
symmetryS S

Article

An Enhanced Algorithm of RNN Using Trend in
Time-Series

Dokkyun Yi 1, Sunyoung Bu 2 and Inmi Kim 1,*
1 DU College, Daegu University, Kyungsan 38453, Korea
2 Department of Liberal Arts, Hongik University, Sejong 04066, Korea
* Correspondence: inmikim@gmail.com

Received: 29 May 2019; Accepted: 10 July 2019; Published: 12 July 2019
����������
�������

Abstract: The concept of trend in data and a novel neural network method for the forecasting of
upcoming time-series data are proposed in this paper. The proposed method extracts two data
sets—the trend and the remainder—resulting in two separate learning sets for training. This method
works sufficiently, even when only using a simple recurrent neural network (RNN). The proposed
scheme is demonstrated to achieve better performance in selected real-life examples, compared to
other averaging-based statistical forecast methods and other recurrent methods, such as long
short-term memory (LSTM).

Keywords: time series; trend; machine learning; RNN; LSTM

1. Introduction

In the modern age, a tremendous amount of time-series data, such as stock market fluctuations
and average temperature per month per region, are generated and saved with each passing second.
This trend is accelerating, showing no signs of slowing and, thus, many tools have been developed and
used to extract useful information from such data for various purposes, such as for profit, estimation,
detection, and future prediction. In particular, the prediction of information has been researched
extensively and many statistical forecasting methods have been developed [1–10]. With growing
interest in machine learning, similar developments in time-series-related recurrent neural networks
(RNN) have been made, as can be found in in [11–14].

As the recurrent neural network (RNN) has evolved, several branches, such as long short-term
memory (LSTM) [15,16] or the gated recurrent unit (GRU), have been developed and implemented
in many research areas and real-life applications. As LSTM and GRU reduce the weaknesses of
RNN, such as the vanishing or exploding gradient problems [17–21], they have become widely used
methods; however, even these new methods are not without their own problems, such as complexity
of calculation. Much research on combinations of techniques, such as hybrid schemes [22], has been
carried out and some preliminary studies [23–25] have utilized the concept of trend to make predictions.
However, [24] assumed that the trend sets were already given and, thus, did not provide a specific
method to obtain them.

The aim of this paper is to provide a new technique for the prediction of more accurate future
trends, using a single-layer RNN structure for a given time-series. For this, first, a trend vector is
derived from a given set of data whose components are length (duration), slope, and an adjustment
part. Second, a non-trend data part is defined, which is equivalent to the difference between the values
of the original data and the trend value defined in the previous step. Additionally, instead of using the
original time-series as the input of the learning and training mechanism, the previously defined 1 by 3
vector-valued trend and the non-trend parts are used as the input for the learning process. Note that,
for the most part of the paper, the simple RNN is the default training method, which was chosen to

Symmetry 2019, 11, 912; doi:10.3390/sym11070912 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym11070912
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/7/912?type=check_update&version=2

Symmetry 2019, 11, 912 2 of 14

emphasize the strength of trend methods; that is, even with one of the simplest learning schemes,
the forecasting results are better than some variance of RNN learning methods, which is a motivation
and strength of this work. This is also demonstrated by the examples and numerical experiments,
in which the use of both trend and non-trend data parts results in better prediction performance.
A brief explanation of this process is shown in Figure 1.

Figure 1. Trend Training method process. If the time i is included in the domain of j-th trend~τj, then µi,
the trend value at time i, is determined from the elements of ~τj.

2. Obtaining the Trend from Training Data

In this section, we explain a new approach to finding linear trends in a given time-series.

2.1. Definition of Trend

From the given data of a total learning data set TLS = {X1, X2, . . . , Xn}, where n is the length of
the data, a set of linear trends {−→τ 1,−→τ 2, . . . ,−→τ k}, (k < n) is taken, where each trend −→τ j is a vector
with three components, given as

−→τ j =
〈
`j, sj, ε j

〉
, (1)

where
k

∑
j=1

(`j − 1) = n− 1. (2)

and `j represents the duration of the j-th trend −→τ j in time domain; that is,

`j = tτj+1 − tτj + 1, (3)

where tτk represents the time value at which the k-th trend starts and sj represents the (linear) slope
of −→τ j,

sj = arctan(
Xτj+1 − Xτj

`j
) (4)

where Xτk is the first data value of the k-th trend. The set of data TLS is represented as k subsets LSjs as

∪k
j=1 LSj = TLS, (5)

where the intersection of LSj and LSj+1 (i.e., LSj ∩ LSj+1) is a single element on the boundary of the

two trend lines. The elements of LSj are data values with respect to the time domain {1 + ∑
j−1
t=1(`t −

1), . . . , 1 + ∑
j
t=1(`t − 1)}.

