constant of different compounds to β-CD
was developed based on the MARSplines methodology, and molecular descriptors were derived
from the SMILES code. The internal and external validation indicated good accuracy of the model.
The appearance of polarity-related descriptors, such as XlogP, indicated the hydrophobic nature of
the cyclodextrin cavity, which is consistent with the nature of cyclodextrins. It is well known that
the hydrophilicity/hydrophobicity of a drug can be used for evaluation of the drugs’ permeability.
Therefore, the model was used for predicting affinity to β-CD of exemplary compounds belonging to
different BCS classes. As was established, APIs exhibiting high permeability (I and II BCS Class) are
generally characterized by higher lnK values than compounds revealing low permeability (class III
and IV). This shows that β-CD complexation seems to offer an alternative for complex and expensive
experimental permeability modeling studies.
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