Symmetry 2019, 11, 912 3 of 14

2.2. Defining the Trend Value µi

In detail, the durations `1, `2, . . . , `k and the slopes s1, s2, . . . , sk of all trends are calculated by the
following technique: First, in the total learning set TLS (see Equation (5)), pick a maximum-valued
element and a minimum-valued element and label them as Xmax1 and Xmin1 , respectively. If there are
more than one occurrences of maximum or minimum, just choose one. In our algorithm, we chose the
first one (i.e., at the smallest time index). Assume that max1 < min1 (note that the other case works
in the same manner). Then, link the first data X1 to Xmax1 , Xmax1 to Xmin1 , and Xmin1 to the last data
Xn in the graph of the time-series TLS. From this first process, we have three subsets {LS1

1, LS1
2, LS1

3},
where LS1

1 = {X1, . . . , Xmax1}, LS1
2 = {Xmax1 , . . . , Xmin1} and LS1

3 = {Xmin1 , . . . , Xn} as shown in
Figure 2. The linear lines produced by linking the end points of LS1

j (j = 1, 2, 3) are the trends, with
one dividing process.

Figure 2. First step of calculating trends from data. The three linear lines represent the three trends
~τ1, ~τ2, and ~τ3. The first two components of a trend, the duration and the slope (defined by (7) and (8),
respectively), are marked in the figure.

In Figure 2, Korea Composite Stock Price Index (Kospi) data (http://kr.investing.com) with a data
length of 3800 was used as an example for showing how the trends are calculated. If the first or the
last data is one of the maximum or minimum values, there are only one or two trends. The next step is
to divide each LS1

j (j = 1, 2, 3) into one, two, or three subsets, through a similar process.
From now, we will change the data value into {Xi − µi}i=1,...,n where µi is the value of the linear

trend at t = i. For example, in LS1
1 = {X1, . . . , Xmax1}, µi is a trend value at time i for i = 1, . . . , max1

and is determined from a linear function which connects X1 and Xmax1 ; that is, µi is calculated as

µi =

X1 if i = 1
Xmax1−X1

max1−1 (i− 1) + X1 if 1 < i < max1

Xmax1 if i = max1.

(6)

Note that µi is changed when dividing the subsets of LS.
Then LS1

1 produces subsets LS2
1, LS2

2 and LS2
3 with respect to the new indices max2, min2,

where max2, min2 represents the indices of the maximum and minimum data value of {Xi −
µi}i=1,...,max1 , and so on. To stop reproducing subsets and complete the making the trend data set,
a reasonable threshold is needed. This procedure keeps repeating until the difference between the
maximum and the minimum value of a modified data subset is smaller than the threshold. In our
experiments the threshold is chosen depending on the data set. If the threshold is not small enough,
the trend value might not be able to represent the flow of the time-series data well and also the number
of trends is too small to execute the learning with the trend set. Thus, to obtain a suitable number
of trends, we need to have a smaller threshold. Figure 3 shows an example of using a threshold.
A threshold of 0.5 was used for a Kospi data subset with length 3800. Finding linear trends, the blue
lines, is done after scaling data by dividing by the maximum value of the total data set so the threshold

http://kr.investing.com

Symmetry 2019, 11, 912 4 of 14

is less than 1. It is shown that with the threshold 0.5, the number of the trends of this data is 5 which
is too small for the number of learning data set and not enough to catch the non-ignorable bumps
in the time-series. For finding a reasonable threshold, more detailed explanation is described in the
next section.

0 500 1000 1500 2000 2500 3000 3500 4000

Time

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
c
a

le
d

 d
a

ta
 v

a
lu

e

ǫ
2

Figure 3. Obtaining trends from data (blue line) and creating new trends (red line) by adding the
adjustment part ε j for the j-th trend (given by (9)).

After obtaining the final set of linear trends, the j-th trend can be expressed as its duration `j and
the slope sj of the line for j = 1, . . . , k where k is the number of trends.

2.3. Defining `j and sj

Note that the trend between Xp and Xq lies on the time interval [p, q]. (i.e., q− p + 1 is the number
of trend data) and the corresponding duration `j is defined as

`j = q− p + 1. (7)

Furthermore, the slope si of the trend can be defined as the angle from the slope (Xq−Xp)/(q− p),
where p and q are the indices of the endpoints of the trend. We use the radian value of the angle from
the inverse tangent of the slope; that is,

sj = arctan(
Xq − Xp

q− p
), (8)

which is a real number between −π
2 and π

2 . Examples of `j and sj are shown in Figure 2.

2.4. Defining ε j

The next step is to adjust and to update each trend set from a vector of two elements, `j and sj,
to a vector of three elements with the following rule: In the j-th trend (for example), for a time-series
data value in the trend set Xi ∈ LSj, calculate the expectation value of all Xi − µi and denote it by ε j,
where Xi is a data value in j-th trend τj. That makes

∑
Xi∈LSj

(Xi − µi − ε j) = 0. (9)

Define the j-th trend as
−→τ j =

〈
`j, sj, ε j

〉
, (10)

where j = 1, . . . , k. Now, this is equivalent to a linear function with slope sj with duration `j from
the first point of LSj, and with ε j subtracted; that is, define an adjusted trend value µ′i = µi + ε j,
represented by −→τ j where {−→τ i}i=1,...,k satisfies

E(Xi − µ′i) = 0 (11)

Symmetry 2019, 11, 912 5 of 14

for all Xi ∈ LSj. These are shown as red line segments in Figure 3.
Now, it remains to train a RNN on the two different time-series, in order to predict the next

unknown data. One is the adjusted trend set {−→τ 1,−→τ 2, . . . ,−→τ k} and the other is the non-trend data
{xi = Xi − µ′i}i=1,...,.n. By learning the trend set, we can predict the length and duration of the next
trend. The expected value of the non-trend part is trained. The algorithm, so far, can be expressed as
the following.

3. Finding a Threshold

In this section, we describe a method to obtain a reasonable threshold for Algorithm 1.
As mentioned in the previous section, subsets of given data are divided until the biggest difference
between the divided trend and the data is less than the threshold.

Algorithm 1: Obtaining the Trend Set

1. Set an index set as Index = {1, n}, where n is the number of the training data.
2. Find max1, min1 such that max(X1, . . . , Xn) = Xmax1 , min(X1, . . . , Xn) = Xmin1 and add these to

the Index set (i.e., Index = {1, max1, min1, n}). Get rid of duplicate indices and sort the set.
3. For LS1

i = {XIndex(i), . . . , XIndex(i+1)} for i = 1, . . . , (#ofIndex− 1), link XIndex(i) and XIndex(i+1)
and let µ1(j) be the value of the linked linear line.

4. For each {Xj − µj}, j = 1, . . . , n, find max and min indices and repeat Steps 2 and 3.
5. Repeat Step 4 until |Xmax − Xmin| ≤ threshold for a pre-chosen threshold.

Before obtaining trends of real data, such as a financial series or temperature data, let us consider
some examples of data. As periodicity is an important factor among the many characteristics of data,
we consider periodic and non-periodic example data to figure out suitable thresholds for each type of
data. For the periodic example, consider Xi = sin(i

30) for i = 1, . . . , n and, for the non-periodic one,
consider Xi = exp(− i

900) for i = 1, . . . , n. Note that the data is used after scaling by the maximum
absolute value of the data, such that it is bounded in [−1, 1]. After applying the dividing domain
methods mentioned in the previous section with a very small threshold (say, 0.00001), we obtain the
LSis; the subsets of the total learning set TLS = {Xi}i=1,...,n.

By varying the different number of data n between 1000, 2000, 3000, and 4000, we can make
observations about the variance of the difference between data and the trend per division of the
trends. If µ′i (i = 1, . . . , n) represents an adjusted trend value after a certain amount of trend division,
we define the variance as

variance =
1

#TLS ∑
Xi∈TLS

(Xi − µ′i)
2, (12)

where Xi is an element at time i in the total learning set and µi is the corresponding trend value at time i.
Figure 4 plots the variance of two example data per trend division number as the number of data

was increased by 1000. As the trigonometric function had a proportional number of extremes to the
total length data, the trend division number was also proportional to the total length. We can observe
that the first variance (i.e., the variance after the first trend division) was similar after increasing the
size of data and, also, that the final variance barely changed, even when the length of the data was
increased. However, for non-periodic data (the exponential function, in our example), the first variance
increased as the size of the data increased. It took a lot of divisions to approach the goal after getting
near the final variance (with a small threshold 0.00001) for the non-periodic data, while the periodic
data stopped trend division shortly after getting near the final variance.

Symmetry 2019, 11, 912 6 of 14

0 5 10 15 20 25 30

trend dividing number

0

0.5

1

1.5

2

2.5

V
a

ri
a

n
c
e

Getting trends of y=sin(x/30)

x=(1:1000)
x=(1:2000)
x=(1:3000)
x=(1:4000)

0 5 10 15 20

trend dividing number

0

0.02

0.04

0.06

0.08

0.1

V
a

ri
a

n
c
e

Getting trends of y=exp(-x/900)

x=(1:1000), final number = 12
x=(1:2000), final number = 13
x=(1:3000), final number = 14
x=(1:4000), final number = 15

0 200 400 600 800 1000
-1

-0.5

0

0.5

1
sin(x/30)

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

s
c
a

le
d

 v
a

lu
e

exp(-x/900)

Figure 4. Sine and exponential function data and calculation results of variance of the difference
between the data and the trend value per trend division. In the sine function data, the trend division
process stops when the next size start to converges. In the exponential function data, data of different
size converges quickly in a similar amount of time but took a long time to finish the division process.

From this observation, we can get a hint if the given data is periodic or not by calculating variance
per trend division with different sized sets of the data (i.e., we can do a pre-processing to get the
periodicity of a data). After pre-processing, if a data is periodic or periodic-like, we can choose a small
portion of the data and choose the threshold depending on the amount of data difference one wants to
ignore when setting trends.

The above method suggests a way to find a suitable threshold; however, changing threshold results
in different trend lengths which may affect interpretation of various aspects of the data. The length of
the trend does not affect the accuracy of learning, so using different thresholds with various goals of
forecasting is possible.

4. Learning the Trend

In this section, we want to train a set {−→τ 1,−→τ 2, . . . ,−→τ k}, where−→τ j is a 1× 3 vector, for j = 1, . . . , k,
where k is the number of trends (see Equation (10)). As we have a 1× 3 vector −→τ t as the t-th input of
the simple RNN process, the dimension of

−→
hτ

t and
−→
yτ

t, which are the t-th hidden state and the output
value of trend, respectively, can be set as vectors of size 1× 3, as shown in the following equations:

−→
yτ

t = Wτ
y
−→
hτ

t +
−→
bτ

y , (13)
−→
hτ

t = tanh(Wτ
h
−→
hτ

t−1 + Wτ
τ
−→τ t +

−→
bτ

h), (14)

where Wτ
y , Wτ

h and Wτ
τ are in R3×3 and

−→
bτ

y and
−→
bτ

h are in R1×3. Note that we need to calculate the

matrix–vector multiplications in the opposite order; for example, we calculate Wτ
y
−→
hτ

t as
−→
hτ

t ·Wτ
y to

match the dimension of the result vector. The goal of this training is to get an approximated set of
weights and biases which minimise the cost function

cost =
1

trainτ − seqτ

trainτ−1

∑
i=seqτ

||
−→
yτ

i −−→τ i+1||22 (15)

=
1

trainτ − seqτ

trainτ−1

∑
i=seqτ

||Wτ
y tanh(Wτ

h
−→
hτ

t−1 + Wτ
τ
−→τ t +

−→
bτ

h) +
−→
bτ

y −
−→τ i+1||22, (16)

Symmetry 2019, 11, 912 7 of 14

where ||.||2 is the `2-norm, trainτ is the number of trends for training (which is k, in this case), and seqτ

is the sequence length for trend training. The cost is defined as the average value of all differences
squared, as shown in (15). We use the Adam optimisation method to minimise this cost and get the
optimum weight and bias sets [26].

Once a trend set is well-trained, a prediction of the next trend −→τ k+1 =
〈
`k+1, sk+1, εk+1

〉
can be

generated, which is close to the real future data.

5. Learning the Non-Trend Part

In the previous section, we obtained a prediction of trend which adequately predicts the flow of
the data. Now, the remaining oscillating, noise-like part is the non-trend part of the data. There are
two different methods of forecasting suggested in this paper. One is considering the non-trend data as
a time-series with same length as the original data and using the same scheme, simple RNN, with trend
training. The other is calculating the expected bounds of non-trend part from the minimum and the
maximum value of non-trend part in each trend.

5.1. Simple RNN Method

First, the non-trend part can be also trained using the simple RNN process and produce a set of
prediction values {yt} by the following equations,

yt = wyht + by, (17)

ht = tanh(whht−1 + wxxt + bh), (18)

and this result can be added to the obtained trend. It is identical to the simple RNN process, but the
input data is given as the original scaled data with the trend prediction from the previous process
subtracted; that is,

xt = Xt − µ′t, (19)

where µ′t (t = 1, . . . , n) represents the data value of the corresponding trend −→τ i in the trend set
{−→τ i}i=1,...,k. Note that the number of predictions of the non-trend part is limited to the length of the
predicted trend, since we are only interested in the movement of the data in that trend. For instance,
in the previous section, after the trend training, the (k + 1)-th trend

〈
`k+1, sk+1, εk+1

〉
is obtained. So,

only `k+1 number of predictions {yn+1, yn+2, . . . , yn+`k+1
} are obtained from the non-trend training.

Combining this non-trend part and the trend training result from the previous subsection, the final
prediction is obtained as

Yt = µ′t + yt, (20)

where µ′t is the data value of −→τ k+1 and yt is the non-trend prediction result for t = 1, . . . , `k+1.
The algorithm, so far, can be expressed by the following algorithm (Algorithm 2). Note that, in Step 1,
in the form of the trend, the third element εi is a value obtained to make the average of the data with
the trend subtracted zero in each trend. Also, note that, in Step 3, it uses the optimisation scheme with
three variables.

Symmetry 2019, 11, 912 8 of 14

Algorithm 2: Forecasting by Learning Trend and Non-trend Parts

1. Take a trend set of the data with a form of
〈
length,slope,error

〉
(i.e., −→τ i =

〈
`i, si, εi

〉
, i = 1, . . . , k for

some k).
2. Obtain the hidden layer values and output values after the simple RNN process (as in

Equation (13)).
3. Perform the Adam optimisation scheme with suitable iteration number to get a minimum of

the trend cost (Equation (15)).
4. From Step 3, get a prediction of upcoming trend after the training data set
−→τ k+1 =

〈
`k+1, sk+1, εk+1

〉
.

5. Take a non-trend set of the data by subtracting the original data by the trend value from Step 1.
6. Get hidden layer values and output values after simple RNN process with one variable input.
7. Perform the Adam optimisation scheme with suitable iteration number to get a minimum

of the non-trend cost.
8. From Step 7, get predictions of the non-trend values. Note that the number of predictions is

equivalent to the length `k+1 of the predicted trend −→τ k+1.
9. Combine the results from Steps 4 and 8.

5.2. Bound Training Method

Another method for dealing with the non-trend part is by training the bounds of the non-trend
value in each trend. First, we calculate the maximum and minimum values of Xj − µ′j in each trend for
j = 1, . . . , n where Xj is the data value and µ′j represents the trend value for a trend length n. Then,
there are k pairs of maximum and minimum values (i.e., {(maxi, mini)}i=1,...,k, where k is the number
of trends of the data). This can be considered as a time-series as well, so the RNN can be used again
with this series of vectors with two elements. The hidden state vector

−→
ynτ

t and the output value vector
−→
hnτ

t for non-trend part are both 1× 2 vectors and satisfy the following equations

−→
ynτ

t = Wnτ
y
−→
hnτ

t +
−→
bnτ

y , (21)
−→
hnτ

t = tanh(Wnτ
h
−→
hnτ

t−1 + Wnτ
nτ
−→τ t +

−→
bnτ

h), (22)

where the weight matrix for non-trend part Wnτ
y , Wnτ

h , and Wnτ
nτ are in R2×2 and the bias vector for

the non-trend part
−→
bnτ

y and
−→
bnτ

h are in R1×2 for t = 1, . . . , k. As a result of optimisation of the above
equations, predictions for the maximum and the minimum for the non-trend values are produced.

6. Numerical Experiments

In this section, some numerical results of the proposed schemes—RNNs for trend, RNNs for
non-trend, and the combination of these two—are shown through two examples of practical data.

6.1. Stock Market Index Data

The first example is the Korea Composite Stock Price Index (Kospi) closing price data, which was
used in Section 2. In this experiment, the number of the data was over 4200. As shown in Figure 5,
pre-processing of this data gave the flow of variance of the non-trend part by trend division per length
of data. The variance value converged fast and remained near convergence for over 70 percent of the
trend division time; this behavior of convergent time was the same for all lengths of regularly chopped
data. This is similar to the result for the exponential function data in Section 3, so the Kospi data can
be considered to be a non-periodic data type. Thus, the choice of a threshold for the trend division
should be small (i.e., 0.00001), in order to catch the number of trends.

The number of trends with threshold 0.00001 was 274 and the threshold which gave the closest
number of trends was 0.05. So, for this experiment, the training data length was 4000 and the threshold

Symmetry 2019, 11, 912 9 of 14

was 0.05. In Figure 6, the data and its trend are given in the first graph and the (decreasing) trend
of learning error in the second graph. This shows that the trend learning worked well. With this
threshold, the number of trends was 178 and (as we used 1/10 of the number of trends) 17 was the
sequence length. A total of 2800 iterations were used for the learning of this trend set.

0 1000 2000 3000 4000 5000

Time

0

500

1000

1500

2000

2500

3000

D
at

a
va

lu
e

(C
lo

si
ng

 p
ric

e)

Kospi data

0 5 10 15 20

trend dividing number

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

va
ria

nc
e

Getting trends per training length wtih threshld=0.000001

train length=1000
train length=2000
train length=3000
train length=4000

Figure 5. Kospi data showing non-periodic variance pattern in its convergence speed.

3940 3960 3980 4000 4020 4040

Time

0.85

0.9

0.95

1

1.05

S
c
a

le
d

 d
a

ta
 v

a
lu

e

Real data

Trend

Trend Prediction

with Non-trend Prediction

4000 4005 4010 4015 4020 4025

Time

0.9

0.95

1

1.05

S
c
a

le
d

 d
a

ta
 v

a
lu

e

0 500 1000 1500 2000 2500 3000

Iteration

10
0

10
2

10
4

E
r
r
o

r

trend training error

4000 4005 4010 4015 4020 4025

Time

0.9

0.95

1

1.05

S
c
a

le
d

 d
a

ta
 v

a
lu

e Real Data

Trend Prediction

Non-trend bound

Figure 6. Training error decrease for trends in the Kospi data and prediction of the trend and non-trend
parts. The third graph is a close-up of a section of the second graph. The last graph shows the forecasted
bounds from the second scheme for the non-trend forecasting method.

After learning the trend, it predicted the next trend which turned out to be 22, 0.003364,
and 0.004562 as the duration, slope, and adjustment, respectively. See the third and fourth graphs in
Figure 6 for closer look at the prediction part. We can see that this scheme worked well in finding the
next trend. For the non-trend part, the training length was the same as the total data number used
to obtain the trends. The sequence length of the non-trend part was decided as the floor function of
the length of the training data divided by the length of the trend obtained from the previous step. So,
for this example, the sequence length of the non-trend training was b4000/178c = 22. The number of
iterations for the non-trend part learning was 3000.

6.2. Temperature Data

The next data set was temperature data. It is the monthly average temperature measured in
Seoul, South Korea and the data length was over 24,000. Similar to the the previous data, Figure 7
shows the variance information of the non-trend part as changing trends per length of regularly
chopped data. From this graph, the convergent time of variance for each data length varied and was

Symmetry 2019, 11, 912 10 of 14

proportional to the length of the training data. Given this pre-processing result, the temperature data
was determined to be periodic/periodic-like and, so, the threshold for obtaining trends was chosen
as needed. In this experiment, a threshold of 0.5 suited our purposes. Thus, a training data length
of 23,000 and a threshold of 0.5 were used. Then, 988 trends were obtained with this threshold and,
so, the sequence length for trend learning was set to 98, calculated similarly to the previous case.
In Figure 8, the data and its trends are shown in the first graph and the decreasing trend learning error
in the second graph. We can see that the trend learning worked well. With a sequence length of 98 and
23,000 iterations, the trend learning gave that the duration, slope, and adjustment of the next trend were
23, −0.012443, and −0.000828 respectively. In Figure 8, this result is shown visually, where the fourth
graph shows a closer look of the prediction part. For the non-trend part, 5000 iterations were used.

0 0.5 1 1.5 2 2.5

Time ×10
4

-20

-10

0

10

20

30

40

A
ve

ra
ge

 T
em

pe
ra

tu
re

Average Temperature data

0 10 20 30 40

trend dividing number

0

0.1

0.2

0.3

0.4

0.5

0.6

V
ar

ia
nc

e

Getting trends per training length

train length=5000
train length=10000
train length=15000
train length=20000

Figure 7. The average temperature data of Seoul, South Korea shows a periodic variance pattern.

0 0.5 1 1.5 2 2.5

Iteration ×10
4

10
0

10
5

E
rr

o
r

trend training error

2.3 2.3005 2.301 2.3015 2.302 2.3025

Time ×10
4

-0.2

0

0.2

0.4

S
c
a

le
d

 d
a

ta
 v

a
lu

e

2.294 2.296 2.298 2.3 2.302 2.304 2.306

Time ×10
4

-0.5

0

0.5

1

S
c
a

le
d

 d
a

ta
 v

a
lu

e

Real data
Trend
Trend Prediction
with Non-trend prediction

2.3 2.3005 2.301 2.3015 2.302 2.3025

Time ×10
4

-0.2

0

0.2

0.4

0.6

S
c
a

le
d

 d
a

ta
 v

a
lu

e

Real Data
Trend Prediction
Non-trend bound

Figure 8. Training error decrease for trends in the average temperature data of Seoul, South Korea
and prediction of the trend and non-trend parts. The third graph is a close-up of a section of the
second graph. The last graph shows the forecasted bounds from the second scheme for the non-trend
forecasting method.

7. Comparison with Other Methods in the Numerical Experiments

In this section, we will compare the detection results of our scheme with other existing
forecasting methods.

Symmetry 2019, 11, 912 11 of 14

7.1. Comparison with Other Trend Methods

There are many statistical methods and techniques for the forecasting of time-series. Among these
methods, averaging-based methods are typically used to compare forecasting results. The first method
used was the single exponential smoothing method [27]. The smoothed value is given by

St+1 = αyorigin + (1− α)St, 0 < α ≤ 1, t ≥ 3, (23)

where yorigin remains constant for all future forecast calculations, which is known as bootstrapping [28].
The parameter α is determined by minimizing the mean squared error (MSE). We used this
bootstrapping forecasting method for comparison. See Figures 9 and 10 for the comparison forecasting
results of the Kospi and temperature data, respectively. The thin pink line is the data smoothed
with the single exponential method and the thick pink line represents the forecast value using the
bootstrap method.

The next averaging method we used was double exponential smoothing [29]. It uses two constants
and is known to handle trends more efficiently. The equation is obtained as follows

St = αyt + (1− α)(St−1 + bt−1) (24)

bt = γ(St − St−1) + (1− γ)bt−1, (25)

where α and γ are determined using non-linear optimisation techniques. The m-period-ahead forecast
is obtained by

Ft+m = St + mbt. (26)

In Figures 9 and 10, the thin blue line represents the double exponential smoothed data and the
thick blue line shows the linear forecasting result Ft+m.

In both data examples, the red line shows the predicted trend with our proposed scheme and the
series of points marked with + indicates the trend prediction added by the non-trend part predictions.
It can be observed, in both figures, that our proposed scheme detected the real data more accurately.
See Table 1 for the calculated mean squared errors of each method, for both Kospi and temperature
data sets, in Figures 9 and 10.

3950 3960 3970 3980 3990 4000 4010 4020 4030

Time

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

S
c
a
le

d
 d

a
ta

 v
a
lu

e

Real data

Double Exp. Smoothed data

Forecast (Double Exp. Sm)

Single Exp. Smoothed data

Forecast (Bootstrap method)

Trend by Proposed Scheme

with Non-trend result

Figure 9. Comparison with smoothing methods: Kospi data.

Table 1. Comparison of mean squared errors (MSEs) with exponential smoothing methods.

Kospi Temperature

Single exponential smoothing method 0.0018 0.1057
Double exponential smoothing method 0.0020 0.1958
Proposed scheme 1.2329 × 10−4 0.0372

Symmetry 2019, 11, 912 12 of 14

2.295 2.296 2.297 2.298 2.299 2.3 2.301 2.302 2.303 2.304 2.305

Time 104

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
c
a

le
d

 d
a

ta
 v

a
lu

e

Real data

Double Exp. Smoothed data

Forecast (Double Exp. Sm)

Single Exp. Smoothed data

Forecast (Bootstrap method)

Trend by Proposed Scheme

with Non-trend result

Figure 10. Comparison with smoothing methods: Temperature data.

7.2. Comparison with Other Learning Methods

In this sub-section, we compare our proposed method with other learning schemes, such as simple
RNN and simple LSTM (both with a single layer). We used a simple version of these schemes on the
Kospi data, and the prediction results are shown in Figure 11. With the same training number (4000),
the result of LSTM popped up and down, back to around 1.35 at the time 4007, whereas the result of
RNN stayed around the real data value. Thus, our result (the red line in the Figure 11), which was closest
to the real data, gave the best prediction among these methods. See Table 2 for a comparison of the mean
squared errors of each learning method. A comparison using the temperature data gave a similar result,
as this is from the simple RNN variances which have some issues (such as vanishing gradient).

4001 4002 4003 4004 4005 4006 4007 4008

Time

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

S
c
a
le

d
 v

a
lu

e

Real data
Predicted Trend by Proposed Scheme
Simple LSTM
Simple RNN

Figure 11. Comparison with other learning methods: Kospi data.

Table 2. Comparison of MSEs with other learning methods.

Kospi

Simple RNN 0.0105
Simple LSTM 0.4024
Proposed scheme 1.2329 × 10−4

8. Conclusions and Future Works

In this paper, we introduced a new algorithm to predict future data from given time-series data by
finding trends in the data set which fit into the given data and, then, applying existing simple recurrent

Symmetry 2019, 11, 912 13 of 14

neural network learning to them. Here, we propose a technique to collect and find the trend set with
three pieces of information—slope, duration, and adjustment. Once the trends set has been collected,
it is trained by a simple RNN, such that future trends can be predicted. Additionally, to increase the
accuracy of the prediction, we considered the non-trend part in the time-series. A simple RNN was
also trained on the non-trend parts and the results were added to the prediction of the trends.

Through several numerical simulations, it was shown that the collected trends can fit the given
time-series data and are also well-trained, such that the prediction of future trends is accurate, compared
to the real data. Furthermore, the accuracy could be increased by adjusting the trend prediction by
training on the non-trend part. Note that all training simulations were executed by a simple, single-layer
RNN, due to hardware limitations. Hence, in order to fully explore the efficiency of the proposed
algorithm, we will combine the proposed algorithm with LSTM or GRU, instead of using only a simple
RNN, since those variants of RNN are well-known to be better predictors in RNN structures [30,31].

Author Contributions: Conceptualization, D.Y.; methodology, I.K.; software, I.K.; validation, D.Y., S.B., and I.K.;
resources, S.B.; data curation, S.B. and I.K.; writing—original draft preparation, I.K.; writing—review and editing,
S.B.; supervision, D.Y.; project administration, D.Y.; funding acquisition, D.Y. and S.B.

Funding: This research was funded by the basic science research program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (grant number
NRF-2017R1E1A1A03070311). The second author Bu was partly supported by the basic science research program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science,
and Technology (grant number 2019R1F1A1058378).

Acknowledgments: The authors would like to express our sincere gratitude to Peter Jeonghun Kim of Samsung
Electronics for invaluable comments about the new testing schemes and improving the use of English in
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Atsalakis, G.S.; Valavanis, K.P. Forecasting stock market short-term trends using a neuro-fuzzy based
methodology. Expert Syst. Appl. 2009, 36, 10696–10707. [CrossRef]

2. Box, G.; Jenkins, G.; Reinsel, G. Time Series Analysis: Forecasting and Control; Prentice Hall:
Upper Saddle River, NJ, USA, 1994.

3. Dangelmayr, G.; Gadaleta, S.; Hundley, D.; Kirby, M. Time series prediction by estimating markov
probabilities through topology preserving maps. In Applications and Science of Neural Networks, Fuzzy Systems,
and Evolutionary Computation II; International Society for Optics and Photonics: Bellingham, WA, USA, 1999;
Volume 3812, pp. 86–93.

4. Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural
network architectures. Neural Netw. 2005, 18, 602–610. [CrossRef] [PubMed]

5. Hosseini, S.; Khaled, A.A.; Vadlamani, S. Hybrid imperialist competitive algorithm, variable neighborhood
search, and simulated annealing for dynamic facility layout problem. Neural Comput. Appl. 2014, 25, 1871–1885.
[CrossRef]

6. Jin, Z.; Zhou, G.; Gao, D.; Zhang, Y. EEG classification using sparse Bayesian extreme learning machine for
brain—Computer interface. Neural Comput. Appl. 2018, 1–9. . [CrossRef]

7. Keogh, E.J. A decade of progress in indexing and mining large time series databases. In Proceedings of the
32nd International Conference on Very Large Data Bases, Seoul, Korea, 12–15 September 2006; pp. 1268–1268.

8. Khaled, A.A.; Hosseini, S. Fuzzy adaptive imperialist competitive algorithm for global optimization.
Neural Comput. Appl. 2015, 26, 813–825. [CrossRef]

9. Zhang, X.; Yao, L.; Wang, X.; Monaghan, J.; Mcalpine, D.; Zhang, Y. A Survey on Deep Learning based Brain
Computer Interface: Recent Advances and New Frontiers. arXiv 2019, arXiv:1905.04149.

10. Zhang, Y.; Wang, Y.; Zhou, G.; Jin, J.; Wang, B.; Wang, X.; Cichocki, A. Multi-kernel extreme learning machine
for EEG classification in brain-computer interfaces. Expert Syst. Appl. 2018, 96, 302–310. [CrossRef]

11. Elman, J.L. Finding structure in time. Cognit. Sci. 1990, 14, 179–211. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2009.02.043
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://www.ncbi.nlm.nih.gov/pubmed/16112549
http://dx.doi.org/10.1007/s00521-014-1678-x
http://dx.doi.org/10.1007/s00521-018-3735-3
http://dx.doi.org/10.1007/s00521-014-1752-4
http://dx.doi.org/10.1016/j.eswa.2017.12.015
http://dx.doi.org/10.1207/s15516709cog1402_1

Symmetry 2019, 11, 912 14 of 14

12. Mueen, A.; Keogh, E. Online discovery and maintenance of time series motifs. In Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA,
25–28 July 2010; pp. 1089–1098.

13. Schmidhuber, J. A Local Learning Algorithm for Dynamic Feedforward and Recurrent Networks. Connect. Sci.
1989, 1, 403–412. [CrossRef]

14. Werbos, P.J. Generalization of backpropagation with application to a recurrent gas market model. Neural Netw.
1988, 1, 339–356. [CrossRef]

15. Gers, F.A.; Schraudolph, N.N.; Schmidhuber, J. Learning Precise Timing with LSTM Recurrent Networks.
J. Mach. Learn. Res. 2002, 3, 115–143.

16. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

17. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult.
IEEE Trans. Neural Netw. 1994, 5, 157–166. [CrossRef] [PubMed]

18. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of
the 30th International Conference on Machine Learning (ICML 2013), Atlanta, GA, USA, 16–21 June 2013;
pp. 1310–1318.

19. Rohwer, R. The moving targets training algorithm. In Advances in Neural Information Processing Systems 2;
Touretzky, D.S., Ed.; Morgan Kaufmann: San Matteo, CA, USA, 1990; pp. 558–565.

20. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature
1986, 323, 533–536. [CrossRef]

21. Schmidhuber, J. A Fixed Size Storage O(n3) Time Complexity Learning Algorithm for Fully Recurrent
Continually Running Networks. Neural Comput. 1992, 4, 243–248. [CrossRef]

22. Xu, X.; Ren, W. A Hybrid Model Based on a Two-Layer Decomposition Approach and an Optimized Neural
Network for Chaotic Time Series Prediction. Symmetry 2019, 11, 610. [CrossRef]

23. Afolabi, D.; Guan, S.; Man, K.L.; Wong, P.W.H.; Zhao, X. Hierarchical Meta-Learning in Time Series
Forecasting for Improved Inference-Less Machine Learning. Symmetry 2017, 9, 283. [CrossRef]

24. Lin, T.; Guo, T.; Aberer, K. Hybrid Neural Networks for Learning the Trend in Time Series. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI- 17), Melbourne, Australia,
19–25 August 2017; pp. 2273–2279.

25. Wang, P.; Wang, H.; Wang, W. Finding semantics in time series. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, Athens, Greece, 12–16 June 2011; pp. 385–396.

26. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International
Conference for Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015.

27. Brown, R.G. Smoothing, Forecasting and Prediction; Prentice Hall: Upper Saddle River, NJ, USA, 1962.
28. Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Chapman & Hall/CRC: Boca Raton, FL, USA, 1993.
29. Prajakta, S.K. Time Series Forecasting Using Holt-Winters Exponential Smoothing; Kanwal Rekhi School of

Information Technology: Mumbai, India, 2004; pp. 1–3.
30. Cho, K.; Merrienboer, B.V.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y.

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014,
arXiv:1406.1078.

31. Cho, K.; Merrienboer, B.V.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches. arXiv 2014, arXiv:1409.1259.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/09540098908915650
http://dx.doi.org/10.1016/0893-6080(88)90007-X
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1162/neco.1992.4.2.243
http://dx.doi.org/10.3390/sym11050610
http://dx.doi.org/10.3390/sym9110283
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Obtaining the Trend from Training Data
	Definition of Trend
	Defining the Trend Value i
	Defining j and sj
	Defining j

	Finding a Threshold
	Learning the Trend
	Learning the Non-Trend Part
	Simple RNN Method
	Bound Training Method

	Numerical Experiments
	Stock Market Index Data
	Temperature Data

	Comparison with Other Methods in the Numerical Experiments
	Comparison with Other Trend Methods
	Comparison with Other Learning Methods

	Conclusions and Future Works
	References

